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Abstract 
       Missing data is common in longitudinal studies due to drop-out, loss to follow-up, death, etc. The likelihood-based  
mixed effects model for longitudinal data gives valid estimates when the data are ignorably missing, that is, the 
parameters for the missing data process are separate from that of the main model for the outcome and the data are 
missing at random (MAR), i.e., the missing data process can depend on the observed data but not on the unobserved 
data, an assumption that is not testable without further information. There are occasions when additional information, 
an auxiliary variable, known to be correlated with the outcome of interest, is available when the outcome of interest is 
missing. Availability of such auxiliary information provides us an opportunity to test the MAR assumption. If the MAR 
assumption is violated, such information can be utilized to reduce or eliminate bias when the missing data process 
depends on the unobserved outcome through the auxiliary information and the observed outcome. We apply and  
compare two methods of utilizing the auxiliary information, joint modeling of the outcome of interest and the auxiliary 
variable, and multiple imputation. Even when the missing data process further depends on the unobserved outcome 
through other factors, the methods considered might reduce the bias comparing to the naive analysis. Cautions in 
applying these methods are also discussed. 
 
Key Words: Missing data, linear mixed effects model,  MNAR, joint modeling, multiple imputation (MI), auxiliary 
variable MAR (A-MAR) 
 
 

1.  Introduction 
 
       Longitudinal studies are widely used in epidemiological research to study the pattern of change of certain 
outcomes denoted by Y . The linear mixed effects model is one of the most popular statistical methods used for 
analyzing longitudinal data (Laird and Ware, 1982). For simplicity we only consider continuous outcome of interest in 
this paper. But the methods can be easily applied to discrete outcomes using the generalized linear mixed effects model. 
For continuous Y using i as the index for subject, the following linear mixed effects model (Laird and Ware, 1982) is 
often used: 

i i i i iY X W bβ ε= + + , 

where iY  is the vector of outcomes for subject i, iX  is the design matrix for the fixed effects, ib is avector of random 

effects, iW  is the design matrix for the random effects, usually a subset of iX , and  iε  is the random error. The 
parameter vector β  for the fixed effects is often of primary interest. 
 
In the presence of missing data, we denote the outcome of interest Y into two parts, ( , )o mY Y Y= , with oY and mY  
denoting the observed and missing part, respectively. Let R denotes the vector of the observation indicator of Y . 
According to Rubin (1976) and Little and Rubin (2002), three missing mechanisms are defined as follows: 

• Missing completely at random (MCAR) if ( , )o mR Y Y⊥  

• Missing at random (MAR) if |m oR Y Y⊥  

• Missing not at random (MNAR) if R depends on mY | oY . 
 The likelihood for the observed data ( , )oY R is 
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( , ) ( , ) ( | , )o o m o m mf y r f y y f r y y dy= ∫ . 

When (a) The missing mechanism is MAR, that is,  
( 1| , ) ( 1| )o m oP R Y Y P R Y= = = ,     (1) 

the part for R can be factored out of the integral so that ( , ) ( ) ( | )o o of y r f y f r y= . Furthermore, when (b) the 
parameters govern the missing data process, i.e., the distribution of R , and the parameters for the outcome Y are 
disjoint, the part of the likelihood for the missing data process ( | )of r y  can be ignored. Thus when (a) and (b) hold, 

inference for the parameters in the model for Y  can be based only on ( )of y . The missing data is called ignorable 
when both condition (a) and (b) hold, otherwise the missing data process is non-ignorable or informative. Throughout 
we assume condition (b) always holds so that ignorable means MAR and informative means MNAR. 
       The likelihood-based mixed effects model is often used to analyze longitudinal data. As shown above, such 
analysis is built on the crucial assumption that the data is ignorably missing.  Without additional information, the MAR 
assumption is unverifiable. When a violation of MAR is suspected, usually all we can do is either assuming a generally 
non-identifiable model for the informative missing process and model it together with the outcome, or performing a 
sensitivity analysis to evaluate to what extent the missing data process affect the results of interest. 
       Fortunately in some studies there is available additional auxiliary information which is correlated with the outcome 
of interest. This auxiliary information can be used to test the MAR assumption, and it can be utilized to eliminate or 
reduce  bias if the missing data depend on the unobserved outcome  through the auxiliary information. 
 
       Denote the auxiliary information as Z , where Z  and Y are correlated. For simplicity, we assume Z is fully 
observed. The model is easily extended to the case that Z is also subject to missingness, as will be shown in section 2. 
Suppose that the missing data mechanism is MNAR, i.e., ( 1| , )o mP R Y Y= depends on mY . Assume further that 

conditional on oY , R depends on mY only through Z . Then 
( 1| , , ) ( 1| , ).o m oP R Y Y Z P R Y Z= = =   (2) 

The missing data assumption (2) is called auxiliary variable MAR (A-MAR) by Daniels and Hogan (2007). 
 
  If (2) holds, then ( 1| , ) ( 1| , ) ( | , )o m o o mP R Y Y P R Y Z P Z Y Y dZ= = =∫ . If, conditional on oY , Z is correlated 

with mY and R depends on Z , then ( 1| , )o mP R Y Y=  will depend on mY so that when Y is the only outcome data 
considered in the analysis, the missing process is not at random. By the definition of the auxiliary variable, the 
condition that Y and Z are correlated holds, thus ( 1| , ) ( 1| )o oP R Y Z P R Y= = =  becomes a necessary condition 

for the MAR assumption for Y  (and also a sufficient condition if R  depends on Y  only through Z in addition to oY ). 
Under A-MAR condition (2), this is a testable assumption. If the data shows that R depends on Z conditional on oY , 
then MAR assumption is violated for Y .  The information on Z can then be utilized to eliminate or reduce the bias in 
the estimation of the parameter vector of interestβ . We consider two   intuitive and easily applied methods of utilizing 
the auxiliary variable Z under A-MAR: joint modeling of the outcome of interest  Y and the auxiliary variable Z , and 
multiple imputation of Y based on a model that includes Z. In section 2 the two methods are described. Results from 
simulation  studies are presented in section 3. In section 4 a data example using a dementia screening study is applied. 
We conclude the paper with a discussions in section 5. 
 

2. Methods 
 
2.1 Joint modeling of the outcome of interest and the auxiliary variable 
Denote * ( , )Y Y Z= , with *

,( )Y ZR R R= the observation indicator for Y  and Z . Denote the observed 

and missing part of *Y  as * ( , )o o oY Y Z= and * ( , )m m mY Y Z= , respectively. Then the MAR assumption for *Y  is 
* * *( 1| , ) ( 1| )o m oP R Y Y P R Y= = = .    (3) 
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That is, for *Y , the data are missing at random. In this case, the missing process is ignorable and thus consistent and 
efficient estimates can be obtained based on the likelihood function of *oY . This is the A-MAR assumption which 
reduces to (2) when  Z is fully observed. 
       The A-MAR assumption (3) for the longitudinal outcome * ( , )Y Y Z=  is more flexible than the MAR 

assumption (1) because it allows YR depends on mY through oZ conditional on oY . Thus by jointly modeling the 
outcome of interest and the auxiliary variable, the missing data assumption is relaxed from MAR to A-MAR, i.e., it 
allowed the observation process of the outcome of interest being non-randomly missing in the sense of the model of 
interest through the auxiliary variable. Ibrahim et al (2001) proposed a similar joint modeling approach in a generalized 
linear model setting. However, the advantage of this approach is not achieved without a price. By introducing the 
auxiliary variable as a component of the outcomes studied, assumptions regarding the joint distribution of the outcome 
of interest Y and the auxiliary variable Z are added to the model assumptions for Y . If the joint distribution of Y and 
Z is correctly specified, the joint modeling approach should yield the most efficient estimate because it is likelihood 
based. However, the estimates can be biased, and possibly even inconsistent, if the joint distribution of Y and Z is mis-
specified. In practice, the distribution of the outcome of interest and the auxiliary variable should be carefully examined 
and flexible specification of the joint distribution of Y and Z is recommended. 
 
2.2 Multiple Imputation 
       From the auxiliary variable MAR assumption (3), *mY  has the same distribution as *oY ,  thus it can be 
consistently imputed from *oY . Specifically, we replace *mY randomly with plausible values using *oY  by regression 
or other techniques. The imputed complete data set will be then used to estimate the parameter of interest. This step 
will be repeated m  times. The results from these m imputed data sets are combined into a single inferential statement 
using arithmetic rules to yield estimates, standard errors and p-values that formally incorporate missing-data 
uncertainty to the modeling process. This multiple imputation (MI) technique (Rubin 1987; Schafer 1997) has been 
widely applied in statistical analysis.  The idea of adding auxiliary variables to the imputation procedure in multiple 
imputation to correct bias, even though the auxiliary variables are not included in the main model of interest, has been 
proposed before in the literature of multiple imputation (Meng, 1994; Rubin, 1996) and also recently by Collins et al 
(2001). 
        Similar to the joint modeling approach, the multiple imputation method assumes A-MAR rather than MAR. The 
price payed for relaxing the missing data assumption using MI is the introduction of the imputation model. Because the 
regression approach we used for the imputation model only makes assumption regarding the mean structure of the 
missing outcome conditional on the observed outcome and the auxiliary variable, it is a much weaker assumption than 
the one made on the joint distribution in the joint modeling approach. In our simulation studies, the MI approach 
showed to be less prone to mis-specification than the joint modeling approach. 
 
2.3 Other Methods 
        Another alternative approach to utilizing the auxiliary variables when the missing data process is A-MAR rather 
than MAR is to include the auxiliary variable as an additional covariate in the main model for the outcome of interest. 
This approach was considered by Collins et al (2001). However, this will totally change the meaning of the model, in 
particular the interpretation of the parameters. The parameters in the new model including the auxiliary variable as 
covariate will all be interpreted as conditional on the auxiliary variable. If the association of a risk factor with the 
outcome is of interest and the risk factor examined is associated with the auxiliary variable, then adding the auxiliary 
variable as covariate would change the magnitude of this association. For this reason, we do not consider this approach 
in this paper. 
       Our focus on the main model for the outcome is a linear mixed effects model. Another popular method for 
longitudinal analysis is the generalized estimating equations (GEE) (Liang and Zeger , 1986) approach. This approach 
is valid when the data are missing completely at random (MCAR). Robins et al (1995) showed that the inverse 
probability weighting (IPW) method will give consistent estimates when data are missing at random (MAR). If the 
auxiliary variables are added to the model for the probability of observation in the IPW approach, then the assumption 
on missing data is reduced to A-MAR. 
 

3. Simulation Studies 
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       We conducted simulation studies with 1000 replications for longitudinal studies with two visits. A sample size of 
500 was used. The outcome of interest 1 2( , )Y Y Y= and the auxiliary variable 1 2( , )Z Z Z= were generated from 

multivariate normal distributions, with 2Var( )j YY σ= , 2Var( )j zZ σ= , 1 2 1 2corr( , ) corr( , )Z Z Y Yρ = = , 

corr( , )j jr Y Z= , 1, 2.j =  The model for the mean of Y is 0 1( )ij ijE Y tβ β= + , where ijt is 0 if j =1 and 1 if j =2. 

The parameter 1β measures the expected decline on Y at wave 2 compared to wave 1 and is the parameter of interest 
here. The similar model for the mean of Z is 0 1( )ij ijE Z tγ γ= + .  All variables are completely observed except that 

2Y , the second measurement of Y , can be missing. The observation indicator R  for 2Y  is generated from the 
following 
logistic model: 

0 1 1 2 2 3 1 4 2logit{ ( 1| , )} .P R Y Z Z Z Y Yα α α α α= = + + + +  

We set 0 1( , ) (0, 3)β β = − , 0 1( , ) (0, 2)γ γ = − , 2 29, 4Y zσ σ= = , 0.5ρ = , 0.8r = , 0 1 3( , , ) (1,0,0.3)α α α = . Different 

scenarios on 2 4( , )α α for the missing data mechanism were considered. For the MAR case, we set 2 4( , ) (0,0)α α = , 

i.e., the missing data process does not depend on 2Y nor Z ; for the A-MAR case, we set 2 4( , ) (0.5,0)α α = or 

(0.1,0) so the missing data process does not depend on the unobserved 2Y but can depend on Z ;  finally, for the 

MNAR case, we set 2 4( , ) (0.5,0.1)α α =  in which the observation probability depends on the unobserved 2Y . 
Simulation bias (Bias), standard error (STD) and percentage that the 95% confidence intervals cover the true parameter 
for 1β  (Coverage) are presented in table 1 for the approaches considered under different scenarios. 
 

Table 1. Simulation results comparing joint modeling and multiple imputation 
approaches with model for Y only 

Missing data cases Method Bias STD Coverage 
Model forY  only 0.0003 0.1573 0.942 
Joint modeling of Y and Z  0.0009 0.1307 0.945 

MAR 
2 4( , ) (0, 0)α α =  

 Multiple imputation 0.0002 0.1410 0.956 
Model forY  only 0.1154 0.1589 0.887 
Joint modeling of Y and Z  0.0008 0.1329 0.949 

A-MAR 

2 4( , ) (0.1,0)α α =  
Multiple imputation 0.0019 0.1422 0.956 
Model forY  only 0.7404 0.1916 0.027 
Joint modeling of Y and Z  0.0001 0.1388 0.948 

A-MAR 

2 4( , ) (0.5,0)α α =  
Multiple imputation 0.0019 0.1661 0.948 
Model forY  only 1.0370 0.2057 0.000 
Joint modeling of Y and Z  0.0826 0.1446 0.907 

MNAR 

2 4( , ) (0.5,0.1)α α =  
Multiple imputation 0.1237 0.1779 0.883 

 
 
      Results from table 1 show that both the multivariate longitudinal model and multiple imputation approaches 
  that utilize auxiliary information correct the bias from non-random missing longitudinal data under auxiliary MAR, 
while the regular model for the outcome Y only yields biased estimates. With the other parameters fixed, the value of 

2α in the observation model measures the extent that the MAR assumption is violated. The more 2α deviates from 0, 
the larger the violation. The bias of the estimate using regular mixed effects model for Y increases with the extent that 
MAR assumption is violated. Under MAR, estimates from the linear mixed effects model for Y gives   consistent 
estimate as well. It is not necessary to utilize auxiliary variable in this circumstance. However, the two approaches 
utilizing auxiliary information showed some improvement on the efficiency of the parameter estimate. Under MNAR, 
all methods give biased estimates. However, utilizing auxiliary information reduced the bias. 
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    The above results are based on a correct model specification on the joint distribution of Y and Z in the joint 
modelling approach and a correct imputation model for the multiple imputation approach. To examine the effect of 
mis-specification of the joint distribution of Y and Z on the estimate of the parameter of interest, we performed another 
set of simulations similar to the first one but with 1 1 2corr( , ) 0.6Y Yρ = = , 2 1 2corr( , )Z Zρ = , 

1 2 2 1 1 2corr( , ) corr( , )Y Z Y Z r ρ ρ= = where corr( , ) 0.5j jr Y Z= =  . Values of 0.5 and 0.2 were considered for 2ρ  

to represent different degrees of difference from 1ρ . In the mis-specified joint model of Y  and Z , we assume a 

common correlation coefficient 1 2ρ ρ ρ= = . For the missing data process, we focus on A-MAR case so 4α is set as 

0, and values of 0.1 and 0.6 were considered for 2α  as  measures of two different levels of deviation from the MAR 
assumption. Simulation bias (Bias), standard error (STD) and percentage that the 95% confidence intervals cover the 
true parameter for 1β  (Coverage) are presented in Table 2 using linear mixed effects model for Y  , correct and mis-
specified joint modeling,  and multiple imputation methods. 
 
Table 2. Simulation results on effects of mis-specified joint modeling and mis-specified MI   
 
Parameter settings Method Bias STD Coverage 

Model forY  only 0.0570 0.1434 0.932 
mis-specified joint model for Y and Z  -0.0447 0.1321 0.941 
Correct joint modeling of Y and Z  -0.0036 0.1404 0.950 

22 0.5, 0.1ρ α= =  

Multiple imputation -0.0049 0.1438 0.946 
Model forY  only 0.3803 0.1596 0.325 
mis-specified joint model for Y and Z  -0.1282 0.1365 0.875 
Correct joint modeling of Y and Z  0.0004 0.1525 0.926 

22 0.5, 0.6ρ α= =  
 

mis-specified joint model for Y and Z  0.0002 0.1605 0.957 
Model forY  only 0.0677 0.1476 0.921 
mis-specified joint model for Y and Z  0.1127 0.1397 0.900 
Correct joint modeling of Y and Z  -0.0011 0.1416 0.935 

22 0.2, 0.1ρ α= =  

mis-specified joint model for Y and Z  -0.0022 0.1441 0.955 
Model forY  only 0.4514 0.1567 0.177 
mis-specified joint model for Y and Z  0.0383 0.1462 0.960 
Correct joint modeling of Y and Z  0.0019 0.1581 0.920 

22 0.2, 0.6ρ α= =  

mis-specified joint model for Y and Z  0.0003 0.1666 0.950 
 
    Table 2 shows that the bias from the mis-specified joint modeling of Y and Z approach increases as the extent of 
    mis-specification of the joint distribution of Y and Z increases. This bias might be bigger or smaller than the bias 
    from linear mixed effects model for the outcome of interest Y depending on how much the MAR assumption is 
violated. 

 
4. Data Example 

 
 In a dementia screening study in a primary care geriatrics practice (Grober et al 2008), decline in memory as 

measured by the Free and Cued Selective Reminding Test (FCSRT) (Grober and Buschke, 1987) between the follow-
up visit and baseline is of interest. We used a subset of the data in which the primary care physicians' assessment of 
memory in the clinical demential rating system (CDR) was available at both baseline and follow-up (n=238). Baseline 
FCSRT ranges from 0 to 44 (mean=27.6, std=8.47). The follow-up FCSRT is missing for 59 (25%) subjects. The 
original CDR rating on memory impairment is graded on a scale of 0-3, with 0=no impairment; 0.5=memory 
impairment; 1= mild dementia; 2= moderate dementia; and 3=severe dementia. Because of the low prevalence of CDR 
values of 2 or 3 in this population, we combined them with 1 as a category for overall dementia. Two indicators were 
defined for the three-category CDR rating: CDRhalf for CDR=0.5 and CDR1P for CDR >=1. The physicians' CDR 
memory impairment rating is highly associated with FCSRT performance. At baseline, mean (STD) of FCSRT among 
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the groups with CDR=0, CDR=0.5 and CDR >= 1 are 30.15 (6.54), 23.78 (8.99) and 16.80 (9.97), respectively, with 
significant difference (p < 0.0001) among the CDR categories. Hence CDR memory rating can be used as an auxiliary 
variable for FCSRT. 

 We first used CDR memory impairment rating as an auxiliary variable to examine the missing data mechanism. A 
logistic model for missing the follow-up FCSRT in relation with baseline FCSRT and CDR memory rating at baseline 
and follow-up was fit and the result was shown in Table 3. It shows that subjects with impaired baseline CDR memory 
rating are more likely to have missing follow-up FCSRT compared to those with no impairment CDR memory rating at 
baseline (p=0.016). The likelihood ratio test for testing whether the CDR memory rating can be omitted from the 
logistic model shows that CDR memory rating is significantly associated with the missing data process adjusting for 
baseline FCSRT (Chi-square=9.666, degree of freedom=4, p-value=0.046). This suggests that the missing data process 
might be A-MAR rather than MAR. 

Next, we estimate the decline in FCSRT using a linear mixed effects model for FCSRT only and the two methods 
that utilizing the auxiliary information CDR. The first one is a linear mixed effects model for only FCSRT. The others 
are the joint modeling and multiple imputation approach utilizing the auxiliary variable CDR. In the joint modeling 
approach, the multinomially distributed CDR memory rating and the multivariate normally distributed FCSRT were 
jointly 
modeled using correlated random effects as described below. 

0 1 0

01 11 1

02 12 1

FCSRT ,

(CDR 0.5)
log ,

(CDR 0)

(CDR 1)
log ,

(CDR 0)

{ }

{ }

ij ij i ij

ij
ij i

ij

ij
ij i

ij

t b
P

t b
P

P
t b

P

β β

α α

α α

= + + +

=
= + +

=

≥
= + +

=

ε

 

where 1,..., , 1, 2,i n j= = are the subject and time index, respectively; ijt is 0 if j =1 and 1 if j =2. 

0 1( , )i ib b  are the subject specific random effects distributed as bivariate normal with mean (0,0), marginal variance 
2 2
0 1( , )σ σ and correlation coefficient ρ ; ijε  is the normally distributed error term for FCSRT which is independent 

of the random effects. The parameter of interest 1β represents the decline of FCSRT at follow-up compared to baseline. 
SAS 9.1 (SAS Institute Inc., Cary, N.C) procedure NLMIXED was used to fit this model. 

In the multiple imputation approach, a linear regression model for the observed follow-up FCSRT was fit using 
baseline FCSRT, baseline and follow-up CDR memory rating. New parameters were randomly drawn from the 
posterior distribution of the parameters using non-informative prior. The missing follow-up FCSRT was imputed using 
this new parameters and the baseline FCSRT and CDR memory rating at baseline and follow-up. This process was 
repeated 5 times. Each of the 5 imputed data sets was then used as a complete data to calculate the FCSRT decline 
using regular linear mixed effects model. The 5 sets of this parameter estimates were averaged to yield the point MI 
estimate. The standard errors of each parameter estimate and the variation among the 5 estimates were combined to 
calculate the variance of the MI estimate (Rubin 1987). SAS 9.1 procedures MI and MIANALYZE were used to obtain 
the MI estimate.  
     The results are shown in Table 4. Because subjects with poorer CDR memory rating tend to miss their follow-up 
visits for FCSRT, the linear mixed effects model which did not take account of the CDR information under-estimated 
the magnitude of FCSRT decline compared to that from the joint modeling or multiple imputation approach. The model 
we adopted for the joint modeling of FCSRT and CDR, is a plausible model for joint modeling of a longitudinal 
continuous variable and a longitudinal categorical variable. More flexible alternative joint models might need to be 
considered. The multiple imputation makes assumption only on the mean structure of the FCSRT and thus we believe 
its estimate of FCSRT decline is closer to the true value. 
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Table 3. Estimates from the logistic model for missing follow-up FCSRT 
 

Effects Estimates Standard Error p-value 
Baseline FCSRT -0.005 0.023 0.811 
CDRhalf (baseline) 0.936 0.389 0.016 
CDR1p (baseline) 0.056 0.726 0.938 
CDRhalf (follow-up) -0.001 0.417 0.998 
CDR1p (follow-up) 0.659 0.584 0.259 

 
Table 4. Estimates of FCSRT decline using different methods 

 
Method Estimate Standard Error p-value 
Regular linear mixed effects model for FCSRT -2.283 0.432 <0.0001 
Joint modeling of FCSRT and CDR -2.384 0.429 <0.0001 
Multiple Imputation -2.600 0.612 0.0014 

 
 

5. Discussion 
 
The auxiliary information is valuable in testing the MAR assumption for the main model of interest and eliminating 

or reducing the bias when the missing process for the main model is not missing at random. Collecting auxiliary 
information that might be related to missing values has been advocated (e.g., Little 1995). As did other statisticians, we 
recommend collection of auxiliary variables when designing research studies, and taking the auxiliary variables into 
account when analyzing the data even they are not of primary interest. However, it has to be kept in mind that new 
model assumptions are introduced when utilizing the auxiliary information to relax the assumption on the missing data 
process, and thus such information needs to be utilized with caution. Further research is indicated. 
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