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Abstract

For better inference of the population quantity of interest, ratio estimators are often recommended when certain auxiliary
variables are available. Two types of ratio estimators, modified for adaptive cluster sampling via transformed population
and initial intersection probability approaches, have been studied in Dryver and Chao (2007). Unfortunately, none of them
are a function of a minimal sufficient statistic, and therefore can be improved with Rao-blackwellization procedure. The
purpose of this paper is to obtain new ratio estimators that are not only more efficient than the original ratio estimators
proposed by Dryver and Chao, but simple to calculate. Additionally, explicit formulas for the approximated variance of these
easy-to-compute estimators are derived.
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1. Introduction

First proposed by Thompson (1990), adaptive cluster sampling is an alternative to estimate the population quantity
of interest especially under rare or clustered populations. The basic idea behind this approach is to take a small
initial sample by some conventional designs, and then to increase the sampling efficiency in the neighborhoods of the
sampling units satisfying a condition previously defined. Under the design-based inferential approach, although the
usual unbiased estimators in adaptive cluster sampling are simple to calculate, they do not necessarily utilize all the
information provided by the resultant final sample. More efficient estimators, the Rao-blackwell estimators, can be
obtained by using Rao-blackwell idea of conditioning on a minimum sufficient statistic. However, Thompson did not
present analytical expressions for any of the Rao-blackwell estimators but he computed the value of a Rao-blackwell
estimator by averaging the values of the estimator over all the initial samples giving rise to the observed final sample.
Clearly, the excessive number of calculations is required and hence it is essential for ordinary applications to achieve
simply analytical expressions. A few papers have given some analytical expressions for the Rao-blackwell estimators.
For example, Salehi (1999) and Félix-Medina (2000) have provided the colsed-form expressions for the Rao-blackwell
estimators based on the modified Hansen-Hurwitz estimator and the modified Horvitz-Thompson estimator. In
addition, Dryver and Thompson (2005) have presented alternative mathematical formulas for the two Rao-blackwell
estimators derived by taking the expected value of the usual estimators conditional on a sufficient statistic. The
alternative Rao-blackwell estimators may not as efficient as the Rao-blackwell estimators obtained by taking the
expected value of the usual estimators conditional on a minimum sufficient statistic, but they are rather simple.

The estimators mentioned previously utilize the information provided by the population variable of interest only.
Nevertheless, to improve the quality of the estimate in sampling survey, one not only depends on the the information
of the primary variable, but reasonably needs to take relevant aspects of data into account. For many sampling
survey situations, certain auxiliary variables are often available and it is suggested to make use of the the auxiliary
information for better inference. Ratio estimation is a popular and widely used method to take advantage of the
data from the variable of interest along with available auxiliary variables. Although design-biased, ratio estimators
are more efficient because they can give lower mean-square errors when sufficient correlations between the variable
of interest and auxiliary variable exist. Moreover, the performances of the ratio estimators become more apparent
as the correlations increase (e.g., Lohr, 1999). Dryver and Chao (2007) used auxiliary information into estimators
in adaptive cluster sampling to obtain ratio estimators, which is a straightforward extension of the ratio estimator
under unequal probability sampling. None of those ratio estimators , however, is a function of a minimum sufficient
statistic and therefore can be improved with the approach similar to that the univariate estimators derived.In this
paper the Rao-blackwell ratio estimators are derived by taking expected value of the ordinary ratio estimators
conditional on the same sufficient statistic that Dryver and Thompson (2005) utilized. However, the formulas for
these Rao-blackwell ratio estimators are not easily computed as those univariate estimators proposed by Dryver and
Thompson, but are expressed as an average over the ratios for all edge units in the observed final sample (where
edge units are as defined in Section 2). The computation becomes much more intensive as the number of the edge
units turns large. In the interest of simplicity, we therefore further propose new, efficient, and easy-to-compute ratio
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estimators. Furthermore, explicit formulas for the approximated variance of the easy-to-compute ratio estimators
are derived.

The paper is organized as follows. In Section 2, we briefly describe the ordinary estimators in adaptive cluster
sampling, including the design-unbiased estimators and ratio estimators. In Section 3 are two types of the new ratio
estimators proposed in this article. The Rao-blackwell ratio estimators, derived with Rao-blackwellization procedure
by conditioning on a sufficient statistic, are described in Subsection 3.1; the derivation is given in Appendix A. In
Subsection 3.2, the easy-to-compute ratio estimators are illustrated and the formulas for their approximated variance
are derived in Appendix B. Section 4 presents concluding comments.

2. Ordinary estimators in adaptive cluster sampling

In adaptive cluster sampling, an initial sample of units can be selected by different types of conventional probability
sampling. In this article the simplest form of adaptive cluster sampling, an initial sample is selected by simple
random sampling without replacement (SRSWOR), will be considered (Thompson, 1990). Nevertheless, the result
can be extended to other various types of adaptive cluster sampling associated with different initial sampling designs.
In this section, we will briefly describe the methodology and concepts involved in adaptive cluster sampling, and we
will also introduce the notation used throughout this paper. The ordinary estimators in adaptive cluster sampling
have been proposed, including the design-unbiased and ratio estimators, are addressed in this section as well.

2.1 Design-unbiased estimators in adaptive cluster sampling

In a basic sampling view, population is a finite set of units consisting of N units with labels 1, . . . ,N, denoted as
u = {u1, . . . ,uN}. Associated with each unit i, the values of the population variable of interest is denoted as yi.
Through this article, the population quantity of interest to be estimated is the population mean of the y ′s, that is,

µy =

N∑
i=1

yi/N. (1)

In adaptive cluster sampling, the sampling procedure is selecting a small initial sample by some conventional
designs, and whenever the variable of interest of a unit in the small initial sample satisfies a given condition C,
units in some predefined neighborhood will be included into the sample and observed. C is typically a function
of the population variable of interest based on the options and the experience of experts for various populations.
Neighborhood can be defined by social or institutional relationships between units. The most prevalent, by far, is
the neighborhood consisting of the unit itself and the four adjacent units, left, right, top and bottom. In this paper,
consider an initial sample s0 = (u1, . . . ,un0) of size n0 is selected from u via SRSWOR. If any of the units in s0
satisfy C, for example, yi 6 c where c is a constant, their respective neighborhoods are added to the sample and
observed. Furthermore, if any added units satisfy C, the units in the neighborhood are added to the sample and
observed as well, and so on. This procedure is iterated until no new units satisfy. The set formed by the original
unit in s0 and together with the units added as a consequence of selecting ui is called a cluster. The units adaptively
selected but not meet C are called edge units. A cluster minus the edge units is called a network. Any unit not
satisfying C is, by definition, a network of size 1. Let Ak be the network containing unit i and mk denote the number
of units in Ak. Then the average of the y−values in the kth network is

wyk
=

1
mk

∑
i∈Ak

yi. (2)

The population mean of the y ′s can be written in terms of networks and denote as µy =
∑K
k=1wyk

/N, where K is
the number of the distinct networks in the population.

2.1.1 Ordinary estimators

Adaptive cluster sampling is a case of Unequal Probability Design if networks are considered as sampling units.
Thompson (1990) developed two unbiased estimators based on the modifications of the Hansen-Hurwitz and Horvitz-
Thompson estimators. With this design, unfortunately, neither the draw-by-draw selection probability, nor the
inclusion probability can be determined from the data for the units that do not satisfy C and are not included in
the initial sample. Consequently, observations that do not satisfy C are ignore if they are not included in the initial
sample.

Section on Survey Research Methods – JSM 2008

3211



One of the unbiased estimators in adaptive cluster sampling, the modified Hansen-Hurwitz estimator, is based on
the initial draw-by-draw selection probabilities. Let I(.) denote an indicator function equalling 1 when the expression
inside is true and 0 otherwise. The number of units selected from the kth network in the initial sample is

nk =
∑
i∈Ak

I(i ∈ s0). (3)

The modified Hansen-Hurwitz estimator and its variance are

µ̂y·hh =
1
n0

κ∑
k=1

nkwyk
, (4)

where κ is the number of distinct networks intersected by the initial sample and

var(µ̂y·hh) =
N− n

Nn(N− 1)

K∑
k=1

mk(wyk
− µ)2. (5)

Another unbiased estimator using the partial inclusion probabilities is

µ̂y·ht =
1
N

κ∑
k=1

uyk

αk
, (6)

where uyk
= mk · wyk

and αk = 1 −

[(
N−mk

n0

)
/

(
N

n0

)]
is the initial intersection probability of the kth network.

The joint initial intersection probabilities is

αkh = 1 −

[(
N−mk

n0

)
+

(
N−mh

n0

)
+

(
N−mk −mh

n0

)]
/

(
N

n0

)
. (7)

The variance of µ̂y·ht is

var(µ̂y·hh) =
1
N2

K∑
k=1

K∑
h=1

uyk
uyh

(
αkh − αkαh

αkαh

)
. (8)

2.1.2 Rao-Blackwell estimators

Under the design-based inferential approach, the ordinary estimators do not necessarily utilize all the information
provided by the resultant final sample. Only the edge units in the initial sample are incorporated when computing
them. The Rao-blackwell theorem can be used to improve the efficiency of the ordinary estimators since some
variability can be reduced by making use of the observations of the edge units which are not in the initial sample.
Dryver and Thompson (2005) utilized a sufficient statistic instead of the minimum sufficient statistic, and obtained
the easy-to-compute Rao-blackwell estimators which were developed by considering only how many edge units were
initial selected, but not which ones. In this section, only the estimators and their corresponding variances will be
introduced. More detailed proofs and descriptions can be found in Dryver and Thompson’s paper.

A statistic d+ is defined as

d+ = {(i,yi, fi), (j,yj); i ∈ sc, j ∈ sc̄}. (9)

For unit i, fi is the number of times that the network to which unit i belongs is intersected by the initial sample.
The union of a core part sc and the remaining part sc̄ is the final sample s. The core part sc consists of all the
distinct units in the sample which satisfy the condition. The remaining part sc̄ is the set of all the distinct units in
the sample for which the condition is not met. The statistic d+ is sufficient for µ so applying by the Rao-blackwell
theorem to µ̂y·hh and µ̂y·ht, the easy-to-compute Rao-blackwell estimators µ̂+

y·hh and µ̂+
y·ht are arrived.

One of the Rao-blackwell estimators, µ̂+
y·hh, is defined by

µ̂+
y·hh = E

(
µ̂y·hh|D+ = d+

)
=

1
n0

κ∑
k=1

nkw
+
yk

. (10)

where

w+
yk

=


wyk

, if
∑
i∈Ψk

ei = 0,

ȳe =

∑
i∈s

eiyi

es
, if

∑
i∈Ψk

ei = 1.
(11)
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Note ȳe is the average y−value for the sample edge units in the final sample and es is the number of sample edge
units in s. For the ith unit in the sample, the indicator variable ei is defined as

ei =

{
1, if i does not meet the condition but is in the neighborhood,
0, otherwise. (12)

Additionally, for those units which are not in s, ei = 0.
The variance of µ̂+

y·hh is

var(µ̂y·hh) =
N− n

Nn(N− 1)

K∑
k=1

mk(wyk
− µ)2

−
1
n2

∑
d+∈D+

P(d+)

es0
es

∑
i∈s,ei=1

y2
i +

es0(es0 − 1)

es(es − 1)

∑
i∈s,ei=1

∑
j6=i

yiyj − e2
s0
ȳ2
e

 ,

(13)

where P(d+) is the probability that D+ = d+ and es0 is the number of units picked in s0.
The other estimators µ̂+

y·ht is defined by

µ̂+
y·ht = E

(
µ̂y·ht|D

+ = d+
)

=
1
N

κ∑
k=1

mk ·w+
yk

αk
(14)

and has variance

var(µ̂y·ht) =
1
N2

K∑
k=1

K∑
h=1

uyk
uyh

(
αkh − αkαh

αkαh

)

−
1
n2

∑
d+∈D+

P(d+)

es0
es

∑
i∈s,ei=1

y2
i +

es0(es0 − 1)

es(es − 1)

∑
i∈s,ei=1

∑
j6=i

yiyj − e2
s0
ȳ2
e

 .

(15)

2.2 Ordinary ratio estimators in adaptive cluster sampling

In many applied survey situations of adaptive cluster sampling, auxiliary variable is often collected together with
the population variable of interest. Dryver and Chao (2007) utilized the auxiliary information into the estimation,
and proposed two ratio estimators in adaptive cluster sampling by taking advantage of the correlation between the
variable of interest and the auxiliary variable. In this section these two ordinary ratio estimators and their variances
will be briefly described.

Let µx be the population mean of the auxiliary variable x. The ordinary ratio estimator related to the modified
Hansen-Hurwitz estimator is

µ̂r·hh =
µ̂y·hh

µ̂x·hh
µx, (16)

where µ̂x·hh is the modified Hansen-Hurwitz estimator for µx. The approximated variance of µ̂r·hh is

Avar(µ̂r·hh) =
N− n

Nn(N− 1)

K∑
k=1

mk(wyk
− Rwxk

)2, (17)

where R is the population ratio between wyk
and wxk

.
The other ratio estimator of µy can be constructed based on the modified Horvitz-Thompson estimator and is

defined by

µ̂r·ht =
µ̂y·ht

µ̂x·ht
µx, (18)

where µ̂y·ht and µ̂x·ht are the modified Horvitz-Thompson estimators for µy and µx, respectively. The approximated
variance is the variance of the modified Horvitz-Thompson estimator of the variable u ′k = uyk

− Ruxk
.

Avar(µ̂r·ht) =
1
N2

K∑
k=1

K∑
h=1

u ′ku
′
h

(
αkh − αkαh

αkαh

)
. (19)
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3. New ratio estimators in adaptive cluster sampling

In subsection 3.1 the real Rao-blackwell ratio estimators, derived with Rao-blackwellization procedure by conditioning
on the sufficient statistic d+, are arrived. The derivation of these Rao-blackwell ratio estimators is given in Appendix
A. The formulas for them are not as easy as those univariate estimators proposed by Dryver and Thompson (2005),
and the computation becomes much more intensive as the number of the edge units turns large. In the interest of
simplicity, we therefore further propose two efficient and easy-to-compute ratio estimators and the formulas for them
are presented in Subsection 3.2. Furthermore, explicit formulas for the approximated variance of the easy-to-compute
ratio estimators are derived and the derivation is given in Appendix B.

3.1 Rao-Blackwell ratio estimators

Mentioned in the previous section, the statistic d+ is sufficient for µ. So the Rao-blackwell ratio estimators µ̂+
r·hh

and µ̂+
r·ht are able to be arrived at by applying the Rao-blackwell theorem to µ̂r·hh and µ̂r·ht. The Rao-blackwell

ratio estimator µ̂+
r·hh is defined by

µ̂+
r·hh = E

(
µ̂r·hh|D+ = d+

)
. (20)

The estimator is not easily computed as shown by the formula

µ̂+
r·hh =

es0
es

∑
i∈s,ei=1

∑κ
k=1 nkwyk

(1 −
∑
i∈Ψk

ei) + eiyi∑κ
k=1 nkwxk

(1 −
∑
i∈Ψk

ei) + eixi
µx. (21)

The other Rao-blackwell ratio estimator µ̂+
r·ht is not easily computed as well and the formula is given as

µ̂+
r·ht =E

(
µ̂r·ht|D

+ = d+
)

(22)

=
es0
es

∑
i∈s,ei=1

∑κ
k=1

uyk

αk
(1 −

∑
i∈Ψk

ei) + n0
N eiyi∑κ

k=1
uxk

αk
(1 −

∑
i∈Ψk

ei) + n0
N eixi

µx. (23)

The proofs that equations (20) and (21), and (22) and (23) are respectively equivalent are given in Appendix A.

3.2 Easy-to-compute ratio estimators

The formulas for the real Rao-blackwell ratio estimators are too complicated to be calculated in practice. To
simplify the calculation, we therefore further construct other improved estimators via a ratio of the Rao-blackwellized
univariate estimators conditioning on the sufficient statistic d+. The new ratio estimators are very easily computed
and their approximated variances are less than or equal to the variances of the original ratio estimators proposed by
Dryver and Chao (2007). The two easy-to-compute ratio estimators and their variances will be briefly described.

One of the easy-to-compute estimators µ̂r·hh(+) is defined to be

µ̂r·hh(+) =
µ̂+
y·hh

µ̂+
x·hh

µx =

∑κ
k=1 nkwyk

(1 −
∑
i∈Ψk

ei) + ȳe∑κ
k=1 nkwxk

(1 −
∑
i∈Ψk

ei) + x̄e
µx, (24)

where µ̂+
y·hh and µ̂+

x·hh are the Hansen-Hurwitz type Rao-blackwell estimator for µy and µx. x̄e is the average
x−value for the sample edge units in the final sample. The approximated variance of µ̂r·hh(+) is

Avar
(
µ̂r·hh(+)

)
= Avar (µ̂r·hh) −

1
n2

0

∑
d+∈D+

P(d+)(
es0
es

∑
i∈s,ei=1

(yi − Rxi)
2

+
es0(es0 − 1)

es(es − 1)

∑
i∈s,ei=1

∑
j6=i

(yi − Rxi)(yj − Rxj) − e2
s0

(ȳe − Rx̄e)
2
).

(25)

The other easy-to-compute estimator µ̂r·ht(+) is

µ̂r·ht(+) =
µ̂+
y·ht

µ̂+
x·ht

µx =

∑κ
k=1

uyk

αk
(1 −

∑
i∈Ψk

ei) + n0
N ȳe∑κ

k=1
uxk

αk
(1 −

∑
i∈Ψk

ei) + n0
N x̄e

µx. (26)
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The approximated variance of µ̂r·ht(+) is

Avar
(
µ̂r·ht(+)

)
= Avar (µ̂r·ht) −

1
n2

0

∑
d+∈D+

P(d+)(
es0
es

∑
i∈s,ei=1

(yi − Rxi)
2

+
es0(es0 − 1)

es(es − 1)

∑
i∈s,ei=1

∑
j6=i

(yi − Rxi)(yj − Rxj) − e2
s0

(ȳe − Rx̄e)
2
).

(27)

4. Conclusions

In order to make the best use of survey data in adaptive cluster sampling, we discuss how to utilize auxiliary
information into estimation. Improving ratio estimators with Rao-blackwellization is the main object in this study.
We derive the real Rao-blackwell ratio estimators by taking expected value of the ordinary ratio estimators conditional
on the same sufficient statistic that Dryver and Thompson (2005) utilized. However, the formulas for these Rao-
blackwell ratio estimators are too complicated to be calculated in practice. In the interest of simplicity, we therefore
further construct other improved estimators via a ratio of the Rao-blackwellized univariate estimators conditioning
on the sufficient statistic. Furthermore, we have been able to obtain the explicit formulas for the approximated
variance of those easy-to-compute ratio estimators and therefore guarantee their approximated mean square errors
are lower than those of the unimproved ratio estimators proposed by Dryver and Chao (2007).

From the model-based perspective population values are considered to be random variables, and represent just
one outcome of many possible outcomes under a specific model. This probability model can be constructed by
detailed surveys or experience and may offer more efficient inferences than design-based approach. However, validity
of inference depends on the correctness of this assumed model. We did not discuss the inferences via model-based
perspective in this research. Similar study under the model-based point of view will be investigated in the future.

Appendix

A. Derivation of the Rao-blackwell ratio estimators

We only derive µ̂+
r·hh and leave the derivation of µ̂+

r·ht to the reader because the approach to obtain the formula for
µ̂+
r·ht is not much different from the approach for µ̂+

r·hh. Let µ̂+
r·hh(s0) represent µ̂+

r·hh as a function of the initial
sample s0. Let S0 be a random variable taking on values from the sample space S and P(S0 = s0|D

+ = d+) is the
probability of that initial sample given d+. Thus the Hansen-Hurwitz type Rao-blackwell ratio estimator is

µ̂+
r·hh = E

(
µ̂r·hh|D+ = d+

)
=
∑
s0∈S

µ̂+
r·hh(s0)P(S0 = s0|D

+ = d+).

The conditional probability P(S0 = s0|D
+ = d+) can be written as

I{g(s0) = d+}/L,

where I{.} is an indicator function and L =
∑
s0∈S I{g(s0) = d+} is the total number of combinations compatible with

d+. And out of the L combinations any single unit appears(
es − 1
es0 − 1

)
(
es

es0

) L.

Thus the estimator can be written as

µ̂+
r·hh =

1
L

∑
s0∈S

I{g(s0) = d+}µ̂+
r·hh(s0)

=

(
es − 1
es0 − 1

)
(
es

es0

) ∑
s0∈S

µ̂+
r·hh(s0)

=
es0
es

∑
i∈s,ei=1

∑κ
k=1 nkwyk

(1 −
∑
i∈Ψk

ei) + eiyi∑κ
k=1 nkwxk

(1 −
∑
i∈Ψk

ei) + eixi
µx.
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B. Derivation of the approximated variance of the easy-to-compute ratio estimators

The improved ratio estimator is

µ̂+
r =

µ̂+
y

µ̂+
x
µx = R̂µx;

hence the estimator can be written
µ̂+
r = µ̂+

y + R̂(µx − µ̂+
x ).

The first term in Taylor’s formula, expanding about the point (µx,µ) gives the approximation

µ̂+
r ≈ µ̂+

y + R(µx − µ̂+
x ).

Consequently,
µ̂+
r − µ ≈ µ̂+

y + R(µx − µ̂+
x ) − µ = µ̂+

y − Rµ̂+
x .

The approximation for the variance is

Avar
(
µ̂+
r

)
= E

(
µ̂+
y − Rµ̂+

x

)2
= var

(
µ̂+
y − Rµ̂+

x

)
= var

(
E(µ̂y − Rµ̂x|D

+)
)

.

Hence,

Avar
(
µ̂+
r

)
=var

(
E(µ̂y − Rµ̂x|D

+)
)

=var (µ̂y − Rµ̂x) − E
(
var(µ̂y − Rµ̂x|D

+)
)

=Avar (µ̂r) − E
(
(µ̂y − Rµ̂x) − (µ̂+

y − Rµ̂+
x )
)2

=Avar (µ̂r) −
1
n2

∑
d+∈D+

P(d+)

L(d+)

∑
s0∈S

I{g(s0) = d+}

 ∑
i∈s0,ei=1

(yi − Rxi) − es0(ȳe − Rx̄e)

2

=Avar (µ̂r) −
1
n2

∑
d+∈D+

P(d+)

L(d+)

∑
s0∈S

I{g(s0) = d+}

(
∑

i∈s0,ei=1

(yi − Rxi))
2 − e2

s0
(ȳe − Rx̄e)

2


=Avar (µ̂r) −

1
n2

∑
d+∈D+

P(d+)

L(d+)

∑
s0∈S

I{g(s0) = d+}× ∑
i∈s0,ei=1

(yi − Rxi)
2 +

∑
i∈s0,ei=1

∑
j6=i

(yi − Rxi)(yj − Rxj) − e2
s0

(ȳe − Rx̄e)
2


=Avar (µ̂r) −

1
n2

∑
d+∈D+

P(d+)×


(
es − 1
es0 − 1

)
(
es

es0

) ∑
i∈s,ei=1

(yi − Rxi)
2 +

(
es − 2
es0 − 2

)
(
es

es0

) ∑
i∈s,ei=1

∑
j6=i

(yi − Rxi)(yj − Rxj) − e2
s0

(ȳe − Rx̄e)
2


=Avar (µ̂r) −

1
n2

∑
d+∈D+

P(d+)×es0
es

∑
i∈s,ei=1

(yi − Rxi)
2 +

es0(es0 − 1)

es(es − 1)

∑
i∈s,ei=1

∑
j6=i

(yi − Rxi)(yj − Rxj) − e2
s0

(ȳe − Rx̄e)
2


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