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Abstract
Government agencies must simultaneously maintain confidentiality of individual records and disseminate useful microdata. We

propose a method to create synthetic data that combines quantile regression, hot deck imputation, and rank swapping. The result
from implementation of the proposed procedure is a releasable data set containing original values for a few key variables, synthetic
quantile regression predictions for several variables, and imputed and perturbed values for remaining variables. To measure the
disclosure risk in the resulting synthetic data set, we extend existing probabilistic risk measures that aim to imitate an intruder
attempting to match a record in the released data with information previously available on a target respondent.
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1. Introduction
Government agencies face demands to release accurate, timely data and to simultaneously uphold their promises of privacy
and confidentiality to respondents. We study options for generating synthetic data files for public release. Specifically, we
study combining quantile regression and hot deck imputation with rank swapping to produce releasable, usable synthetic
microdata. To capture the complex relationships found in demographic and economic data collected by statistical agencies,
conditional quantile regression models are used. Predicted values computed from model estimates and key predictors are
generated for several confidential variables at random quantiles. Values for other variables are imputed from the original
data using hot deck imputation and further perturbed using a rank swapping procedure. The quantile regression predictions
are combined with the imputed perturbed values to form a data set with record level data for release that has low disclosure
risk and high data utility. Details of the new procedure are described in Huckett and Larsen (2007, 2008).

In general, there is a trade off between reducing disclosure risk and increasing data utility. At one extreme, releasing no
data has zero risk (except for someone physically stealing the data), but no usefulness at all. At the other extreme, releasing
all collected data, including personal identifying information (or at least everything but explicit personal identifiers), should
be the most useful for researchers, but has the highest potential for harm to respondents. In order to judge the relative
merits of disclosure limitation methods, we need to assess both the risk of disclosing confidential information and the data
utility, or the inferential worthiness, of the released data set. Released data sets that carry too much disclosure risk or too
little data utility should be avoided. Details about the framework developed in Duncan and Lambert (1986, 1989) and Reiter
(2005) are presented. We extend this framework to develop a disclosure risk measure for a synthetic data set generated using
our proposed procedure.

2. Measuring Disclosure Risk: Introduction and Notation
Suppose the original data set is called Y, with variables Y0, · · · , Yd and the released (perturbed) data set is called Z, with
variables Z1, · · · , Zd. We assume an intruder with access to the released data will attempt to link one or several target
records from Y with records in Z using information available from external sources on the target, t. The intruder is assumed
to compute the probability that record j in the released data set belongs to the target, conditional on the information in t
and Z, denoted Pr(J = j|t, Z). The larger value of this probability for record j, the more likely the intruder will identify
record j with the target.

The original data set contains records j = 1, 2, ..., n, with data on variables, k = 0, 1, ..., d. The agency may release
r ≤ n records with values on all d variables or a subset thereof. Directly identifying information such as name, exact
address, or social security number is recorded on variables k = 0. No version of these variables is released. Remaining
variables, k = 1, ..., d, are divided into available and unavailable variables, denoted A and U, respectively. Variables in A
contain information available to the intruder from outside sources while variables in U contain information unavailable to
an intruder except from the released data. Assumptions about which variables are in each set can be varied, allowing an
agency the flexibility to consider an intruder with detailed and accurate information on all of the variables as well as an
intruder with relatively little information on any variable. Both unavailable and available variables can be further divided
into variables that are perturbed p and variables that do not get perturbed d before being released by the agency. This
division allows us to incorporate information the intruder is assumed to have about the SDL method used. Further, variables
in the released data set that the intruder cannot know, or match to the original data, with 100% certainty belong to the set
C, where C = (Ap, U), or the available variables that were perturbed and all of the unavailable variables. All variables in C
have been perturbed and/or are unknown to the intruder before data are released from the agency.

Data on in the original data set Y for variable k on record j is denoted ykj . The notation yA
j is used to denote original

data on available variables and yAp
j to denote data on available perturbed variables in the jth record. Similar notation is

∗Iowa State University, Snedecor Hall, Ames, IA 50011, jhuckett@gmail.com, larsen@iastate.edu

Section on Survey Research Methods – JSM 2008

3643



used for variables in Ad, U , and C, as well as for data in the released data set Z and the target’s data t. Properties of some
variables are implied by the definitions. For example, tA = yA for all records, since information on the target is assumed to
include original data on available variables. Also, tAd = yAd = zAd for all records since variables in the set Ad do not get
perturbed. However, even though tAp = yAp, tAp does not necessarily equal zAp since variables in the set Ap are perturbed
from their original values. This notation is used to clearly describe the probabilistic framework presented and implemented
by Duncan and Lambert (1986, 1989). The components of the probability of identification are arrived at using Bayes’ rule
and properties of marginal, joint, and conditional distributions in Reiter (2005).

3. Component Formulation
In order to compute Pr(J = j|t, Z), Reiter (2005) breaks the probability into manageable components. Each component
corresponds to properties of the variables–whether they are perturbed (p) or do not get perturbed (d), whether they are
available (A) or unavailable (U), and whether they are variables with known values (Ad) or values the intruder cannot know
with certainty (C = (Ap, U)) after release. Various assumptions about the properties of each variable and what the intruder
knows prior to data being released cana be incorporated in the corresponding component. Their details are discussed here.

Using Bayes’ rule, Reiter (2005) expresses the probability of identification Pr(J = j|t, Z) as

Pr(J = j|t, ZAd, ZC) =
Pr(J = j, ZC |t, ZAd)

Pr(ZC |t, ZAd)
=

Pr(ZC |J = j, t, ZAd)Pr(J = j|t, ZAd)∑r+1
j=1 Pr(ZC |J = j, t, ZAd)Pr(J = j|t, ZAd)

. (1)

This expression of the probability allows us to assess disclosure risk by considering various levels of intruder knowledge and
behavior as well as what SDL method was used. Assessment of each component that makes up the terms in the numerator
and denominator of 1 is discussed in the following sections.

3.1 Component Pr(J = j|t, ZAd)
Recalll that the variables in ZAd are do not get perturbed prior to data being released. This implies ZAd = Y Ad for all
records. Thus, any record in Z with values on available variables that do not get perturbed with zAd = tAd could be
identified as the target’s given only the information the intruder has on the target and the values on the variables in Ad. If
nt = # records in Z have zAd

j = tAd, then, assuming the intruder knows the target is released in Z, the chance of correctly
identifying record j as the target is 1/nt. In other words, the probability of identifying record j as the target given the
target’s information t and values in ZAd is Pr(J = j|t, ZAd) = 1/nt when zAd

j = tAd and zero otherwise. This result depends
on the assumption that the intruder knows the target is released in Z, i.e. Pr(J = r + 1|t, ZAd) = 0. We assume throughout
that the intruder knows the target record is released in Z, that is, j ≤ r. This is conservative as well as computationally
convenient and we assume this throughout the remainder of our discussion on disclosure risk measurement. Details for
computing Pr(J = r + 1|t, ZAd) ≥ 0 are discussed in Reiter (2005).

3.2 Component Pr(ZC |J = j, t, ZAd)
The probability Pr(ZC |J = j, t, ZAd) is the probability of observing values on variables ZC in the released data set given
that the jth record belongs to the target, the intruder’s information on the target, and the values on the variables that are
released unperturbed. Variables ZC are variables that the intruder cannot know with certainty because they are available
and perturbed or are unavailable. It is in this component we incorporate different assumptions of intruder knowledge with
respect to the SDL method used as well as any assumptions about the joint distributions. We also incorporate assumptions
about intruder behavior based on knowledge possessed.

Under the assumption that records are independent, properties of joint and marginal probabilities can be used to decom-
pose this component further as follows (Reiter 2005): Pr(ZC |J = j, t, ZAd) =

Pr(zC
1 , ..., zC

j−1, z
C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd)× Pr(zU
j |z

Ap
j , J = j, t, ZAd)× Pr(zAp

j |J = j, t, ZAd). (2)

Each term in the right hand side of Equation 2 can be formulated according to different assumptions of intruder knowledge
and behavior. These terms or components are described in the following sections.

3.2.1 Pr(zAp
j |J = j, t, ZAd)

The component Pr(zAp
j |J = j, t, ZAd) is the probability of observing values on available perturbed variables in record j

given that the jth record belongs to the target, the information the intruder has about the target, and the information in
the released data set on ovariables that are available and do not get perturbed. An intruder’s knowledge about the SDL
method used, the conditional distrubution of yAp and zAp, and values for tApcan be incorporated in order to formulate an
expression for this component.

If the values on variables k in Ap are assumed to be independent, this probability can be formulated as the product of
marginal conditional distributions over k ∈ Ap. This is the approach taken in Reiter (2005). It is appropriate for the intruder
who assumes SDL methods are implemented on variables in Ap independent of one another. This approach is taken in
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Reiter (2005) for a data set perturbed using traditional methods. In the proposed synthetic data method however, synthetic
values are generated dependent on other variable valaues. Therefore, we approach the formulation of this component using
information about the conditional manner in which values are generated.

Consider a data set Y with variables Y Ad and Y Ap = (Y1, Y2, Y3). Original values on variables Y Ad are copied to
the data set for release, so that ZAd = Y Ad. Suppose synthetic values for ZAp = (ZAp

1 , ZAp
2 , ZAp

3 ) are the predicted
values from models describing conditional relationships Y1|X, Y2|Y1, X, and Y3|Y2, Y1, X, respectively. Then the joint
probability Pr(zAp

j |J = j, t, ZAd) can be written as the product of the sequence of marginal conditional probabilities:
Pr(zAp

1,j |J = j, t, ZAd) × Pr(zAp
2,j |z

Ap
1,j , J = j, t, ZAd) × Pr(zAp

3,j |z
Ap
2,j , z

Ap
1,j , J = j, t, ZAd). When the models used to describe

conditional relationships have known inference, the probabilities above can be estimated accordingly. This component of
disclosure risk can thus be computed for intruders assumed to know the SDL procedure used. Section 3 presents details
to estimate this component when quantile regression models, hot deck imputation, and rank swapping are used to generate
values for ZAp.

3.2.2 Pr(zU
j |z

Ap
j , J = j, t, ZAd)

The component Pr(zU
j |z

Ap
j , J = j, t, ZAd) is the probability of observing values on unavailable (both perturbed and not

perturbed) variables in record j given the jth record belongs to the target, information the intruder might have for a particular
target record, the information in the released data set on variables that are available and do not get perturbed, and the value
in released record j on available perturbed variables. We can incorporate an intruder’s knowledge about the SDL method
used and some assumed conditional distribution of yAp and zAp into formulating an expression for this component.

Consider the data set described above. Suppose synthetic values for additional variables YU = (Y4, Y5) are generated
using models Y4|Y3, Y2, Y1, X and Y5|Y4, Y3, Y2, Y1, X, respectively, producing Z4 and Z5. Assuming the models accurately
describe the conditional distributions of Y4 and Y5, the joint probability Pr(zU

j |z
Ap
j , J = j, t, ZAd) can be written as

Pr(zU
4,j |z

Ap
3,j , z

Ap
2,j , z

Ap
1,j , J = j, t, ZAd) × Pr(zU

5,j |zU
4,j , z

Ap
3,j , z

Ap
2,j , z

Ap
1,j , J = j, t, ZAd). The terms in the right hand side of above

equation can be evaluated based on an intruder’s knowledge of the unknown variables. Such knowledge can include estimated
probability distributions, model estimates, and details about the SDL procedures used to generate the data set for release.
Incorporating these details is discussed in Section 4.

3.2.3 Pr(zC
1 , ..., zC

j−1, z
C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd)
The expression Pr(zC

1 , ..., zC
j−1, z

C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd) corresponds to the probability of observing values on vari-
ables in C in every record but the jth, given the values observed for variables in C on the jth record, given the jth

record belongs to the target, the target’s information, and values in ZAd. Assuming independence between records,
Pr(zC

1 , ..., zC
j−1, z

C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd) can be expressed as the product of probabilities Pr(zC
i |zC

j , J = j, t, ZAd)
over records i = 1, · · · , j − 1, j + 1, · · · , n. Notice that the idenpendence assumption implies Pr(zC

i |zC
j , J = j, t, ZAd) =

Pr(zC
i |J = j, t, ZAd). If this product is multiplied and divided by Pr(zC

j |zC
j , J = j, t, ZAd), and this term is then substituted

into the expression for Pr(J = j|t, Z), simplifications lead to this being equivalent to substituting 1/Pr(zC
j |zAd

j ) into the
original expression (Reiter 2005).Using this simplification, we procede by developing an expression for Pr(zC

j |zAd
j ) based on

the properties of variables in C = (Ap,U). Details are presented in Section 4.

4. Component Formulation for Three Intruders
As noted above, various assumptions about an intruder’s knowledge and behavior can be incorporated into assessing disclosure
risk under the Duncan and Lambert, Reiter framework. This gives the flexibility to consider various scenarios of intruder
knowledge and behavior. As in Reiter (2005), we characterize intruder knowledge and behavior as naive, average, or SDL.
The naive intruder is one who only possesses posterior information, or information available from the released data. The
SDL intruder is one who has accurate and fairly detailed knowledge of the statistical disclosure limitation (SDL) method
used. From the agency’s point of view, the naive intruder might represent a best case scenario and the SDL intruder a worst
case scenario. Between these two extremes lies an average intruder who has a combination of knowledge about the data
prior to its release and the SDL method used, but neither completely. The developments in this research include assessing
the disclosure risk associated with the SDL intruder when the SDL method is to produce synthetic data using predictions
from model estimates. In this section, details for assessing disclosure risk associated with an SDL intruder when the SDL
method is to generate synthetic data using quantile regression predictions, hot deck imputation, and rank swapping. Details
for assessing disclosure risk associated with a naive and an average intruder can be found in Reiter (2005).

Consider data set Y to contain variables Y1, ..., Y7, Y
Ad, where Y Ad are the variables copied directly into the synthetic

data set, Y Ap are the available perturbed variables, and Y U = Y Up, Y Up are the unavailable variables that do not get
perturbed and do get perturbed. Using our proposed SDL procedure, we produce Z for release. Specifically,

1. variables in ZAd remain unperturbed (possibly re-categorized), i.e., ZAd = Y Ad ⇒ tAd = ZAd
t , where ZAd

t is the
target’s record in the released data,
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2. values for zAp
1 are generated conditional on ZAd using quantile regression predictions at randomly selected quantiles,

i.e., QzAp
1j

(τ∗|ZAd) = ZAd
j β1(τ∗1j)ε1,

3. values for zAp
2 are generated conditional on yAp

1 , zAp
1 , and ZAd using quantile regression predictions at randomly selected

quantiles, i.e., QzAp
2j

(τ∗|ZAd, yAp
1 ) =

(
ZAd

j , zAp
1j

)′
β2(τ∗2j) + ε2,

4. values for zAp
3 and zAp

4 are generated using hot deck imputation and rank swapping, matching based on Mahalanobis
distance between synthetic and original values of Z1 and Z2

5. values for zUp
5 are generated conditional on yAp

1 , zAp
1 , yAp

2 , zAp
2 , and ZAd using quantile regression predictions at

randomly selected quantiles, i.e., QzAp
5j

(τ∗|ZAd, yAp
1 , yAp

2j ) =
(
ZAd

j , zAp
1j , zAp

2

)′
β5(τ∗5j) + ε5,

6. values for zUp
6 are generated using hot deck imputation and rank swapping, and

7. and values for zUd
7 are left unperturbed in the released data.

Assuming an intruder has the information and knows some details about the QR and HD+RS procedures used, the
probability of identification can be estimated accordingly. Here we discuss the Pr(J = j|t, ZAd) component. In the remainder
of this section, we discuss components A, B, and C.

Component Pr(J = j|t, ZAd) can be estimated using information in t and ZAd. This information is available prior to
data release and values are not perturbed in the released data. This component is estimated using Pr(J = j|t, ZAd) = 1

nt

when zAd
j = tAd and zero otherwise, where nt is the number of records released in Z with zAd

j = tAd (Reiter 2005). This
formulation of Pr(J = j|t, ZAd) can be used for any intruder type or SDL method used.

4.1 Formulation of CSDL = Pr(zAp|J = j, t, ZAd)
Under the SDL scheme outlined above, we assume zAp = (zAp

1 , zAp
2 , zAp

3 , zAp
4 ) as the available perturbed variables where zAp

1

and zAp
2 are quantile regression predictions and zAp

3 and zAp
4 ) are hot deck imputations with rank swapping.

The SDL intruder is assumed to know details about the quantile regression models. Specifically, that zAp
1 = ŷAp

1 =
ZAdβ̂1,τ1 , but not the exact values of τ1, and zAp

2 = ŷAp
2 = (ZAd zAp

1 )T β̂2,τ2 , but not the exact values of τ2. Similary,
the intruder is assumed to know that each of zAp

3 and zAp
4 are values from the actual data set selected based on hot deck

imputation dependent on distances between (yAp
1 , yAp

2 ) and (zAp
1 , zAp

2 ) and swapped based on ranks within some distance δ
of the value identified by hot deck. The iintruder is assumed not to know the distance δ.

Using this information one can formulate CSDL as CSDL = Pr(zAp
j |J = j, t, ZAd) = Pr(z1j , z2j , z3j , z4j |J = j, t, ZAd) =

Pr(z1j |J = j, t, ZAd) × Pr(z2j |z1j , J = j, t, ZAd) × Pr(z3j |z2j , z1j , J = j, t, ZAd) × Pr(z4j |z2j , z1j , J = j, t, ZAd), for every
jth released record j = 1, ..., r. Note that in each of the four terms, the conditionaing variables include those used to generate
the corresponding synthetic value. By considering the details of the SDL procedures, each term in CSDL can be developed,
as follows.

4.1.1 C1: zAp
1 and zAp

2

The variables zAp
1 and zAp

2 are available and perturbed using predictions from quantile regression models. An expression for
C1 is developed as if the intruder knows the values of τ, then extended to incorporate the more likely case that the intruder
does not know these values. Results in Koenker (2002) indicate that regression parameter estimates at quantile τ are
asymptotically Normal, with mean and variance dependent on quantile τ. Assuming independent and identically distributed
errors,

√
n(β̂n(τ)−β(τ))→̃N(0, ω2(τ)), where ω2(τ) = τ(1−τ)

f2(F−1(τ)) . For practical purposes, we assume β̂n ∼ N
(
β(τ), ω2(τ)

n

)
,

which implies Xβ̂n ∼ N
(
Xβ(τ), ω2(τ)

n X ′X
)

. Details are presented in Koenker (2002).

If synthetic values are the predictions z1j = ŷ1j,τ1j
= zAd

j β̂1(τ1), and we assume the intruder knows the value of τ1j for
every j = 1, ..., r, then s/he can formulate Pr(z1j |J = j, t, ZAd) for each record j = 1, ..., r to be:

Pr(z1j |J = j, t, ZAd) = φ1j,τ1j
= φ

(
(z1j − t1j)/(ω(τ1j)

√
zAdT

j zAd
j /n)

)
. (3)

Supposing the intruder does not know values of τ1, this value can be estimated. The estimates could be set to a single
constant, could be randomly selected, or otherwise estimated according to values in the released data. The intruder’s
estimate, τ̂1,intruder, can be substituted into Equation 3 for τ1j to obtain an estimate of Pr(z1j |J = j, t, ZAd).

Values for z2 are generated similarly, hence the formulation of Pr(z2j |z1j , J = j, t, ZAd) follows. The quantile regression
model is z2j = ŷ2j,τ2 =

(
ZAdz1j

)′
β̂2(τ2). Thus by substituting the intruder’s estiamte of τ̂2,intruder, into Equation 4, an
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estimate of Pr(z2j |z1j , J = j, t, ZAd) can be obtained:

Pr(z2j |z1j , J = j, t, ZAd) = φ2j,τ2j = φ
(
(z2j − t2)/(ω(τ2j)

√
(ZAd

j z1j)(ZAd
j z1j)T /n)

)
(4)

if tAd = zAd
j and zero otherwise.

4.1.2 Alternative to C1: zAp
1 and zAp

2
In Equations 3 and 4 we are willing to assume the approximate asymptotic normality of quantile regression parameter
estimates. This is generally acceptable in applications with large data sets, since the regression estimates are based on over
10,000 and up to millions of records. If a data base contains a small number of records or if too many records contain all
zeros or very small values, the assumptions may be unreasonable.

Alternatively, the target’s t1 and t2 predicted values, t̂1 and t̂2, could be computed using quantile regression estimates
from the released data set and the target values of tAd. The intruder could then compare the target’s predicted values t̂1 and
t̂2 to values z1 and z2 released in Z. Among records with equal available and unperturbed variable values, tAd = ZAd, it would
be reasonable to consider identifying the target with any record containing z1 and z2 values within some range of t̂1 and t̂2.
If the intruder is willing to consider any records within an amount γ1 > 0, say, of t̂1, then all records within this distance to
t̂1 have equal probability of belonging to the target. If the intruder simultaneously considers only records with values of z2

within γ2 > 0 of t̂2, then only the records with values z1 and z2 within the intervals (t̂1± γ1) and (t̂2± γ2) are considered as
potential matches with the target. Records with z1 and z2 values within these intervals have equal probability of belonging
to the target. Suppose there are nt1,t2 such records, then the joint probability of observing zAp

1 and zAp
2 conditional on the

jth record belonging to the target, the information in t, and the values in ZAd can be formulated as

Pr(z1j , z2j |J = j, t, ZAd) = Pr(z1j |J = j, t, ZAd)Pr(z2j |z1j , J = j, t, ZAd) = 1/nt1,t2 (5)

if tAd = ZAd, z1 = t̂1 ± γ1, z2 = t̂2 ± γ2 and zero otherwise.

4.1.3 C2: zAp
3 and zAp

4

The variables zAp
3 and zAp

4 are available to the intruder and perturbed using hot deck imputation with rank swapping. We
can formulate Pr(z3j |z2j , z1j , J = j, t, ZAd) and Pr(z4j |z2j , z1j , J = j, t, ZAd) based on details of the SDL procedures. In the
hot deck procedure for our example data set, we identify matching records in the original data set based on the Mahalanobis
distance between values (Y Ad, Y Ap

1 , Y Ap
2 ) and (ZAd, ZAp

1 , ZAp
2 ). For synthetic record j, among any original records with

yAd = zAd the distance d(i, j) = d

[(
yAp
1i

y2i

)
,

(
z1j

z2j

)]
is computed for each original record. If d(i, j) is the smallest for

original record i, the sample ranks r3i and r4i are computed for y3i and y4i, respectively. Ranks r∗3i and r∗4i are drawn from a
discrete Uniform distributions over the intervals (r3i − δ3, r3i + δ3) and (r4i − δ4, r4i + δ4) and values with ranks r∗3i and r∗4i.

This leads us to formulate the probability of observing z3 and z4 given z2j , z1j , J = j, t, and ZAd independent of the
distance between the target values and the values in Z. The argument above implies that the probability of t3 and t4
being imputed into the released data set can be based on the rank swapping portion of the procedure alone. Recall,
the probability Pr(z3j |z2j , z1j , J = j, t, ZAd) is conditional on the jth record belonging to the target. If we assume that
the jth record belongs to the target, then we can assume the values t3, t4, were swapped with values y3, y4 having ranks
that were randomly selected from a Uniform distribution over the intervals (rt3 − δ3, rt3 + δ3) and (rt4 − δ4, rt4 + δ4),
respectively. Therefore, for observations z3j and z4j to have been imputed, the ranks in the original record r3i and r4i

must fall in the intervals, (rt3 − δ3, rt3 + δ3) and (rt4 − δ4, rt4 + δ4), respectively. If we assume values in Z3 and Z4

have approximately the same ranks as values in Y3 and Y4, then the ranks of values z3j and z4j , r∗3j and r∗4j , are also in
that interval. We can formulate the conditional probability of observing the z3j and z4j to be equal to the probability
of selecting their ranks r∗3j and r∗4j from the intervals (rt3 − δ3, rt3 + δ3) and (rt4 − δ4, rt4 + δ4) and 0 for ranks not in
these intervals. This can be written Pr(z3j |z2j , z1j , J = j, t, ZAd) = 1/(2δ3) if tAd = zAd

j and r∗3j ∈ (rt3 ± δ3) and zero
otherwise. Similarly, Pr(z4j |z2j , z1j , J = j, t, ZAd) = 1/(2δ4) if tAd = zAd

j , r∗4j ∈ (rt4 ± δ4) and zero otherwise. Since rank
swapping is done independently to obtain values z3 and z4, we can simply multiply the terms to obtain the joint probability
Pr(z3j , z4j |z2j , z1j , J = j, t, ZAd).

Combining the components for z1j , z2j , z3j , and z4j we arrive at the following expression for CSDL: Pr(zAp|J =
j, t, ZAd) = φ1j,τ1j

φ2j,τ2j

1
δ3

1
δ4

if tAd = ZAd, r∗3j ∈ (rt3 ± δ3), r∗4j ∈ (rt4 ± δ4 and zero otherwise. We can use the ideas
presented above to formulate components corresponding to additional available perturbed variables, ZAp, when conditional
quantile regression predictions and hot deck imputation with rank swapping are used to generate values in synthetic records.
When other SDL methods are used to generate synthetic data, it seems feasible to extend the ideas presented here and in
Reiter (2005) to formulate components of CSDL. In particular, it should be straight forward to extend the formulation of
Pr(z1j |J = j, t, ZAd) and Pr(z2j |z1j , J = j, t, ZAd) in Equations 3 and 4 to synthetic values that are generated using predic-
tions from any conditional model, provided distibutional properties of model estimates and subsequent predictions are known
or can be derived. Reiter (2005) presents possible formulations of Pr(zAp

j |J = j, t, ZAd) when swapping, re-categorizing, and
noise addition are used.
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4.2 B: BSDL = Pr(zU
j |z

Ap
j , J = j, t, ZAd)

Variables zU
j are variables that are unavailable before release. They include zUp

5j which is perturbed using quantile regression
predictions before release, zUp

6j which is perturbed using hot deck and rank swapping before release, and zUd
7j w hich is

unperturbed before release. Recall, an SDL intruder is assumed to know how values are generated for each variable in Z.
As for CSDL, we assume the intruder uses this knowledge to formulate BSDL. This implies the intruder’s joint conditional
probability of observing z5, z6, z7, will be formulated using information about the statistical disclosure limitation procedure.
In our hypothetical data set, ZU is comprised of z5, z6, z7, the variables with values unknown to the intruder prior to
data release. We rewrite the joint distribution of z5, z6, z7, as a series of conditional distributions. For every j = 1, ..., r,
BSDL = Pr(zU

j |z
Ap
j , J = j, t, ZAd) can be written as Pr(z5j , z6j , z7j |zAp

j , J = j, t, ZAd) =

Pr(z5j |z1j , z2j , J = j, t, ZAd)× Pr(z6j |z1j , z2j , J = j, t, ZAd)× Pr(z7j |J = j, t, ZAd). (6)

In the proposed SDL procedure, z5 is generated using quantile regression predictions conditional on z1j , z2j , and ZAd, z6

is generated using hot deck and rank swapping conditional on z1j and z2j , and z7 is left unperturbed in the released data.
Based on this, we divide the variables in U into perturbed and unperturbed just as for available variables, i.e. z5, z6 ∈ Up
and z7 ∈ Ud. In the following paragraphs, we first consider Pr(z5j |zAp

j , J = j, t, ZAd), then Pr(z6j |zAp
j , J = j, t, ZAd), and

finally Pr(z7j |J = j, t, ZAd).

4.2.1 B1: zUp
5j

Variable zUp
5j is unavailable to the intruder before release and is perturbed using quantile regression predictions before

release. We consider formulating the conditional probability of observing z5 in a similar fashion as the conditional probability
corresponding to z1. Unlike the probability of observing z1, the intruder does not have information on z5 (or any variables
in U) prior to data release, i.e. s/he does not have values t5, t6, or t7. Therefore, Pr(z5j |zAp

j , J = j, t, ZAd) = φ5j,τ5j cannot
be evaluated as in Equation 3 using z5j and t5.

The intruder does know that z5j is generated using z5j =
(
ZAd

j , z1j , z2j

)′
β̂5(τ5j), for every j = 1, ..., r, but does not know

the value β̂5(τ5j). This parameter estimate could be estimated by the intruder by fitting the corresponding quatile regression
model using values in Z. The estimate of β̂5(τ5j) could then be used to compute a predicted value for the target on this
variable, t̂5, based on values of t1, t2, and tAd.

The SDL intruder’s predicted t̂5 is not the exact value released by the agency on the target’s record (due to estimated
quantile regression estimates). How similar or different these values are will depend on the accuracy of the intruder’s estimate
and the value β̂5(τ5j) estimated by the agency using the original data set. In other words, if the relationship between z5 and
z1, z2, and ZAd are preserved very accurately in the released data, this would result in accurate estimated coefficients for the
intruder, and an accurate predicted value of the target’s released value. The intruder can either act as if t̂5 is equal to the
target’s released value or account for additional error introduced by estimating the model coefficients using Z rather than
Y. We consider the former scenario, but recognize resulting probability estimates may differ when considering the latter.

Using the estimated value of t̂5, the intruder can choose to act as if this estimate is the target’s value of t5 and procede
as above for z1 and z2. Plugging t̂5 in for t5 to evaluate the Normal density, we obtain the following expression for the
probability of observing z5j for every j = 1, ..., r :

Pr(z5j |z2j , z1j , J = j, t, ZAd) = φ5j,τ5j
= φ

(
(z5j − t5)/(ω(τ5j)

√
(ZAd

j z1j z2j)(ZAd
j z1j z2j)T /n)

)
(7)

when tAd = zAd
j and zero otherwise, where τ5j = τ∗5j if the intruder knows the value of randomly drawn τ∗5j used to generate

z5j and it equals τ̂∗5j,intruder if the intruder estimates the value of randomly drawn τ∗5j used to generate z5j .
Alternatively, the intruder may compare the target values of tAd and t̂5 to values in Z. Suppose there are nt5 records

with tAd = ZAd and z5 = t̂5 ± γ5, some γ5 > 0, then the probability can be formulated as Pr(z5j |zAp
j , J = j, t, ZAd) = 1/nt5

when tAd = ZAd and z5 = t̂5 ± γ5 and zero otherwise.
The size of γk depends on the amount of error the intruder attributes to estimating the regression coefficient estimates.

The intruder would likely be more willing to act more certain about t̂5 as an estimate of t5 if the model parameters are well
estimated using the released data set. However, the intruder might want to make computation reasonable and choose γk

so that nt5 is not too large or too small. Namely, if there are few observations close to the predicted target value, then a
value of γk that is somewhat large would ensure nt5 is not too small. In particular, one would not want to take the chance
of eliminating potential matches that could be the target through a choice of nt5 that is too small.

4.2.2 B2: zUp
6j

Variable zUp
6j is unavailable to the intruder before release and is perturbed using hot deck and rank swapping before release.

Recall, hot deck and rank swapping are combined to generate values for z6 in the released data. We consider formulating
Pr(z6j |z1j , z2j , J = j, t, ZAd) in a similar manner as the corresponding probability statements for z3 and z4. In the case of
z6, however, we do not have the target value t6 to use to compute the rank of this variable in the target’s record. To use
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the previous formulation, the intruder would need to estimate the rank of t6. This could be done by estimating the value of
t6, according to some model, then computing its rank relative to values of z6 in the relased data, or perhaps by modeling
the ranks themselves, r∗6j , conditional on other variables in Z. Investigating the best way to estimate the rank of t6 in the
target’s record is left to outside research. In a simulation study, we consider estimating t6 based on a model and computing
the rank of the estimated value with respect to values of z6.

Regardless of how this is done, if the intruder obtains an estimate of the rank of t6, r̂t6 say, then s/he can use this value
to evaluate Pr(z6j |z1j , z2j , J = j, t, ZAd) = 1/(2δ6) when tAd = ZAd, r∗6j ∈ (r̂t6 ± δ6) for some δ6 > 0 and zero otherwise.

4.2.3 B3: z7j

Variable z7j is unavailable to the intruder before release and is unperturbed before release. To compute Pr(z7j |J = j, t, ZAd),
we rely on an argument presented in Reiter (2005). The author presents the conditional probability as an integral of the
joint probability of zU

j and yU
j over values of yU

j as follows:

Pr(zU
j |J = j, t, ZAd) =

∫
Pr(zU

j |yU
j , J = j, t, ZAd)Pr(yU

j |J = j, t, ZAd)dyU
j .

The author points out that if variables in U remain unperturbed, i.e. U = Ud, then Pr(zU
j |yU

j , J = j, t, ZAd) = 1, so the
entire integral integrates to 1. For our purposes, we set Pr(z7j |J = j, t, ZAd) = 1, for all j = 1, ..., r, assuming the intruder
knows values on z7 are all left unperturbed from their original values.

4.3 A: ASDL = Pr(zC
1 , ..., zC

j−1, z
C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd)
Variables zC

i are variables the intruder cannot know whit certainty after release. Variables in zAp
i and zU

i are in zC
i , so these

variables include zAp
1i , zAp

2i , zAp
3i , zAp

4i , zUp
5i , zUp

6i , and zUd
7i . This component computes the probability associated with all records

except the target’s. In Section 2.2.2, we introduce ASDL as the third term in the right hand side of Equation 2, where
ASDL = Pr(zC

1 , ..., zC
j−1, z

C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd).
Assuming records are independent, this expression simplifies to the product of conditional probabilities (Reiter 2005):

Pr(zC
1 , ..., zC

j−1, z
C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd) =
∏

i=1,...,r

i 6=j

Pr(zC
i |zC

j , J = j, t, ZAd) (8)

Since records are independent, then for i 6= j, Pr(zC
i |zC

j , J = j, t, ZAd) = Pr(zC
i |zAd

i ). Substituting this into Equation 8
and rewriting the product, we obtain Pr(zC

1 , ..., zC
j−1, z

C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd) =
∏

i=1,...,r Pr(zC
i |zAd

i )/Pr(zC
j |zAd

j ).
Substituting this into Equation 1 for Pr(zC

1 , ..., zC
j−1, z

C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd) results in further simplifications that
occur from summing over all records in the denominator of 1. As a result, the above substitution is equivalent to substituting
1/Pr(zC

j |zAd
j ) into 1 for Pr(zC

1 , ..., zC
j−1, z

C
j+1, ..., z

C
r |zC

j , J = j, t, ZAd).
This implies that only Pr(zC

j |zAd
j ) is needed to compute ASDL. This probability is decomposed into conditional probabil-

ities according to available perturbed, unavailable perturbed, and unavailable unperturbed variables as in the preceding sec-
tions: Pr(zC

j |zAd
j ) = Pr(zAp

j , zUp
j , zUd

j |zAd
j ) = Pr(zAp

j |zAd
j )Pr(zUp

j |zAp
j , zAd

j )Pr(zUd
j |zAp

j , zUp
j , zAd

j ). Recall that for unavail-
able, unperturbed variables zUd

j , the corresponding probability is set to 1, resulting in further simplification of Pr(zC
j |zAd

j ) to

Pr(zC
j |zAd

j ) = Pr(zAp
j |zAd

j )Pr(zUp
j |zAp

j , zAd
j ). (9)

Under the SDL method of this section, the probability becomes Pr(zC
j |zAd

j = Pr(zAp
1j |zAd

j ) Pr(zAp
2j |z

Ap
1j , zAd

j ) ×
Pr(zAp

3j , zAp
4j |z

Ap
2j , zAp

1j , zAd
j ) Pr(zUp

5j |z
Ap
j , zAd

j ) Pr(zUp
6j |z

Up
5j , zAp

j , zAd
j ).

To evaluate this probability, consider the same SDL methods as those used as in the previous sections. The probabilities
in Equation 9 are no longer conditioned on target information, t, or J = j. Therefore, instead of using values from the target
information t, values in each record are used. For j = 1, ..., r the probabilities are listed here, followed by a brief discussion:

zAp
j : Pr(z1j |zAd

j ) = φ̃1j,τ1j
= φ

(
(z1j − ẑ1j,τ )/(ω(τ2j)

√
ZAdT

j ZAd
j /n)

)
Pr(z2j |z1j , z

Ad
j ) = φ̃2j,τ2j = φ

(
(z2j − ẑ2j,τ2j )/(ω(τ2j)

√
(ZAd

j z1j)(ZAd
j z1j)T /n)

)
Pr(z3j |z2j , z1j , z

Ad
j ) = 1/(2δ3), r̂3j ∈ (r3j − δ3, r3j + δ3)

Pr(z4j |z2j , z1j , z
Ad
j ) = 1/(2δ4), r̂4j ∈ (r4j − δ4, r4j + δ4)

zUp
j : Pr(z5j |z2j , z1j , z

Ad
j ) = φ̃5j,τ5j = φ̃

(
(z5j − ẑ5j,τ5j )/(ω(τ5j)

√
(ZAd

j z1j z2j)(ZAd
j z1j z2j)T /n)

)
Pr(z6j |z2j , z1j , z

Ad
j ) = 1/(2δ6), r̂6j ∈ (r6j − δ6, r6j + δ6)

(10)

The formulations of the components of ASDL are quite similar to the components for BSDL and CSDL since the SDL
method and intruder’s knowledge are the same. They differ in due to conditioning only on observed values in record j, rather
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than on the target’s information and on J = j, the jth record belonging to the target. The terms ẑkj,τkj
are defined as

before, as the quantile regression predictions for variable k at the τkj quantile, computed using released values and estimated
parameter estimates obtained from the released data. The probabilities associated with the variables that imputed using hot
deck and rank swapping remain at 1/(2δk) when the rank of ˆzkj , r̂kj , falls in the interval (rkj − δk, rkj + δk). The value of
δk is not likely released by the agency. The intruder trades off taking large values of δk to cover the true match and a small
value of δk that is more computationally feasible. Future work could examine ways to estimate δk.

5. Summary
Under the framework for computing disclosure risk presented in Duncan and Lambert (1986, 1989) and Reiter (2005),
components of disclosure risk were formulated based on various levels on intruder knowledge and decisions. A summary is
presented in this section. The methods have been implemented in an application to a Public Use Microdata Sample from
the U.S. Census Bureau. Simulation and case study results will be reported elsewhere.

The framework for measuring disclosure assumes that an intruder computes the probability of identifying a target in the
released data set, which is expressed as Pr(J = j|t, ZAd). Disclosure risk is equated with the probability of identification. If
the agency can control the probability of identification to be low for a target, then the disclosure risk is also low. Alternatively,
if the probability of identication is the same accross a large number of records, this may prevent the intruder from identifying
any record as the target’s, resulting in low disclosure risk as well.

To assess disclosure risk, we consider the various types of information or knowledge an intruder has before data release,
information gained after release, and various decisions the intruder can make about how to calculate the probability of
identification. Such decisions are based on the level of information s/he possesses. Disclosure risk is divided into extreme
cases based on an SDL intruder and a naive intruder. An average intruder is also considered to give insight into a possibly
more common type of intruder. By computing disclosure risk for each type of intruders, we hope to cover a wide range of
possibilities, enabling the agency to evaluate risk in a worst case scenario, a best case scenario, and a more common scenario.
We have also included something like a best best case scenario using the super naive intruder, who bases the probability of
identification only on the number of records with matching available unperturbed variables.

Disclosure risk can also be computed for the intruder that makes decisions to compute the components in a simpler
manner than s/he has information for. For example, an intruder with accurate and detailed information about the SDL
method used can choose to compute CSDL, BSDL, and ASDL to obtain the probability of identification. Alternatively, an
SDL intruder can choose to compute CSDL, but use Bavg and Aavg, or even set these components to 1, to compute the
probability of identification. The average intruder has options too. S/he can compute all components using the average
formulations (Cavg, Bavg, and Aavg), or can compute any of these components at the naive level or set any of them equal
to 1. The naive intruder can only choose to compute Cnaive, Bnaive, and Anaive or set these components equal to 1. The
naive intruder, however, cannot choose to increase the amount of prior knowledge used to compute any component. In total,
there are 33 options of combinations of A,B, and C available to the SDL intruder, or 43 options if we include setting any
component to 1. There are 23 (or 33) options for the average intruder, and one option (or 23) for the naive intruder.

Intruders with other levels of knowledge exist and can make choices to formulate the probability of identification in a
different way than we have. We hope to account for the best and worst case scenarios based on SDL knowledge, average
knowledge, and naive knowledge by using the formulations presented in this section.
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