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Abstract 
 

Principal Components Analyses are typically conducted without taking into account the sampling design.  Controlling 

for variables that are part of the sample design may affect the interrelationship of variables in a manner that is difficult 

to interpret.  Controlling for clusters, strata or probabilities of selection may affect the substance or the stability of the 

results. In order to examine this issue, a data base of zip code areas was stratified and clustered by counties or 

combinations of adjacent counties.  PCAs were conducted for several random samples, for cluster samples, and for 

several stratified designs. Clustering diminished the ability of the sample to reproduce the population PCA, with 

adjustments producing mixed results.  Stratification with a similar number of units selected per stratum and proper 

weighting led to results at times better than random sampling in spite of inequality of weights. Simulations also 

indicated that stability of results is in part a function of sample design.  
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1.  Introduction 

 
Factor Analysis and Principal Components Analysis (PCA) originated as a means of discerning simple structure from 

the interrelationship of variables.  As such, while the stability of the results has always been of concern, confidence 

intervals and tests of significance have been of secondary importance to the practitioners.  In addition, the two 

techniques have been primarily used by psychometricians who have used a sample of convenience or even an entire 

population, and thus any effects of sample design have not been given sufficient consideration. 

 

When dealing with survey data, if one wishes to implement linear regression there are two approaches: 1) using a 

procedure designed for survey data (such as PROC SURVEYREG in SAS) to define the weights, clusters and strata 

and have the regression procedure take them into account, or 2) include the variables designed to create clusters and/or 

strata and the weights into the regression model. These strategies are necessary for conducting regression analyses on 

the survey data, because considerations of degrees of freedom and confidence intervals enter into the interpretation of 

the results.  But in conducting a PCA the main objective is to detect structure in the relationships between variables.  

And if one has a complex sample design one would like to obtain the same PCA results (or as close an approximation 

as possible) as if one had been able to conduct the analysis with the entire population.  So the issue is how to achieve 

this when one is using a clustered or a stratified sample. 

 
Previous research conducted by Skinner, Holmes, and Smith (1986) performed an analysis regarding the effect of 

sample design on Principal Component Analysis.  In their study they examined the effects of sample design on both 

principal component analysis as well as the use of alternative maximum likelihood and probability-weighted 

procedures, conducting a simulation study of the properties of alternative estimators.  Their samples consisted of a 

random sample, as well as six stratified samples: one stratified sample was proportionally allocated, while the others 

were of varying increasing and u-shaped allocations.  Skinner, Holmes, and Smith (1986) found that estimators showed 

biased for non-self-weighting sample designs.   

 

This study attempts to examine other types of samples, including clustered samples, as well as samples that are both 

weighted and un-weighted.  In addition, this study examines the stability of the principal components, as well as 

principal components beyond the first two components. Our study found that several adjustment methods were counter-

productive. This does not mean that geographical clusters can be ignored. Simulations indicated that there may be 
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greater instability of results when a cluster sample is used instead of a simple random sample.  But the results may still 

represent a good enough approximation.   

 

Section 2 will discuss the dataset and samples, while section 3 will discuss the population principal components 

analysis.  Section 4 will address the stability of the PCAs.  Section 5 discuss the simulation study and present the 

results.  Lastly, section 6 will conclude. 

 

2. Dataset and Samples 

 

2.1 The Database 

 
In order to examine the effects of clustering on the PCA results we used a data set obtained from the 1990 Census.  The 

data points were zip code areas.  Twenty four variables were used. Those variables which would be artifactually 

correlated with the population (such as population in any particular ethnic group or number of households) were 

divided by the population in the zip code area.  Zip code areas with very few or no residents (such as zip codes assigned 

to a government building) were omitted.  The data base had variables related to population, housing values, density, 

area, proportion of minorities, average age, car ownership and similar variables.  The substantive interpretation of the 

principal components is beyond the scope of this paper, though variables are identified by the name used in the data 

base. 

 

 

2.2 The Samples  

 

2.2.1 Random Samples and Other Designs 
 

Random samples of 1000 zip code areas were drawn and principal components analysis was conducted for the 

population of zip code areas and for each random sample.  In addition, cluster samples and stratified samples were also 

drawn, and principal components analysis was also conducted.  However, on top of a standard PCA analysis one 

additional adjustment was tried for the cluster sample, and one of the stratified samples was analyzed with and without 

weights. 

 

 

2.2.1 Clustering the Units and Sampling Clusters 
 

The initial clusters were counties.  A clustering algorithm was used which required a cluster to have at least 15 zip code 

areas.  If a county was not large enough to create a cluster it was merged with the nearest county or cluster.  The 

process continued until every cluster had at least 15 zip code areas.  The frame had 24,954 zip code areas and 825 

clusters.  The cluster samples were selected with PPS (number of zip code areas in the cluster) using randomized 

systematic sampling with probability minimum replacement. A total of 100 clusters were drawn for each analysis, with 

ten units selected from each cluster.  

 

There were two analytic schemes that attempted to control for design variables and sample clustering, but were found 

to be counter-productive.  .  The first sample was created using dummy variables for clusters using partial correlations.  

The second sample was created using standard scores within clusters.  Both of these attempts destroyed the 

intercorrelations of the study variables, resulting in very different Principal Component solutions from each other and 

from the Principal Components Analysis that was run from the population. That effort was dropped altogether, as the 

objective of the study was to try to obtain solutions that were similar to principal components analysis conducted from 

the entire population.   These two results will not be discussed further though they could be of interest if one wished to 

examined simple structure controlling for geographical proximity.  Similar results could be obtained without sampling 

if one controlled for between cluster covariances. 

 

There were two additional analytic schemes that yielded reasonable results with each cluster samples.  The first simply 

ignored the clustering and treated the sample the same way as if it were a random sample.  The second created ten 
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classes, each including one unit per cluster, and then standardized the variables within class.  The PCA was then 

conducted on the standardized variables. 

 

2.2.2 Stratification and Stratified Samples 
 

In stratified samples, strata were created using HUD regions.  Two stratified sample designs were used.  One sampled 

an equal number of units per region, while the other was created using a proportional number of units per region.  Two 

analytic strategies were used with the first set, one using weights and one without weights. The second sampling 

scheme was self-weighting so only one analytic scheme was used. 

 
 

2.2.3 The Samples 

 
Six combinations of sampling and analytic schemes were used to compare to the population PCA.  From the frame both 

simple random samples, cluster samples, and stratified samples, each with 1,000 zip code areas, were drawn. For each 

sampling scheme 10,000 different samples were drawn. The following are the six sampling and analytic schemes used 

in the analysis: 

 

1) Random Sample of 1,000 units 

 

2) Stratified sample using HUD regions – 1,000 sampled proportional to the number of units per region. 

3) Stratified sample using HUD regions – 1,000 sampled an equal number of units per region. Unweighted PCA. 

4) Stratified sample using HUD regions – 1,000 sampled an equal number of units per region. Weighted PCA. 

5) Clustered sample – 100 clusters and ten units per cluster. 

6) Clustered sample – 100 clusters and ten units per cluster. Ten adjustment classes selected, each with one unit 

from each cluster. Variables standardized by adjustment classes. 

 

3. The Population Principal Components Analysis 

 
The Population Principal Components Analysis yielded six eigenvalues greater than one.  The six factors collectively 

explained 74.4 percent of the variance.  A Scree test performed also suggested six factors.  A varimax rotation yielded 

interpretable factors.  Even though the analysis was a principal components analysis, it is common to treat PCAs as if 

they were factor analyses, to identify the number of meaningful components and to submit that number to a varimax 

rotation.  For this reason we refer to the components as factors in the table, and we use a common criterion to determine 

the number of meaningful factors.   

 
Table 1: Population Eigenvalues 

(Eigenvalues greater than one outlined)  

 

 

  Eigenvalue Difference Proportion Cumulative 

1.000 6.202 1.600 0.258 0.258 

2.000 4.601 1.893 0.192 0.450 

3.000 2.708 0.943 0.113 0.563 

4.000 1.765 0.345 0.074 0.637 

5.000 1.420 0.271 0.059 0.696 

6.000 1.150 0.290 0.048 0.744 

7.000 0.860 0.089 0.036 0.779 

8.000 0.770 0.066 0.032 0.812 
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9.000 0.704 0.094 0.029 0.841 

10.000 0.610 0.063 0.025 0.866 

11.000 0.547 0.044 0.023 0.889 

12.000 0.503 0.066 0.021 0.910 

13.000 0.437 0.072 0.018 0.928 

14.000 0.365 0.072 0.015 0.944 

15.000 0.293 0.044 0.012 0.956 

16.000 0.249 0.045 0.010 0.966 

17.000 0.204 0.061 0.009 0.975 

18.000 0.143 0.014 0.006 0.981 

19.000 0.129 0.002 0.005 0.986 

20.000 0.126 0.005 0.005 0.991 

21.000 0.121 0.044 0.005 0.996 

22.000 0.077 0.061 0.003 0.999 

23.000 0.016 0.016 0.001 1.000 

24.000 0.000 0.000 1.000 

 
 

 
 

Figure 1: Graph of Population Eigenvalues 

 

 
Table 2: Population Factor Pattern 

 

  Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 

TOTPOP90 0.638 0.292 0.145 -0.136 -0.060 -0.084 

WHITEPCT -0.150 -0.822 0.156 0.116 0.264 -0.202 

BLACKPCT 0.004 0.622 0.034 -0.359 -0.526 0.305 

AMINDPCT -0.155 0.346 -0.372 0.205 0.498 0.351 

ASIANPCT 0.480 0.192 -0.022 0.335 -0.051 -0.181 

HOUSPER 0.000 -0.092 0.894 0.002 0.320 0.208 

SINGLE90 -0.733 0.104 0.241 0.109 -0.230 -0.103 

OLDHSE90 -0.528 0.091 0.571 0.325 -0.115 -0.190 

OCCUPER 0.000 -0.092 0.894 0.002 0.320 0.208 
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OWNERPCT -0.486 -0.597 -0.212 0.276 -0.175 0.126 

MEDVALUE 0.740 -0.085 0.080 0.447 -0.071 0.257 

R499PCT 0.417 -0.128 -0.057 -0.558 0.253 -0.147 

MEDRENT 0.863 -0.168 -0.013 0.257 -0.017 0.208 

MEDINCOM 0.660 -0.458 -0.138 0.276 -0.152 0.307 

URBANPOP 0.737 0.247 0.207 -0.161 0.000 -0.008 

NATIBORN -0.653 -0.382 -0.029 -0.377 -0.029 0.365 

SAMEHOUS -0.612 -0.113 0.067 0.378 -0.378 0.103 

ENGLISH -0.403 -0.516 0.183 -0.394 -0.190 0.383 

LABOR 0.599 -0.414 -0.239 -0.200 0.004 0.215 

UNEMPL -0.287 0.692 -0.144 -0.045 0.152 -0.017 

PUBTRANS 0.438 0.534 0.277 0.121 -0.225 0.118 

NOPLUMB -0.420 0.347 -0.305 0.281 0.341 0.312 

NOPHONE -0.499 0.643 -0.230 0.044 0.225 0.115 

NOCAR 0.022 0.828 0.288 -0.029 -0.068 0.130 

 

Variance Explained by Each Factor 

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 

6.202 4.601 2.708 1.765 1.420 1.150 

Final Communality Estimates: Total = 17  0.846883 

TOTPOP90 WHITEPCT BLACKPCT AMINDPCT ASIANPCT HOUSPER 

0.542 0.847 0.886 0.696 0.415 0.954 

 

 

Table 3: Population Rotated Factor Pattern 

 

  Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 

TOTPOP90 0.197 0.370 -0.403 -0.395 0.082 -0.203 

WHITEPCT 0.074 -0.828 0.201 0.060 0.219 -0.252 

BLACKPCT -0.096 0.911 0.158 0.020 -0.142 -0.042 

AMINDPCT 0.011 0.007 -0.026 -0.049 -0.056 0.831 

ASIANPCT 0.250 0.087 -0.582 -0.026 -0.057 -0.052 

HOUSPER 0.006 -0.009 0.070 0.006 0.970 -0.090 

SINGLE90 -0.517 0.041 0.214 0.597 0.097 -0.027 

OLDHSE90 -0.415 -0.027 -0.072 0.624 0.433 -0.118 

OCCUPER 0.006 -0.009 0.070 0.006 0.970 -0.090 

OWNERPCT 0.123 -0.491 0.434 0.522 -0.210 -0.014 

MEDVALUE 0.794 0.076 -0.418 -0.018 0.136 -0.049 

R499PCT 0.012 -0.064 0.041 -0.739 -0.007 -0.197 

MEDRENT 0.814 0.026 -0.371 -0.254 0.055 -0.118 

MEDINCOM 0.888 -0.143 -0.088 -0.073 -0.084 -0.169 

URBANPOP 0.295 0.367 -0.388 -0.475 0.178 -0.206 

NATIBORN -0.182 -0.147 0.878 0.140 0.019 0.060 

SAMEHOUS -0.114 -0.052 0.239 0.783 -0.050 0.000 

ENGLISH 0.030 -0.086 0.839 0.110 0.153 -0.228 

LABOR 0.613 -0.119 0.114 -0.463 -0.162 -0.175 

UNEMPL -0.466 0.373 -0.141 0.009 -0.091 0.473 

PUBTRANS 0.190 0.619 -0.420 -0.004 0.187 -0.047 

NOPLUMB -0.139 0.017 0.056 0.224 -0.066 0.778 

NOPHONE -0.478 0.280 0.002 0.147 -0.107 0.665 

NOCAR -0.246 0.739 -0.271 0.035 0.242 0.226 
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4. Results of the Simulations 

 
Six evaluation criteria were examined for each set of PCAs.   

 

1) The number of eigenvalues greater than one. 

2) The size of the first eigenvalue. 

3) The sum of the first six eigenvalues. 

4) The sum of the eigenvalues greater than one. 

5) The absolute value of the phi coefficient of the first unrotated component and the first unrotated 

population component. (Phi= Σ aibi/ Σ ai
2
 Σ bi

2
) 

6) The absolute value of the phi coefficient of each subsequent unrotated component and the corresponding 

population component. 

For the last criterion, in order to control for the possibility of two components switching order, the component that best 

reproduced the population component was assigned to it.  This same concern led to avoidance of any examination of 

rotated components.  Simple structure following rotation can be unstable, and two solutions may be similar, but the 

orthogonal transformation could be quite different. 

Absolute values were taken because a principal component is defined up to a factor of -1.  Thus, in some cases the 

coefficients of a component were close the negative of the coefficients for the same component in the population PCA. 

Simple t-tests were conducted to establish differences in means and variances across 10,000 samples for all six 

measures.   

 
The objectives of the simulation study were to consider the effects of Clustering, Stratification and Weighting and 

reproduce with a sample the Population PCA.  If design variables are related to the study variables, the objective is not 

to discover or control for the design variables, but to reproduce the correlation pattern found in the population.  In order 

to explore this issue, six sets of 10,000 samples were treated as independent sets and examined.  

 

 

4.1 The Results – Phi Coefficients 

 
The stratified sample with the same number of units per stratum performed best, while the two clustered sampling 

methods performed worst.  Adjustments to the clustering fared better (by a small but significant amount) for the first 

two components, but were counterproductive for the last four components.  Random and stratified proportional were 

almost as good as the stratified weighted method. The stratified sampling method with the same number of units per 

stratum did better than the two clustered sampling methods, but worse than the random, the stratified proportional and 

the stratified weighted.  Lastly, the standard errors of the phi coefficients varied by method (most pairwise comparisons 

were significant) with the stratified weighted approach having the greater precision. 

 

Table 4: Mean Phi Coefficients of Samples 

 

Random Unadjusted Adjusted Stratified Stratified Stratified 

Selection Clustered Clustered Proportional Unweighted Weighted 

Phi - Factor 1 0.994 0.981 0.983 0.995 0.985 0.995 

Phi - Factor 2 0.990 0.971 0.973 0.990 0.977 0.991 

Phi - Factor 3 0.982 0.955 0.954 0.982 0.979 0.984 

Phi - Factor 4 0.966 0.919 0.912 0.967 0.929 0.968 
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Phi - Factor 5 0.942 0.855 0.852 0.943 0.891 0.951 

Phi - Factor 6 0.931 0.817 0.778 0.931 0.920 0.945 

 

Table 5: Standard Errors of Phi 

 

Random Unadjusted Adjusted Stratified Stratified Stratified 

Selection Clustered Clustered Proportional Unweighted Weighted 

Phi - Factor 1 0.005 0.017 0.014 0.005 0.012 0.005 

Phi - Factor 2 0.007 0.023 0.020 0.007 0.014 0.007 

Phi - Factor 3 0.012 0.027 0.028 0.012 0.012 0.010 

Phi - Factor 4 0.028 0.057 0.061 0.027 0.049 0.025 

Phi - Factor 5 0.048 0.092 0.090 0.048 0.066 0.040 

Phi - Factor 6 0.055 0.126 0.153 0.055 0.046 0.041 

 

4.2 The Results – Phi Coefficients 
 

Most methods exhibited a positive bias (i.e. the average values were significantly greater than those in the population 

PCA) for the measures of magnitude of the eigenvalues.  An exception for the first eigenvalue was the Stratified 

Unweighted method which exhibited a negative bias.  The number of eigenvalues greater than one exhibited a negative 

bias (i.e. fewer eigenvalues were greater than one over 10,000 samples) for four of the six methods.  The smallest 

biases were exhibited by the Stratified Weighted approach. The Stratified Weighted approach had the smaller absolute 

deviations for the three measures involving sums of the eigenvalues.  The clustered approaches had the largest biases 

and the largest mean absolute deviations. The adjustment made the value of the first eigenvalue on the average larger 

than the population. 

 

Table 6: Mean Eigenvalue Patterns 

 

Random Unadjusted Adjusted Stratified Stratified Stratified 

Selection Clustered Clustered Proportional Unweighted Weighted 

First Eigenvalue 6.273 6.463 6.621 6.273 6.049 6.260 

First six 17.953 18.125 18.114 17.949 18.036 17.946 

Sum of Eigenvalues >1 17.949 18.133 18.008 17.946 18.036 17.944 

Number >1 5.997 6.006 5.888 5.996 6.001 5.998 

 

Table 7: Eigenvalue Patterns Bias 

 

 Random Unadjusted Adjusted Stratified Stratified Stratified 

Selection Clustered Clustered Proportional Unweighted Weighted 

First Eigenvalue 0.071 0.261 0.419 0.071 -0.152 0.058 

First six 0.106 0.278 0.267 0.103 0.189 0.099 

Sum of Eigenvalues >1 0.102 0.286 0.161 0.099 0.189 0.097 

Number >1 -0.003 0.006 -0.112 -0.004 0.001 -0.002 

 

Table 7: Eigenvalue Patterns Absolute Deviation Means 

 

Random Unadjusted Adjusted Stratified Stratified Stratified 

Selection Clustered Clustered Proportional Unweighted Weighted 

First Eigenvalue 0.142 0.321 0.443 0.142 0.180 0.139 

Section on Survey Research Methods – JSM 2008

3586



First six 0.189 0.349 0.327 0.186 0.224 0.172 

Sum of Eigenvalues >1 0.195 0.401 0.393 0.193 0.225 0.175 

Number >1 0.010 0.109 0.186 0.010 0.002 0.005 

 

 
Table 8: Standard Error of Eigenvalue Patterns 

 

Random Unadjusted Adjusted Stratified Stratified Stratified 

Selection Clustered Clustered Proportional Unweighted Weighted 

First Eigenvalue 0.164 0.295 0.305 0.163 0.155 0.164 

First six 0.210 0.337 0.301 0.209 0.193 0.191 

Sum of Eigenvalues >1 0.229 0.415 0.460 0.228 0.196 0.201 

Number >1 0.098 0.330 0.417 0.098 0.039 0.071 

 

6. Conclusion 

 
The study was conducted using only one data base.  With 10,000 simulations per method, even a small difference was 

often significant. Clustering can affect a PCA, though the effects are greater for the later factors. The use of any 

sampling approach may tend to overestimate the amount of the variance accounted for by the first factors.  Proper 

stratification and weighting can reduce bias and better approximate the population PCA.  

 
The effects of clustering are more problematic.  The reason is that for this data base, the intra-class correlation with 

respect to the clusters is rather high, and will be among the factors determining the population PCA.  Efforts to control 

for the effect of clusters will distort the correlation between the variables.  But without any control, the component 

pattern will be different for different samples. 

 
An adjustment method which may work well for the first component may deteriorate faster for later components.  

Given that the first component seems to be reproduced well even for the unadjusted cluster sample, if one has to 

conduct a PCA on a cluster sample, it may be best to treat it like any other PCA, but to be guarded about the 

interpretation of later components.   

 

Finally, the same can be said of PCA results as can be said of point estimates: stratification is good, but clustering is 

not. 
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