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Abstract
For correlated sample survey estimates, a linear model with covariance matrix in which small areas are grouped into clusters
by a similarity measure based on spatial locations is proposed. In the context of correlated data, a novel asymptotic framework,
a hybrid of infill asymptotics and increasing domain asymptotics is introduced. The hybrid asymptotic framework assumes
that the number of clusters and the number of small areas in each cluster grows with sample size. Under the previously

mentioned asymptotic framework, the proposed parameter estimators are k
1
2 -consistent, where k is the number of clusters.

The proposed model is implemented for county-level civilian employment growth data.

Key Words: empirical best linear unbiased predictor, Fay-Herriot model, increasing domain asymptotics, infill asymptotics,
Small Area Estimation, Spatial Statistics.

1. Introduction

The Fay-Herriot model (Fay and Herriot, 1979), a popular area-level model in small area estimation consists of
two-levels:

• Level 1 (sampling model): yi|θi
ind∼ N(θi, ψi), i = 1, · · · ,m;

• Level 2 (linking model): θi
ind∼ N(x′iβ, τ2), i = 1, · · · ,m.

In the above model, Level 1 is used to account for the sampling variability of the direct survey estimates yi of the
true small area means θi. Level 2 links the true small area means θi to a vector of q known auxiliary variables xi,
often obtained from various administrative and census records. The parameters β and τ2 of the linking model are
unknown and are estimated from the available data. In order to estimate the sampling variability ψi, Fay and Herriot
(1979) employed the generalized variance function method [see Wolter (1985)] that uses some external information
from the survey. For a comprehensive review of the theory and applications of the above model, see Rao (2003).

The Fay-Herriot model can also be viewed as an area-level mixed regression model:

yi = θi + ei = x′iβ + vi + ei, i = 1, · · · ,m,

where vi’s and ei’s are independent with vi
iid∼ N(0, τ2) and ei

ind∼ N(0, ψi).
In this paper, the Fay-Herriot model is generalized by a model in which the random effects vi are spatially

correlated. Similar spatial models in small area estimation can be found in Cressie (1991), Rao (2003) and Singh
et. al (2005). However, a major difference is the asymptotic framework that is considered in this paper. In Section
2, two well-known asymptotic frameworks for spatial data are summarized. In Section 3, the proposed asymptotic
framework is introduced. In Section 4, a spatial Fay-Herriot model is introduced, and in Section 5, parameter
estimators of the model, large sample properties of these parameter estimators, and empirical best linear unbiased
predictors of the small area means θi are summarized. Finally, in Section 6, a county-level civilian employment
growth data set is analyzed.

2. Asymptotics for Spatial Data

For spatial data, two distinct asymptotic frameworks have been studied. Increasing domain asymptotics refers
to more and more observations being sampled over an increasing domain D ⊂ R2 such that the Lebesgue measure
of D, |D| → ∞. When referring to increasing domain asymptotics, it is assumed that the spatial locations of the
observations do not become dense.

Infill asymptotics refers to observations being increasingly sampled over a bounded domain. There are very few
asymptotic results under infill asymptotics. For example, it is known that some covariance parameters of a zero mean
Gaussian process can not be consistently estimated, and for the remaining covariance parameters, the maximum
likelihood estimator is consistent and asymptotically normal. For such results, see Abt and Welch (1998), Chen et
al. (2000), Ying (1993), Zhang (2004) and Zhang and Zimmerman (2005).
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One of the most popular covariance models for spatial data is given by

C(hi, hj) =
{

σ2 + δ if i = j,
δ exp(−λ||hi − hj ||) if i 6= j,

(1)

where hi, hj are the spatial locations of the observations, ||.|| is the Euclidean norm and δ > 0, λ > 0, σ2 > 0,
η = (δ, λ, σ2)′, see Cressie (1993), Stein (1999) and Zimmermann and Harville (1991). The above model is referred
to as “exponential covariance model with nugget effect”. Under infill asymptotics and assuming that the spatial
process is Gaussian, when the covariance model is given by (1) and the spatial locations hi are situated on a lattice
in [0, 1], Chen et al. (2000) showed that the maximum likelihood estimator for σ2 is m

1
2 -consistent. Moreover, δ and

λ can not be simultaneously consistently estimated, but the maximum likelihood estimator for δλ is m
1
4 -consistent.

There are no asymptotic results for the maximum likelihood estimator for η under infill asymptotics when either the
spatial locations hi are irregularly spaced on [0, 1] or for any spatial pattern hi ∈ [0, 1]2. On the other hand, under
increasing domain asymptotics and assuming the spatial locations do not become dense, from Mardia and Marshall
(1984) it follows that the maximum likelihood estimator for η is m

1
2 -consistent.

3. Proposed Asymptotic Framework

It is assumed that the spatial locations hi of the small areas are in an increasing domain, but are scaled such
that the translated and scaled h?

i are in a bounded domain. That is, if hi and hj are the spatial locations of two
small areas, it is assumed there is a scaling factor Mp such that

||hi − hj || = Mp||h?
i − h?

j ||, (2)

where h?
i and h?

j are in a bounded domain, 0 < p < 1
2 is a user specified parameter and M is the total number of

small areas. Note that when p = 1
2 and the spatial location hi, hj do not become dense, we have the increasing

domain asymptotic framework. Moreover, when p = 0, that is, when the original spatial locations hi, hj are in a
bounded domain, we have the infill asymptotic framework.

Furthermore, it is assumed that the set of small areas U can be partitioned into k (= k(M) increasing to ∞ with
M) clusters C1, . . . , Ck, with cluster sizes N1, . . . , Nk such that

∑k
l=1 Nl = M . From each cluster Cl, nl of the Nl

small areas are sampled such that
∑k

l=1 nl = m. The nl’s are assumed to be non-random. The asymptotic framework
that is considered is k →∞ and for each l, Nl →∞, nl →∞ such that 0 < limnl,Nl→∞

nl

Nl
< ∞.

Moreover, for l = 1, . . . , k, and for i, j ∈ Cl,

lim sup
M→∞

Mp sup
i,j∈Cl

||h?
i − h?

j || < ∞,

and for all l1 6= l2,

lim inf
M→∞

Mp

log M
inf

i∈Cl1 ,j∈Cl2

||h?
i − h?

j || = ∞.

Note the slightly unusual definition of what it means for two small areas to be in the same cluster. They are
defined to be in the same cluster only if asymptotically their scaled distance from one another is finite. Moreover,
the clusters should not shrink to a point, that is, it is assumed that for l = 1, . . . , k, ∃ εl > 0 such that

lim
Nl→∞

1
N2

l

∑

i,j∈Cl

I[Mp||h?
i−h?

j ||> εl] = cl,

where 1 > cl > 0.
In Figure 1, examples of the spatial locations of the small areas under each of the asymptotic frameworks is

given. Under infill asymptotics [panels (A1)-(A3)], the domain remains fixed and the spatial locations of the small
areas become dense in [0, 16] × [0, 16]. However, under increasing domain asymptotics [panels (B1)-(B3)], as the
total number of small areas M increase, the domain also increases and the spatial locations do not become dense
in the increasing domain. Finally, under the proposed asymptotic framework [panels (C1)-(C3)], as the number of
clusters k and the number of small areas in each cluster N increase (in this example, for l = 1, . . . , k, Nl = N),
the domain also increases and the clusters move away from one another. However, within each cluster, the spatial
locations of the small areas become dense, and the clusters do not shrink to a point.
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Figure 1: Spatial locations of the small areas under (i) infill asymptotics [panels (A1)-(A3)], (ii) increasing domain
asymptotics [panels (B1)-(B3)], (iii) proposed asymptotic framework [panels (C1)-(C3)].

4. Spatial Fay-Herriot Model

In the Fay-Herriot model, the small area effects are assumed independent, though in many data problems neigh-
boring areas ought to be correlated, and by modeling the correlation, better predictors of the small area means could
be achieved. A spatial generalization of the Fay-Herriot model is given by

yi = θi + ei, i ∈ S,
θi = x′iβ + vi, i ∈ U,

where U is the set of all small areas, with |U | = M , and S ⊂ U is the set of sampled small areas, with |S| = m. As
in the Fay-Herriot model, the survey estimates {yi : i ∈ S} are observed, {xi : i ∈ U} are vector valued covariates,
the sampling errors ei

ind∼ N(0, ψi), and the ei’s and the vi’s are independent. Moreover, vU = (v1, . . . , vM)′ is a mean
zero normal random vector with covariance matrix ΣU given by

ΣU = σ2IM + δAU,

where the (i, j)th entry of AU is given by

Aij = exp(−λMp||h?
i − h?

j ||),
where δ > 0, λ > 0, σ2 > 0, η = (δ, λ, σ2)′ and Mp||h?

i − h?
j || is as defined in (2).

For notational convenience, the set U is re-indexed so that the first m elements of U consist of the sampled small
areas. Given the set of sampled small areas, the vector of survey estimates y = (y1, . . . , ym)′ can be modeled as

y = θ + e = Xβ + v + e,
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where X = (x1, . . . , xm)
′
, v = (v1, . . . , vm)′ and e = (e1, . . . , em)′ are independent with v ∼ N (0m,Σ) and e ∼

N (0m,Ψ). Here, Σ is the sub-matrix of ΣU that corresponds to the sampled small areas and Ψ = diag(ψ1, . . . , ψm).
Also,

var(y) ≡ V (η) = V = Σ + Ψ. (3)

5. Parameter Estimation and Prediction

As mentioned in Section 2, for spatial models under infill asymptotics, there are very few asymptotic results
for the maximum likelihood estimator. Moreover, under infill asymptotics, all known asymptotic results of the
maximum likelihood estimator assume restrictive conditions on the spatial locations hi to be able to write the
inverse of the variance-covariance matrix of y in manageable form (Loh and Lam, 2000 and Ying, 1991). Similar
technical difficulties are encountered in trying to show the maximum likelihood estimator of (β, η) is consistent
and asymptotically normal under the proposed asymptotic framework. Hence, alternate methods of estimation are
considered.

5.1 Estimator of (β, τ2)

The parameter τ2 is defined as τ2 = δ + σ2. An estimator (β̂, τ̂2) for (β, τ2) is given by

(β̂, τ̂2) = argmax
β∈Rq,τ2>0

g(β, τ2; y), (4)

where

g(β, τ2; y) = −m

2
log 2π − 1

2

m∑

i=1

log(τ2 + ψi)− 1
2

m∑

i=1

(yi − x′iβ)2

τ2 + ψi
. (5)

Note that (5) is the log likelihood when the direct survey estimates yi are assumed to follow the Fay-Herriot model.
That is, (β, τ2) is estimated by maximizing a misspecified log likelihood.

Theorem 1. Under the asymptotic framework described in Section 3 and under certain regularity conditions [for
details and proof, see Ganesh (2007)], (β̂, τ̂2) is consistent for (β, τ2). Moreover,

(
(X ′D−1V D−1X)−

1
2 X ′D−1X 0q

0′q
Pm

i=1(τ
2 + ψi)

−2/[2tr(D−2V D−2V )]
1
2

) (
β̂ − β

τ̂2 − τ2

)
d→ N(0q+1, Iq+1),

where D = diag(τ2 + ψ1, . . . , τ
2 + ψm) and V is given by (3).

5.2 Estimator of (δ, λ)

An estimator (δ̂, λ̂) for (δ, λ) is given by

(δ̂, λ̂) = argmax
δ>0, λ>0

h(δ, λ; y), (6)

where

h(δ, λ; y) = −
k∑

l=1

∑
i,j∈Cl
i 6=j

(
ε̂iε̂j − δ exp(−λMp||h?

i − h?
j ||)

)2

,

where ε̂i = yi − x′iβ̂.

Theorem 2. Under the asymptotic framework described in Section 3 and under certain regularity conditions [for
details and proof, see Ganesh (2007)], (δ̂, λ̂) is consistent for (δ, λ). Moreover,

∑k
l=1 n2

l

(
∑k

l=1 n4
l )

1
2

K− 1
2 L

(
δ̂ − δ

λ̂− λ

)
d→ N(02, I2),
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where

K =
8∑k

l=1 n4
l

(
tr[GV GV ] − tr[GV HV ]
−tr[GV HV ] tr[HV HV ]

)
, L =

2∑k
l=1 n2

l

(
tr[G2] − tr[GH]

−tr[GH] tr[H2]

)

Gij =
{

exp(−λMp||h?
i − h?

j ||) if i 6= j, i, j ∈ Cl for some l,

0 otherwise

Hij =
{

δMp||h?
i − h?

j || exp(−λMp||h?
i − h?

j ||) if i 6= j, i, j,∈ Cl for some l,

0 otherwise

where Gij , Hij are respectively the (i, j)th entries of G, H.

From Theorem 2, it follows that the asymptotic variances of δ̂ and λ̂ are of the order O
( ∑k

l=1 n4
l /(

∑k
l=1 n2

l )
2
)
.

If all the nl’s grow at the same rate, that is, there exists n such that for l = 1, . . . , k, 0 < limnl,n→∞
nl

n < ∞, then δ̂

and λ̂ are k
1
2 -consistent.

Finally, since τ2 = δ + σ2, σ2 can be estimated by

σ̂2 = max(τ̂2 − δ̂, 0), (7)

which is a consistent estimator of σ2.

5.3 Predictor of θi

As mentioned previously, one of the objectives of spatially modeling the random effects vi is to obtain better
predictors of the small area means θi = x′iβ+vi. For the proposed model, the best linear unbiased predictor (BLUP)
of θi can be derived along the same lines as the BLUP for a general linear model, see Rao (2003). For the model
given in Section 4, the BLUP of θi is given by

θ̃i = x′iβ̃(η) + f ′i∆(η)[V (η)]−1(y −Xβ̃(η)), (8)

where fi is the ith standard basis vector in RM , ∆(η) = cov(vU, v), β̃(η) is the best linear unbiased estimator of β,
that is, β̃(η) =

(
X ′[V (η)]−1X

)−1
X ′[V (η)]−1y and V (η) is given by (3). Since (8) depends on unknown variance

components η = (δ, λ, σ2)′, an empirical best linear unbiased predictor of θi is given by

θ̂i = x′iβ̃(η̂) + f ′i∆(η̂)[V (η̂)]−1(y −Xβ̃(η̂)), (9)

where η̂ = (δ̂, λ̂, σ̂2)′ is given by (6) and (7).
Moreover, for the Fay-Herriot model, the empirical best linear unbiased predictor of θi is given by

θ̆i =

{
[ψi/(τ̂2 + ψi)]x′iβ̂ + [τ̂2/(τ̂2 + ψi)] yi if i ∈ S,

x′iβ̂ if i ∈ Sc,
(10)

where (β̂, τ̂2) is given by (4) and Sc is the set of non-sampled small areas.

6. Data Analysis

In this section, we analyze a U.S. county-level data set that was previously analyzed by Wheeler (2003a), (2003b)
for a different purpose. The data set consists of civilian employment growth rates for all U.S. counties between 1980
and 1990 and includes 14 county-level covariates. The set of covariates included in the data set were (the year is
given in parenthesis): log employment (1980), log population (1980), employment density (1980), population density
(1980), log land area (1980), fraction of adult population with bachelor’s degree (1980), fraction of employment in
manufacturing (1980), unemployment rate (1980), per capita income (1979), urban/rural indicator (1990), share of
local government spending on education (1982), share of local government spending on police (1982), share of local
government spending on highways (1982) and fraction of population that is not white (1980).

Among the 3106 U.S. counties, 4 counties with missing covariates were deleted. Unfortunately, the deleted
counties were all large counties; they were Bronx, New York, Queens and Richmond with employment growth rates
of 0.0926, 0.0972, 0.0992 and 0.1976. Among the deleted counties, the first 3 counties have approximately the median
employment growth rate among all U.S. counties while the last county has an employment growth rate in the 75th

percentile.
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Figure 2: Plot of the residuals from the model given by (11).

Initially, for the employment growth rates, a linear model with independent errors was considered:

yi = x′iβ + εi, (11)

where εi
iid∼ N(0, σ2

ε). In order to choose the best set of covariates, a stepwise AIC criterion was used. The covariates
selected by the AIC criterion were: log employment, urban/rural indicator, fraction of adult population with bache-
lor’s degree, fraction of employment in manufacturing, log population, share of local government spending on police,
fraction of population that is not white, and interaction between the following pairs of covariates: urban/rural
indicator and fraction of employment in manufacturing, urban/rural indicator and log population, share of local
government spending on police and fraction of employment in manufacturing, share of local government spending
on police and fraction of adult population with bachelor’s degree. Among all coefficients for the fixed effects, the
largest p-value was 2.2× 10−11.

A histogram of the employment growth rates shows a slightly fatter tail to the right, but is otherwise symmetric
and unimodal. Having fitted the model with the above mentioned covariates, a plot of the residuals against covariates
and against the fitted values showed no pattern. Moreover, for the residuals, a normal Q-Q plot indicated that for
the middle and the left tail, the plot looked fine, however beyond the second standard deviation the plot deviated
significantly from the normal quantiles. This is associated with the slightly fatter tail to the right of the histogram
of the observations.

In Figure 2 (the pixels are county centroids), a plot of the residuals from fitting the model given by (11) (with xi

chosen to be the above selected covariates) indicates strong spatial correlation among the residuals, and also, large
residuals for counties in the North East, South East and West/South West regions of the U.S. Hence, in addition to
the previously selected covariates, indicator variables were included for each of these regions in the model given by
(11). All three indicator variables were significant with p-values < 2× 10−16. Moreover, all the previously selected
covariates were still significant with largest p-value 2.56× 10−11.

A sample of 1240 from the 3102 U.S. counties were drawn, that is, m = 1240, M = 3102, m/M ≈ 0.4. Counties
with a population of at least 500000 were self-represented, there were 81 such counties, and the remaining 1159
counties were chosen by simple random sample from the 3021 counties with a population of less than 500000. We
pretend that only the sampled counties were observed. Moreover, since the sampling variances ψi were not included
in the data set, noise was added to the data in order to mimic a typical setting in which the Fay-Herriot model is
used. Also, we pretend that the employment growth rates given in the data set were the true employment growth
rates.

Four different data sets were generated by adding noise to the true employment growth rates of the sampled
counties with differing sampling variances. The sampling variances ψi were chosen so that ψi ∝ 1/Pi, where Pi
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Table 1: Parameter estimates for each of the four data sets.

c δ̂ λ̂ σ̂2 τ̂2

90.95 0.01256 0.00282 0.00250 0.01506
155.92 0.01231 0.00277 0.00377 0.01607
242.54 0.01170 0.00274 0.00319 0.01489
363.81 0.01145 0.00282 0.00388 0.01533

Table 2: Average squared error for the sampled and non-sampled counties for each of the four data sets.

Model c Sampled Non-sampled

Proposed 90.95 0.0038 0.0130
Fay-Herriot 90.95 0.0042 0.0174

Proposed 155.92 0.0052 0.0133
Fay-Herriot 155.92 0.0059 0.0175

Proposed 242.54 0.0064 0.0141
Fay-Herriot 242.54 0.0071 0.0175

Proposed 363.81 0.0071 0.0139
Fay-Herriot 363.81 0.0083 0.0176

is the population size for the ith county. Note that for the sampled counties, the empirical best linear unbiased
predictor of θi given in (10) is a weighted linear combination of the direct estimate and the regression estimate.
Hence, the constant of proportionality for ψi was chosen so that among the sampled counties, for the county with
median population size, the empirical best linear unbiased predictor for the true employment growth rate would
have weight approximately equal to 0.8, 0.7, 0.6, 0.5 for the direct estimate. These four cases correspond to the
constant proportionality c = 90.95, 155.92, 242.54, 363.81.

For each value of c, noise was added to the true employment growth rates of the sampled counties, and the
Fay-Herriot model and the proposed model were fitted. The user specified parameter p in (2) was chosen to be
0.25. Table 1 gives the parameter estimates of (δ, λ, σ2, τ2). As can be seen, the random effects show strong spatial
correlation. For example, for the first data set with c = 90.95, the estimated correlation among the random effects
when two counties are 0, 20, 40 and 100 miles apart were respectively 0.83, 0.57, 0.40, 0.13.

For each of the four data sets, Table 2 gives the averaged squared error of the empirical best linear unbiased
predictor for the sampled and non-sampled counties under the proposed model and the Fay-Herriot model. For
example, for the sampled counties S, the average squared error is defined as

1
m

∑

i∈S

(θ̌i − θi)2,

where θ̌i is either (9) or (10) and θi is the true employment growth rate. Note that the average squared error is
larger for the non-sampled counties than the sampled counties. Moreover, the relative efficiency of the empirical best
linear unbiased predictor under the proposed model and the Fay-Herriot model differs significantly for the sampled
and non-sampled counties. The relative efficiency is computed by taking the ratio of the average squared error of
the predictors under the Fay-Herriot model and the proposed model. For example, when c = 90.95, the relative
efficiency of the sampled counties is 0.0042/0.0038 = 1.105 and the relative efficiency of the non-sampled counties is
0.0174/0.0130 = 1.338. Moreover, Table 2 suggests that the relative efficiency of the non-sampled counties decreases
as c increases. That is, when noise with increasing sampling variance is added to the true employment growth rates,
the relative efficiency of the predictors for the non-sampled counties decreases. There is also evidence to suggest
that the relative efficiency of the sampled counties increases as c increases.

Figure 3 gives the true employment growth rates [panel (A)], and for the first data set with c = 90.95, the
predicted employment growth rates using the proposed model [panel (B)]. In some States such as CO, FL, KS, NE
and SD, the empirical best linear unbiased predictor of the true employment growth rates have been over-smoothed,
but otherwise both maps look similar.
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Figure 3: True employment growth rate [panel (A)], and for the data set with c = 90.95, predicted employment
growth rate using the proposed model [panel (B)].

In summary, when small areas are spatially correlated, significant improvements in prediction can be obtained,
especially for the non-sampled small areas, by using the proposed model as opposed to the Fay-Herriot model.
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