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Abstract
Recent methodology on combination of multiple-survey data through generalized regression is adapted to certain variants

of double sampling arising in practice. A computationally simple calibration scheme that gives rise to efficient generalized
regression estimators for characteristics surveyed in the “second-phase” sample is investigated within a framework of optimal
regression estimation. This, one-step, calibration scheme makes efficient use of all available auxiliary information in the
first-phase and second-phase samples and greatly facilitates variance estimation.
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1. Introduction

Double sampling, also known as two-phase sampling, is commonly used in large scale surveys as a cost-effective
survey method. In the first phase a large sample drawn from the target population provides auxiliary information
that is inexpensive to collect, and in the second phase a subsample is used to collect information on the variables of
interest. The population totals for some of the auxiliary variables may be known.

In a common estimation procedure in two-phase sampling, regression techniques are used to incorporate all the
available auxiliary information into the survey estimation and thus improve the precision of estimates. Generalized
regression estimators, also viewed as calibration estimators, were studied in the context of two-phase sampling by
Särndal et al. (1992, ch. 9), Hidiroglou and Särndal (1998), Hidiroglou (2001), and Estevao and Särndal (2003). In
particular, Hidiroglou (2001) included in his discussion a sampling design, termed non-nested double sampling, in
which one of the samples is not nested in the other nor is it necessarily selected from the same frame.

In this paper a computationally simple calibration procedure that gives rise to efficient generalized regression esti-
mators is proposed for certain variants of nested double sampling arising in practice. These variants are distinguished
from the standard type of nested double sampling by the following features. (i) The separate use of the first-phase
sample for a large scale survey. (ii) The second-phase sample is statistically independent from its complement — the
two component samples have the same sampling design. (iii) The second-phase sample is not necessarily smaller than
its complement, but usually it is. (iv) The type and amount of auxiliary information collected in the first-phase sam-
ple is not determined by the objectives of the survey based on the second-phase sample. A unified presentation of the
proposed procedure includes also the non-nested double sampling. Three special cases of interest are described below.

Nested double sampling, Case I.
In this sampling scheme, a large sample s is used for the objectives of one (the main) survey, and a sub-sample s2

of it — the “second-phase” sample — is used for another survey with different target variables. The characteristic
feature of this sub-sample is that it is made up of one or more of the independent parts comprising the entire sample
s, so that the sub-sample s2 and its complement s/s2 are independent samples. Some of the auxiliary variables
(common to the two phases) are known at population level, and can be used for calibration, and some are known at
sample level only. Examples of this convenient sampling scheme include household surveys that use a second-phase
sample made up of some of the sub-samples (panels) comprising a Labour Force Survey (LFS). In these “supplement”
surveys (e.g., travel survey, health survey) the target variables are different from the LFS target variables.

The setting of this nested double-sampling is depicted in Figure 1, where x1 denotes the vector of auxiliary
variables for which the associated vector of population totals is known, x2 denotes the vector of auxiliary variables
for which the vector of population totals is not known, y1 denotes the vector of target variables surveyed in the
entire sample s, and y2 denotes the vector of target variables surveyed in the second-phase sample s2. In the context
of this variant of nested double sampling, the target variable of interest is y2.

Nested double sampling. Case II.
This variant of case I is about a single repeated survey, in which a sub-sample may be used periodically to collect
information on a set of additional target variables. Collection of all data is done simultaneously from the entire

∗Athens University of Economics and Business, Patision 76, 10434 Athens, Greece

Section on Survey Research Methods – JSM 2008

3329



S�

�

�

�
(x1, x2, y1)

S2 ⊂ S�

�

�

�
(x1, x2, y2)

Figure 1: Nested double sampling. Case I.
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Figure 2: Nested double sampling. Case II.

sample using the same questionnaire, but the module with the additional variables is administered only to the sub-
sample in order to reduce response burden and cost. The motivating example of such setting is the multiple-panel
Labour Force Surveys in the European Union that use a sub-sample made up of one or more panels to collect
information on additional (structural) variables.

In Figure 2 depicting this variant of nested double sampling, y2 denotes the vector of the additional variables
surveyed in the second-phase sample s2 .

Non-nested double sampling.
This sampling scheme involves two separate samples, s1 and s2, drawn from the same frame, or from different frames
that represent the same target population. The sampling designs for the two samples may be different. The two
samples have common auxiliary variables, some of which may be known at the population level and some at the
sample level. Information on the target variables is collected only in one (the main) sample. The other sample serves
as additional source of auxiliary information, and is usually drawn from an administrative file and is much larger.
An example of a survey with non-nested double sampling is the Canadian Survey of Employment, Payroll and Hours
(see Hidiroglou 2001).

The setting of the nested double-sampling is depicted in Figure 3, where x1 denotes the vector of auxiliary
variables for which the associated vector of population totals is known, x2 denotes the vector of auxiliary variables
for which the vector of population totals is not known, and y is the target variable surveyed in the main sample s2.

Information on variables that are common between s2 and its complement s/s2 in nested double sampling, or
between s2 and s1 in non-nested double sampling, may be combined to enhance the efficiency of estimates for the
target variables y2 (y for non-nested double sampling) surveyed only in the second-phase sample s2 . This can
be achieved by a special regression setup functioning as an extended calibration procedure whereby estimates for
the common vector x2, or for both x2 and y1 in case II of nested double sampling, based on the two samples are
calibrated to each other.

The proposed calibration is performed on the entire sample s in nested double sampling, or on the combined
sample s1 ∪ s2 in non-nested double sampling, and involves also the auxiliary variable x1. This, one-step, calibration
scheme makes efficient use of all available auxiliary information in the first-phase and second-phase samples. The
resulting composite calibration estimator for y2 (y for non-nested double sampling) is a special form of general-
ized regression estimator, and for certain sampling designs it is the optimal regression estimator. This estimation
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Figure 3: Non-nested double sampling.

procedure is very practical and greatly facilitates variance estimation.
Non-nested double sampling and case I of nested double sampling fall within the domain of application of

the methods of Renssen and Nieuwenbroek (1997) and Merkouris (2004) for integrating independent surveys with
common variables through regression for more efficient estimation. The proposed method is an adaptation of the
method of Merkouris (2004). Non-nested double sampling has also been dealt with by Hidiroglou (2001), but in a
different manner. No other method of using data on x2 and y1 from the entire sample s in the estimation for y2

has been proposed thus far for case II of nested double sampling.
The paper is organized as follows. A preliminary discussion of generalized regression estimation as calibration

estimation is presented in Section 2. Calibration estimation for the two variants of nested double sampling is
presented in Section 3. Composite calibration estimators for all variables of interest are discussed within a framework
of optimal regression. Calibration estimation for non-nested double sampling is presented in Section 4. Some remarks
on the merits of the proposed estimation method relative to certain alternative methods are made in Section 5.

2. Calibration and Generalized Regression: A Review

Consider a finite population labeled by U = {1, . . . , k, . . .N}, from which a probability sample s of size n is drawn
according to a sampling design with known first - and second - order inclusion probabilities πk and πkl (k, l ∈ U).
Consider the sampling weight vector w with kth entry defined as wk = (1/πk)I(k ∈ s), where I denotes the
indicator variable, and let Y ∈ R

N×r denote the population matrix of an r-dimensional survey variable of interest
y. The Horvitz - Thompson (HT) estimator of the total ty = Y′1, where 1 is the unit N -vector, is given by
Ŷ = Y′w (=

∑
U wkyk). For the population matrix X ∈ R

N×p of a p-dimensional auxiliary variable x, assume that
the total tx = X′1 is known. Let also Λ be the diagonal “weighting” matrix that has wk/qk as kkth entry, where
qk is a positive constant — the typical default value qk = 1 for all k will be assumed, unless indicated otherwise.
The subvectors and submatrices corresponding to the sample are designated by s. A vector of “calibrated” weights,
cs ∈ R

n, can be constructed to satisfy the constraints X′
scs = tx while minimizing the generalized least squares

distance (cs−ws)′Λ−1
s (cs−ws). Assuming that Xs is of full rank p, this calibration procedure generates the vector

cs = ws + ΛsXs(X′
sΛsXs)−1(tx − X′

sws). (1)

The calibration estimator of the total ty is obtained as

Y′
scs = Y′

sws + Y′
sΛsXs(X′

sΛsXs)−1(tx − X′
sws), (2)

which can take the form of a generalized regression (GREG) estimator

ŶR = Ŷ + β̂
′
(tx − X̂), (3)

where X̂ = X′
sws is the HT estimator of tx, and β̂ = (X′

sΛsXs)−1X′
sΛsYs is the matrix of sample regression

coefficients. By construction the GREG estimator (3) has the calibration property that X̂R = tx, that is, the GREG
estimator of the total for x is equal to the known associated population total (“control” total). A formulation of the
GREG estimator as a calibration estimator is given in Deville and Särndal (1992), and an extensive discussion of it
is given in Särndal et al. (1992).

3. Calibration for Nested Double Sampling

Let s1 denote the complement s/s2 of s2. For the survey settings described above, s1 and s2 are assumed to be
independent sub-samples of a large sample s and have sizes n1 and n2, respectively. The inverses of the sub-sample
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proportions φ = n1/(n1 + n2) and (1 − φ) = n2/(n1 + n2) can be viewed as sub-sampling weights, which multiplied
by the sampling weight vectors ws1 and ws2 of s1 and s2, respectively, may give rise to estimates based on only
one of these sub-samples. In particular, 1/(1 − φ)ws2 can be viewed as the second-phase sampling weight of s2.
The vector x2 for case I and the vectors x2 and y1 for case II will be used in the proposed extended calibration
procedure, which includes also the vector x1, to “borrow strength” from s1 when estimation is based on s2. To
distinguish the different types of the common auxiliary information in this calibration procedure, we re-denote x1

by x, and (x2, y1) by z. For the p-dimensional vector x, the vector of population totals tx is known, whereas the
vector of population totals tz is unknown. The same regression setup will be used for cases I and II, when z = x2

and z = (x2, y1), respectively.
A simultaneous regression for the two samples using the setup Xs = diag(Xsi), Λs = diag(Λsi), ws =

(w′
s1

, w′
s2

)′, t = (t′x, t′x)′, generates a vector of calibrated weights, cxs, given by

cxs =
(
ws1

ws2

)
+

(
Λs1Xs1(X′

s1
Λs1Xs1)−1[tx − X′

s1
ws1 ]

Λs2Xs2(X
′
s2

Λs2Xs2)
−1[tx − X′

s2
ws2 ]

)
. (4)

The two components of cxs give rise to the independent GREG estimators ẐR
1 = (1/φ)Z′

s1
cxs1 and ẐR

2 = [1/(1 −
φ)]Z′

s2
cxs2 of the total tz of the type shown in (3). Both these estimators incorporate the auxiliary information in

x. Obviously, the GREG estimator based on the entire sample s is given by the combination φẐR
1 + (1 − φ)ẐR

2 .
Combining information on z is accomplished by adding to the regression procedure the calibration constraint that
the two estimators of tz are calibrated to each other, that is, they are aligned. This involves the extended regression
matrix and the corresponding vector of control totals

X s =
(

Xs1 0
0 Xs2

(1 − φ)Zs1

−φZs2

)
, t =

⎛
⎝ φtx

(1 − φ)tx
0

⎞
⎠ . (5)

Among the many components of the vectors x2 and y1 we include in the calibration procedure those most
correlated with the variable y2. Let the dimension of z be q. Assume then that (Xsi

Zsi
) is of full rank p + q and

write X s in partition form as X s = (Xs Zs), where Xs and Zs are of dimension (n1 + n2)× 2p and (n1 + n2)× q,
respectively. Reset the default value qik = 1 in the entries of Λsi to q1k = 1/φ for every unit k of s1 and to
q2k = 1/(1 − φ) for every unit k of s2 . Next let Ls = Λs(I − PXs), with PXs = Xs(X′

sΛsXs)−1X′
sΛs, and

notice that Xs = diag(Xsi
) implies Ls = diag(Lsi

), where Lsi
= Λsi

(I − PXsi
), in obvious notation for Λsi

and PXsi
. Then, in an adaptation of Merkouris (2004), for weight vector ws = (w′

s1
, w′

s2
)′ and weighting matrix

Λs = diag(Λsi), the regression procedure based on the partitioned matrix X s generates the vector of calibrated
weights

cs = cxs + LsZs(Z ′
sLsZs)−1(0− Z ′

scxs)

=
(
cxs1

cxs2

)
+

(
(1 − φ)Ls1Zs1

−φLs2Zs2

) [
(1 − φ)2Z′

s1
Ls1Zs1 + φ2Z′

s2
Ls2Zs2

]−1[
φZ′

s2
cxs2 − (1 − φ)Z′

s1
cxs1 )

]
.

It is easy to verify that the vector cs satisfies all the calibration constraints, namely, (1/φ)X′
s1

cs1 = [1/(1 −
φ)]X′

s2
cs2 = tx and Z ′

scs = (1 − φ)Z′
scs1 − φZ′

scs2 = 0. This explains the use of the coefficients φ and 1− φ in 5.
For any single variable y2 surveyed only in sample s2, we can obtain a composite GREG estimator Ŷ CR

2 =
[1/(1 − φ)]Y′

s2
cs2 of its total ty2 that has the form

Ŷ CR
2 = Ŷ R

2 − B̂y2 [Ẑ
R
2 − ẐR

1 ], (6)

where B̂y2 = φ2Y′
s2

Ls2Zs2 [(1−φ)2Z′
s1

Ls1Zs1+φ2Z′
s2

Ls2Zs2 ]−1 . The expression of the composite GREG estimator
Ŷ CR

2 in (6) allows a direct comparison with its single-sample counterpart Ŷ R
2 .

For the q-dimensional common variable z, we have the composite GREG estimator of tz based on s2

ẐCR
2 = ẐR

2 − B̂[ẐR
2 − ẐR

1 ], (7)

where, B̂ = φ2Z′
s2

Ls2Zs2 [(1 − φ)2Z′
s1

Ls1Zs1 + φ2Z′
s2

Ls2Zs2 ]
−1. This estimator can be written in the form

ẐCR
2 = B̂ẐR

1 + (I − B̂)ẐR
2 , (8)

and is identical, by construction, to the composite estimator ẐCR
1 based on s1.
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The estimator (8) is of interest in case II, in which the composite vector z includes some of the components of
the common target vector y1. The expected improvement of precision is greater for these variables than it is for any
y2, for which the additional information from s1 stems indirectly from its correlation with z. For a component y of
y1 not included in z, we may obtain one composite GREG estimator of the type shown in (6) based on s2 and one,
its counterpart, based on s1. Each of these estimators incorporates information from the entire sample s through
the common vector z, and thus is more efficient than the simple GREG estimator based on the same sub-sample.
However, a more efficient estimator making use of all available information in s on the particular variable involves
the entire set of calibrated weights cs and is given by

Y′
scs = Ŷ CR = φŶ R

1 + (1 − φ)Ŷ R
2 + [φB̂y1 − (1 − φ)B̂y2 ][Ẑ

R
2 − ẐR

1 ]. (9)

The estimator (9) is a weighted average of the estimator (6) and its counterpart based on s1, and if y is a component
of z the estimator (9) reverts to (8).

The approximate (large sample) design variance of Ŷ CR
2 , denoted by AV (Ŷ CR

2 ) is given by

AV (Ŷ CR
2 ) = AV (Ŷ R

2 ) + By2 [AV (ẐR
1 ) + AV (ẐR

2 )]B′
y2

− 2By2[AC(Ŷ R
2 , ẐR

2 )]′, (10)

where By2 = φ2Y′
2L2Z[(1− φ)2Z′L1Z + φ2Z′L2Z]−1 is the population counterpart of B̂y2 and AC denotes approx-

imate covariance. Here L1 = φ(I −PX) and L2 = (1 − φ)(I− PX), with PX = X(X′X)−1X′.
The approximate variance of ẐCR

2 is given by

AV (ẐCR
2 ) = BAV (ẐR

1 )B′ + (I −B)AV (ẐR
2 )(I −B)′, (11)

where B = φ2Z′L2Z[(1 − φ)2Z′L1Z + φ2Z′L2Z]−1 is the population counterpart of B̂.
The composite GREG estimators Ŷ CR

2 and ẐCR
2 , based on the second-phase sample s2, incorporate information

from s1, and thus should be more efficient than the simple GREG estimators YR
2 and ẐR

2 . The efficiency gain
will be smaller for Ŷ CR

2 , which borrows strength from s1 indirectly through the correlation of y2 with z — it
is clear from (10) that the efficiency of Ŷ CR

2 depends on the strength of correlation between y2 and z. It is
important to note here that the particular specification of the values of qik in the entries of Λsi entails that the
coefficients B̂y2 and B̂, generated implicitly by the regression procedure, account for the differential in sample
size between s1 and s2. Without this specification of the qik it would not necessarily follow that the composite
estimators Ŷ CR

2 and ẐCR
2 would be more efficient than the estimators YR

2 and ẐR
2 . Values of qik that yield the

most efficient composite estimators can be specified for certain sampling designs; see Merkouris (2004). It can be
proved in these situations that By2 = AC(Ŷ R

2 , ẐR
2 )[AV (ẐR

1 )+AV (ẐR
2 )]−1 and B = AV (ẐR

2 )[AV (ẐR
1 )+AV (ẐR

2 )]−1,
so that these are the optimal (variance minimizing) coefficients in (10) and (11). For instance, (10) becomes
AV (Ŷ CR

2 ) = AV (Ŷ R
2 )−AC(Ŷ R

2 , ẐR
2 )[AV (ẐR

1 )+AV (ẐR
2 )]−1[AC(Ŷ R

2 , ẐR
2 )]′. Clearly then, the stronger the correlation

of y2 with z, and the larger n1 is relative to n2, the more efficient Ŷ CR
2 becomes relative to Ŷ R

2 . In more general
settings, the efficiency gain will be somewhat smaller, as the coefficients By2 and B (incorporating the generic
specification qik = (n1 + n2)/ni) will only be approximations of the optimal ones. This is because for general
sampling designs, By2 and B may not precisely reflect the relative interaction of design and regression effects
between the two samples.

In the present setting, where we assume that the same auxiliary vector x is used in the simultaneous calibration of
s1 and s2, we notice that By2 = φY′

2(I−PX)Z[Z′(I−PX)Z]−1 and B = φI. It follows then from (8) and (9) that for
large sample sizes ẐCR

2 = φẐR
1 +(1−φ)ẐR

2 and Ŷ CR = φŶ R
1 +(1−φ)Ŷ CR

2 . The same estimators ẐCR
2 and Ŷ CR would

be obtained using only the part Xs = diag(Xsi
) of the design matrix X s in (5) for the simultaneous calibration of

s1 and s2, regardless of the size of these two sub-samples. This is reasonable, because composite estimation through
the extended calibration setup (5) does not use any information for the common variables beyond what is available
in the first-phase sample s.

4. Calibration for Non-Nested Double Sampling

In this context, where the two separate (assumed independent) samples s1 and s2 are drawn from the same frame
or from different frames representing the same target population, the sampling weights of both s1 and s2 aggregate
to the same population total. The sampling designs for s1 and s2 may differ. Furthermore, the vectors of auxiliary
variables with known population totals may be different in the two samples, with those in sample s2 being a subset
of those in sample s1.

As in case I of nested double sampling, the vector x2 with unknown population totals will be used in an extended
calibration procedure to “borrow strength” from s1 in the estimation for the target variables y surveyed in s2. Thus,
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now z = x2. The extended calibration setup is similar to that used in the previous section. Here we use

X s =
(

Xs1 0
0 Xs2

Zs1

−Zs2

)
, t =

⎛
⎝tx1

tx2

0

⎞
⎠ , (12)

where the subscript i in txi indicates possibly different sets of auxiliary variables with known population totals being
used in the two samples. We assume then that (Xsi Zsi) is of full rank pi + q and write X s in partition form as
X s = (Xs Zs), where Xs and Zs are of dimension (n1 + n2)× (p1 + p2) and (n1 + n2)× q, respectively. The value
qik in the entries of Λsi

is set now to q1k = φ for every unit k of s1 and to q2k = 1 − φ for every unit k of s2. Here
φ = ñi/(ñ1 + ñ2), where ñi = ni/di is the effective sample size for si — di denoting design effect. Then, with weight
vector ws = (w′

s1
, w′

s2
)′ and weighting matrix Λs = diag(Λsi), the regression procedure based on the partitioned

matrix X s generates the vector of calibrated weights

cs = cxs + LsZs(Z ′
sLsZs)−1(0− Z ′

scxs)

=
(
cxs1

cxs2

)
+

(
Ls1Zs1

−Ls2Zs2

)[
Z′

s1
Ls1Zs1 + Z′

s2
Ls2Zs2

]−1[
Z′

s2
cxs2 −Z′

s1
cxs1 )

]
,

where cxsi and Lsi are as in Section 3, except for the respecifications for txi and qik. It is easy to verify that the
vector cs satisfies all the calibration constraints, namely, X′

si
csi

= txi and Z ′
scs = Z′

scs1 −Z′
scs2 = 0.

For any single variable y surveyed in sample s2, we can obtain a composite GREG estimator Ŷ CR = Y′
s2

cs2 of
its total ty that has the form

Ŷ CR = Ŷ R − B̂y[ẐR
2 − ẐR

1 ], (13)

where B̂y = Y′
s2

Ls2Zs2 [Z′
s1

Ls1Zs1 + Z′
s2

Ls2Zs2 ]−1 . The approximate design variance of Ŷ CR is given by

AV (Ŷ CR) = AV (Ŷ R) + By[AV (ẐR
1 ) + AV (ẐR

2 )]B′
y − 2By[AC(Ŷ R

2 , ẐR
2 )]′, (14)

where By = Y′L2Z[Z′L1Z + Z′L2Z]−1 is the population counterpart of B̂y. Here L1 = (1/φ)(I − PX1) and
L2 = [1/(1− φ)](I−PX2). As in nested double sampling, values of qik that yield the optimal (variance minimizing)
coefficient By2 = AC(Ŷ R

2 , ẐR
2 )[AV (ẐR

1 ) + AV (ẐR
2 )]−1 in (14) can be specified for certain sampling designs. These

values of qik are the inverses of the values specified in nested double sampling. As in nested double sampling, the
stronger the correlation of y2 with z, and the larger n1 is relative to n2, the more efficient Ŷ CR becomes relative to
Ŷ R.

For the q-dimensional common variable z, we have the composite GREG estimator of tz based on s2

ẐCR
2 = B̂ẐR

1 + (I − B̂)ẐR
2 , (15)

where, B̂ = Z′
s2

Ls2Zs2 [Z′
s1

Ls1Zs1 + Z′
s2

Ls2Zs2 ]−1. In the present context the estimator (15) is not of interest in
itself because z is the auxiliary vector x2. It is, however, instructive to notice that (13) can be written as

Ŷ CR = Ŷ R + Y′
s2

Ls2Zs2 [Z
′
s2

Ls2Zs2 ]
−1[ẐCR

2 − ẐR
2 ]. (16)

This is the GREG estimator that would be obtained in an extended calibration of sample s2 only, in which in
addition to the control total tx2 the composite estimator ẐCR

2 would be used as control total for the variable z.

5. Concluding Remarks

The proposed one-step calibration procedure, involving the first-phase sample s in nested double sampling or the
combined sample s1 ∪ s2 in non-nested double sampling, generates a single set of calibrated weights that can be used
to produce a composite estimate for any variable of interest. This is especially convenient in case II of nested double
sampling, where incorporating information from s1 into the estimates for z is integrated in the same estimation
system thereby preserving the internal consistency of all estimates. Obviously, estimation of the variance of the
resulting estimators is done using the same technique as when working with only one sample.

An alternative calibration method for incorporating auxiliary information from s1 into estimators based on the
second-phase sample s2 involves two steps. First, a composite GREG estimator is formed for the total tz, using
all information in s1 and s2, which in turn is used as additional control total in the calibration of s2 . This works
as described in the remark following equation (15), in the context of non-nested double sampling. In a similar but
more general context of combining information from different surveys through regression, Renssen and Nieuwenbroek
(1997) proposed a family of composite GREG estimators for tz that could be used as alternatives to ẐCR

2 in such a
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two-step procedure, resulting in a composite estimator of ty of the same form as in (16). In the simplest case when
the estimator ẐCR

2 = φẐR
1 + (1− φ)ẐR

2 is used, the two methods give exactly the same composite estimator (16) for
large samples and when the vectors of control totals tx1 and tx2 are identical. The disadvantage of the method of
Renssen and Nieuwenbroek is the difficulty in forming a more efficient composite estimator for tz in more general
settings and the inconvenience of the two-step calibration procedure. Moreover, variance estimation by resampling
techniques (e.g., jackknife), typically used in surveys with complex designs, is very inconvenient or even impossible
with this alternative method; see Merkouris (2004) for an extensive discussion of this issue.

An alternative estimation method for the variants of nested double sampling considered in this paper is similar
to that used in the standard nested double sampling (where the samples s1 and s2 are dependent). In this method,
the ordinary GREG estimator based on the entire first-phase sample s may be calculated first, and then used as
additional control total in the calibration of s2 in case I or s in case II. This is similar to the alternative method
described above for the non-nested case. Recalling that s1 and s2 are independent and representative of the same
population, the GREG estimator based on s can be obtained as ẐCR

2 = φẐR
1 + (1 − φ)ẐR

2 , using the design matrix
Xs = diag(Xsi

). As mentioned in the end of Section 3, in large samples this procedure gives the estimators (8)
and (9). Without the diagonal structure in the design matrix Xs, this alternative method gives estimators that are
different from (8) and (9) in form but only slightly different in efficiency. Practical disadvantages similar to those
mentioned in the non-nested double sampling are encountered also in the application of this alternative to the nested
double sampling.

As in standard nested double sampling, it has been assumed that in cases I and II the same auxiliary vector with
known population total tx is used in the calibration of both s1 and s2 . However, in the proposed method we may
have to use a subset of the auxiliary variables in the calibration of the second-phase sample s2 when its size is not
large enough. In this situation, the efficiency of the proposed method relative to the alternative mentioned above
needs further investigation.
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