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Abstract 
Disclosure limitation is an important consideration in the release of public use data sets. It is particularly challenging 
for longitudinal data sets, since information about an individual accumulates over time. We consider problems created 
by high ages in cohort studies. Because of the risk of disclosure, ages of very old respondents can often not be released, 
as stipulated by the Health Insurance Portability and Accountability Act (HIPAA). Top-coding of individuals beyond a 
certain age is a standard way of dealing with this issue, but it has severe limitations in longitudinal studies. We propose 
and evaluate an alternative to top-coding for this situation based on multiple imputation (MI). This MI method is 
applied to a survival analysis of simulated data and data from the Charleston Heart Study, and is shown to work well in 
preserving the relationship between hazard and covariates. 
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1.  Introduction 
 
Statistical disclosure control is a class of procedures that deliberately alter data collected by statistical agencies before 
release to the public, to prevent the identity of survey respondents from being revealed. These methods have increased 
in importance, with the extensive use of computers and the internet. The goal of SDC methods is to reduce the risk of 
disclosure to acceptable levels, while releasing a dataset that provides as much useful information as possible for 
researchers. One aspect of this is the ability to draw valid statistical inferences from the altered data.   
 
Top-coding is a simple and common SDC method that seeks to prevent disclosure on the basis of extreme values of a 
variable, by censoring values above a pre-chosen “top-code”. For example, in surveys that include income, extremely 
high income values are considered to be sensitive and to have the potential to reveal the identity of respondents. By 
recoding income values greater than a selected “top-code” value to that value, respondents with very high income have 
reduced risk of disclosure.   
 
It is left to the analyst to decide how top-coded data are analyzed. One approach is to categorize the variable so that 
top-coded cases all fall in one category – this is sensible, but precludes analyses that treat the variable as continuous. 
Another approach is to ignore the fact of top-coding and treat the top-coded values as the truth. This method is 
straightforward, but clearly the data distribution is distorted and biased estimates will be obtained. A better method is to 
treat the extreme values as censored. Under an assumed statistical model, maximum likelihood (ML) estimates can be 
obtained using algorithms such as the Expectation-Maximization (EM) algorithm (Dempster, Laird and Rubin, 1977). 
This method is model-based, and should yield good inferences if the model is correctly specified. But we expect this 
method to be quite sensitive to model misspecification, especially when the upper tail of the assumed distribution 
differs markedly from that of the true distribution. The data users can also apply an imputation method to the top-coded 
dataset and fill in the censored values. A limitation is that the imputed data fail to reflect imputation uncertainty, and 
imputations are sensitive to assumptions about the right tail of the distribution. An and Little (2007a) propose an 
alternative to top-coding based on multiple imputation (MI), which allows valid inferences to be created based on 
applying multiple imputation combining rules described by Reiter (2003), while preserving the SDC benefits of top-
coding; for other discussions of MI in the disclosure control setting, see Little (1993); Rubin (1993); Little, Liu and 
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Raghunathan (2004); Reiter (2005a, 2005b). The methods in An and Little (2007a) are extended to handle covariate 
information in An and Little (2007b). 
 
We propose here MI for disclosure control in the context of the treatment of age in longitudinal data sets. Because of 
the risk of disclosure, ages of very old respondents can often not be released; in particular this is a specific stipulation 
of HIPAA regulations for the release of health data for individuals. Top-coding of individuals beyond a certain age (say 
80) is a standard way of dealing with this issue, and it may be adequate for cross-sectional data, since the number of 
cases affected may be modest. However, this approach has severe limitations in longitudinal studies, when individuals 
have been in the study for many years; for example, consider an individual in a 40-year longitudinal study, who enters 
the study at age 42 at time t and is still in the study at age 82 at time t+40. The age at time t+40 cannot simply be 
replaced by a top code of 80, since age at time t+40 can be inferred by simply adding 40 to the age at time t. A strict 
application of top-coding would replace all individuals aged 40 or older at time t by a top code of 40, but this strategy 
seriously limits the ability to do longitudinal analysis, particularly survival analyses where chronological age is a key 
variable of interest. In particular, since age at entry is a marker for cohorts, differences in outcomes between cohorts 
aged 40 or greater at entry can no longer be estimated, since these cohorts are all top-coded to the same value. 
This problem arises in the Charleston Heart Study (Nietert et al., 2000), a longitudinal study that collects data over 40 
years (1960-2000). The study was originally conducted to understand the natural aging process in a community-based 
cohort. The data include baseline characteristics such as age, race, gender, occupation, education; as well as death 
information for respondents. For longitudinal data from this study to be included in the National Archive of 
Computerized Data on Aging (NACDA), the gerontological data archive at the University of Michigan, individual ages 
beyond age 80 cannot be disclosed because of HIPAA regulation, given the geographic specificity of the respondents. 
Also, given the longitudinal nature of the data, a top-coding approach would need to be applied to all individuals aged 
40 or older in 1960, which has the limitation discussed above.  
 
The goal of this research is to develop MI methods that suffice to limit disclosure risk and preserve the relationship 
between hazard and covariates in survival analysis. We propose a non-parametric MI method, specifically a stratified 
hot-deck procedure, where we create strata and draw deleted ages with replacement from each stratum. Our method 
concerns MI of two age variables – entry age and final age (age at death or age at last contact).  
 
To assess the proposed method, we apply a proportional hazard (PH) model to the multiply-imputed datasets, calculate 
estimates of regression coefficients for putative risk factors, and compare these estimates, and corresponding estimates 
from top-coded data, with estimates from the PH model applied to the original data prior to SDC. We also present 
simulation studies where data are simulated according to a known survival model, and inferences for parameters of this 
model are compared with the true values. 
 
The rest of this paper is organized as follows. Section 2 presents our SDC approaches for longitudinal data and 
describes corresponding methods of inference for regression coefficients. Section 3 describes a simulation study to 
evaluate the approaches in Section 2, and Section 4 applies the methods to CHS data. Section 5 gives discussion and 
future work. 
 

2.  Methods 
 
2.1 SDC methods for longitudinal data 
An and Little (2007a) propose SDC methods for a single variable with extreme values. In this paper, we investigate a 
more complicated situation with longitudinal data, where two age variables are subject to top-coding. 
 
Let Yend denote participants’ age at the end of study (referred to as final age) and Ystart denote their entry age. Let C be 
the censoring indicator. Let L represent the length of study and S denote time of survival. Individuals with LS ≥ are 
treated as censored (C = 1), and otherwise died (C = 0). We consider individuals with values of Yend greater than a 
particular value 0y  to be at risk of disclosure, and refer to these individuals as sensitive cases. Thus values of Yend and 
Ystart of the sensitive cases are treated as sensitive values. We consider the following approaches to SDC.  
(a) Top-coding. Replace values of Yend greater than 0y  by 0y  and replace values of Ystart greater than 0y L−  

by 0y L− . The resulting dataset is referred to as “top-coded” data.   
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(b) Hot-deck MI (HDMI). Classify sensitive and non-sensitive values into strata, to be defined below. Then delete the 
values of Yend , Ystart, and C for sensitive cases and replace them with random draws from the set of deleted values in the 
same stratum.  
 
Our stratified HDMI method is similar to the approach described in An and Little (2007b), where we assign the deleted 
data into strata based on predicted values of either age variables from regression on other variables, and apply HDMI 
within each stratum to impute deleted values. The following choices of strata are considered here: 
(i) HD1. Strata are defined by predicted values of the logarithm of hazard computed from the proportional hazard 
model.  
(ii) HD2. Strata are defined by predicted values of entry-age, from the regression of entry-age on other variables 
involved. 
(iii) HD3. We develop a two-way stratification, where strata are defined by both predicted values of the logarithm of 
hazard, and predicted values of entry-age.  
 (iv) HD4. Stratification depends on the value of C. For individuals that are censored, strata are defined by predicted 
values of entry-age; and for those not censored, strata are defined by both predicted values of the logarithm of hazard 
and predicted values of entry-age. 
(v) HD5. We directly apply HDMI method without stratification, for comparison with the stratified methods. 
  
Note that for methods HD1 – HD3, we delete values of Yend, Ystart, and C of sensitive cases and jointly impute these 
values. HD4 retains values of C and imputes Yend and Ystart only.  
 
It is worth mentioning that for above stratified methods, we perform regression only on the deleted cases to obtain 
predicted values. We also consider an alternative way of stratification, where we perform regression on the complete 
data, and then stratify the sensitive cases for imputation. Results from these methods are briefly described in Section 3. 
 
2.2 Methods of inference 
We consider the properties of the SDC methods for inferences about the regression coefficient, where a PH model is 
fitted to the dataset before and after imputation. The following estimates and associated standard errors are considered:  
(1) Before Deletion (BD) – the estimates of regression coefficients calculated from original data prior to SDC, used as 
a benchmark for comparing SDC methods. 
(2) Top-coding (TC) – the estimates of regression coefficients calculated from top-coded dataset.  
 
The standard errors for methods (1) and (2) are computed by the bootstrap. 
 
The five remaining methods HD1 – HD5 are as described in Section 2.1, yielding D MI datasets. The MI estimate is 
calculated as    
 
                                                                                                               , 
where ( )ˆ dθ  is the parameter estimate from d th data set. The MI estimate of variance is  
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original MI formula for missing data (where B is multiplied by a factor (D+1)/D, see e.g. Little and Rubin, 2002, p86), 

for reasons discussed in Reiter (2003).   

 
3.  Simulation study 

 
A simulation study was carried out to evaluate the top-coding and MI methods in Section 2. We computed estimates of 
regression coefficients, their corresponding variances and confidence intervals from the imputed and top-coded 
datasets, and compared them with those calculated from the original dataset prior to SDC. 
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3.1 Study design  
For simplicity we simulated survival data with just two binary covariates, representing gender (male and female) and 
entry age (say 30 - 40 and 40 - 50). Datasets were simulated from multinomial distribution in four categories defined by 
these variables. Values of entry-age were generated from uniform distribution. Survival times (in years) were generated 
from piece-wise exponential distributions. An individual was treated as censored if (s)he survived more than 40 years 
from age at entry. We investigated the following three scenarios.  
Scenario I: Distributions of entry age do not depend on gender; both male and female have same entry-age 
distributions.  
Scenario II:  Distributions of entry age are different for males and females. 
Scenario III: Distributions of entry age are the same for males and females, and there is interaction between entry age 
and gender.  
 
In this study we considered individuals with final age greater than or equal to 75 years to be at risk of disclosure, and 
refer to these individuals as sensitive cases. For each simulated dataset, we applied the stratified HDMI methods to both 
final age and entry age variables for sensitive cases as described in Section 2. We also applied the top-coding method, 
with top-code being 75 for final age and 35 for entry age (as the length of study is 40 years). We then calculated 
estimates of regression coefficients from the PH model, the corresponding variances of the estimates, as well as 95% 
confidence intervals (CI’s) based on normal approximation, and the confidence coverage of these intervals. 
 
3.2 Results  
Simulation results are based on 500 datasets of sample size 2000. We set the number of bootstraps B to be 100 for 
calculating standard errors of BD and TC estimates; and create D = 5 imputed datasets. For stratified HDMI methods, 
we create strata with stratum size around 25. 
 

 
Table 1 presents results from scenario I, where distributions of entry-age are the same for male and female. TC yields 
estimate of regression coefficient with serious bias and RMSE, and zero confidence coverage for the entry-age variable. 
As for gender, TC estimate has relatively better properties, yet it still has sizable bias and low coverage. All stratified 
HDMI methods produce quite satisfactory results for the entry-age variable, with negligible bias and confidence 
coverage close to before deletion. HD5 also work well in terms of bias and coverage, but it is somewhat less efficient 
than the stratified HD methods. HD4 method works best for gender variable, yielding estimate of regression coefficient 
with minimal bias and good confidence coverage. Estimates from other HD methods are also acceptable, though they 
are in general more biased and have less coverage. When male and female have different entry-age distributions as in 
scenario II (results not shown), most methods behave similarly as in the first scenario, except that HD3 yields larger 
bias, RMSE and less coverage for estimate of the regression coefficient of gender. In fact, it has even worse results than 
TC method.  
 
 
 

 
Table 1:  Simulation study scenario I: inferences of regression coefficients from PH model 

 Entry-age (40~50) Gender (female) 
 Bias 

(*104)    
RMSE 
(*104)    

Rel-wid Cover 
(%) 

Bias 
(*104)    

RMSE 
(*104)    

Rel-wid Cover  (%) 

BD 38 570 1 95.2 -38 582 1 92.6 
TC 11501 11513 0.94 0 486 746 0.99 84.8 
HD1  8 574 1.01 94.6 183 623 1.01 93 
HD2 25 571 1.01 95.4 257 622 1.01 91.8 
HD3 7 569 1.01 95.2 276 645 1.01 91.2 
HD4 36 573 1.01 94.8 -17 585 1 93.6 
HD5  7 581 1.03 94.2 325 648 1.01 91 

 
 “RMSE” refers to root mean squared error. “Rel-wid” refers to “relative width”, which is fraction of 95 CI % 
width comparing to estimate 1.  “Cover” refers to the 95% CI coverage. 
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Table 2 displays results from scenario III, where there is interaction between the age and gender variables. TC yields 
estimates with considerable bias and poor coverage for regression coefficients of age, gender and the interaction 
between these two variables. Among stratified HD methods, HD4 has the best performance and yields estimates with 
good inferences for both variables and the age-gender interaction. HD2 also has satisfactory results for all three terms, 
though it is more biased than HD4. Estimates from HD1 and HD3 methods have similar properties as from HD2, 
except that they have less sufficient coverage for the interaction term. Estimates from HD5 have larger bias and less 
confidence coverage than those from the stratified HD methods.    
 
We also applied the alternative stratified method described in Section 2.1, where we obtained predicted values from 
regression on the complete data, and then stratified the sensitive cases for imputation. Estimates from these methods 
(not shown) are more biased and have less confidence coverage compared to the methods above. This suggests that 
when a regression model is fitted to the data that are being deleted, it makes the method more robust to model mis-
specification and yield better result (see Section 5 for more discussion). 
 
In summary, HD4 performs best under all circumstances. Other stratified HD methods yield estimates of regression 
coefficient with good inferential properties for the entry-age variable. These methods also provide satisfactory results 
for gender, except for HD3 in scenario II. With presence of interaction between age and gender, estimates for the 
interaction term from HD1 and HD3 methods do not have sufficient coverage. HD5 tends to be slightly less efficient 
than the stratified HD methods, but it works surprisingly well in the first two scenarios, indicating stratification may not 
be necessary in such data setting. For more complicated situation (scenario III), it yields biased estimates with low 
confidence coverage.  
 

4. Application in Charleston Heart Study data 
 
We chose a subset of the CHS data and studied the relationship between hazard rate and certain risk factors. Since an 
intact data file prior to disclosure control was available to us, the effectiveness of our SDC methods can be readily 
assessed. 
 
4.1 Primary data analysis 
After deletion of missing values and recoding on some variables, our sample included 1344 individuals, of which 303 
survived the study. The variables involved were entry-age, final-age, censoring indicator, race/gender, education level, 
current cigarette smoking status, history of myocardial infraction (MI), history of diabetes, history of hypertension, 
electro-cardiographic interpretation (EKG), living place between age 20 to 65 and body mass index (BMI). For the PH 
regression model, final-age instead of survival time was treated as the time-scale variable.  
 
To examine effects of our chosen risk factors, we applied the PH model to the dataset prior to SDC. All factors have 
significant effect on participant’s hazard ratio except BMI and entry-age (overall). Comparing to individuals that enter 
the study between 35 and 40 years old, those with entry-age greater than 50 have about a 30% increase in risk of death. 
White females tend to have 34% less of risk than white males. Achieving education after high school reduces hazard by 

  
“RMSE” refers to root mean squared error. “Rel-wid” refers to “relative width”, which is fraction of 95 CI % width 
comparing to estimate 1.  “Cover” refers to the 95% CI coverage. 

Table 2:  Simulation study scenario III: inferences of regression coefficients from PH model  
 Entry-age (40~50) Gender (female) Interaction 
 Bias 

(*104)   
RMSE 
(*104)   

Rel-
wid 

Cover 
(%) 

Bias 
(*104)   

RMSE 
(*104)   

Rel-
wid 

Cover  
(%) 

Bias 
(*104)   

RMSE 
(*104)   

Rel-
wid 

Cover  
(%) 

BD 28 781 1 94.2 -39 810 1 94.4 13 1094 1 95 
TC 10383 10411 0.95 0 -710 1129 1.07 84.6 2423 2646 0.97 38.6 
HD1  -217 836 1.01 92.8 -128 839 1.01 93 501 1277 1.01 90.2 
HD2 -244 803 1.02 94.8 -53 803 1 93.8 568 1166 1.01 93.6 
HD3 -241 823 1.01 94 -123 850 1.01 92.8 550 1298 1.01 89.4 
HD4 -20 760 1.01 96.4 -67 798 1 94.6 104 1070 1.01 95.4 
HD5  -706 985 1.04 88.8 -437 854 1.01 91 1452 1646 1.03 81.4 
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30% comparing to non-high school education. Smoking cigarette increases death risk by 76%. Participants with 
definite history of myocardial infraction have twice the risk of death as those without a history. History of diabetes as 
well as EKG problems increases the hazard by over 50%, while history of hypertension increases risk of death by 17%. 
Rural residents have 25 % less of hazard than urban residents. Most of these coefficients are in the expected direction.     
 
4.2 Results from SDC methods 
As described earlier, variables subject to disclosure limitation are entry-age and final-age variables. Respondents with 
final-age greater than or equal to 80 years are considered to be sensitive cases, which intuitively leads to top-code 
values of 40 for entry-age and 80 for final-age. For this dataset, top-coding the age variables has great impact on the 
analysis, since the entry-age variable is recoded into only two categories (40 or below 40), in contrast to the five 
categories for entry-age in the original data.  
 
We applied HDMI methods to the data and computed estimates of regression coefficient from a PH model. Results are 
based on 500 replications (not shown). Predictably, TC considerably alters the relationship between hazard and 
covariates and yields estimates of the regression coefficients with serious bias, especially for the entry-age variable. Of 
the stratified HDMI methods, HD3 and HD4 yield estimates of coefficients of entry-age close to those from BD. HD1 
provides better estimates of regression coefficients than other methods for the gender variable. For the rest of 
covariates, none of the stratified HD methods seems to have an obvious advantage, with HD2 being slightly inferior. 
HD5 has less satisfactory results, though it still yields better estimates than TC for some covariates. Overall, the 
stratified HD methods all work better than top-coding in preserving the relationship between risk of death and the 
covariates on this dataset.   
 

5.  Discussion 
 
Longitudinal data raise particular confidential concerns with potentially extensive longitudinal information gathered 
over time. We consider a specific application concerning disclosure risk caused by some participants attaining high 
ages because of prolonged participation in a longitudinal study, as in the Charleston Heart Study. One of the authors 
(McNally) has the responsibility to prepare a public use version of this data set through NACDA that meets HIPAA 
regulations. As discussed earlier, the standard approach of top-coding age has severe limitations in this longitudinal 
setting, especially for survival analyses with age being a key variable of interest.  HIPPA restrictions make full public 
releases impossible and require a formal Limit Use Agreement which imposed significant barriers to accessing the data. 
We develop MI-based SDC methods for this particular data setting. Similar to the methods in An and Little (2007b), 
our proposed MI methods are based on stratification, with strata defined by the predicted values of the age variables 
from a regression model. 
 
Regarding the longitudinal nature of dataset in this study, we have focused on inference about regression coefficients 
from Cox’s proportional hazard model. As expected, top-coding method yields seriously biased estimate especially for 
the entry-age variable. Among our stratified HDMI methods, HD4 has the best performance and yields results close to 
before deletion in simulation studies. The other stratified methods also work well overall, except that sometimes they 
do not quite attain the nominal confidence coverage. When there are fewer censored cases, as with the CHS data 
(number of censored cases is one fourth the total sample size), HD4 does not have obvious advantage over other 
methods, though it still yields satisfactory results. The no-stratification method HD5 works almost as well as stratified 
HD methods in simple data settings. In situations with more covariates and a larger number of sensitive cases, it yields 
biased estimates with low confidence coverage. 
 
An and Little (2007a) present two versions of MI methods, the “C” method which is based on a model fitted to the 
complete data; and the “D” method based on a model fitted to the deleted values alone. The “D” method is somewhat 
less efficient than the “C” method, but it is more robust to model misspecification, since the model is fitted to the data 
that are being deleted.  
 
Similarly, we develop two alternatives in this study. The first method calculates predicted values from regression on the 
deleted data; and the second one utilizes the complete data for regression. Results show the first method yield estimates 
with better inferential properties. This finding supports the justification in An and Little (2007a), as regression on 
deleted data tends to be more robust to model mis-specification. 
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Our stratified HDMI methods produce excellent inferences, but they arguably have the limitation as SDC methods that 
original values in the dataset are retained, although not attached to the right records. As multiply-imputed datasets 
protect an individuals with extremely high age value from being linked to a specific record, potential data snooper may 
still recognize the fact that this individual is included in the dataset, especially for data with geographic specificity. To 
address this concern, we will develop parametric MI methods in our future work. 
 
Moreover, we have confined attention to individuals with high age values. The whole field of SDC methods raised by 
other variables (e.g. geographic) in longitudinal health data like the CHS data remains rather unexplored. We also plan 
to consider other possible confidential concerns and develop suitable SDC methods for these problems. 
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