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Abstract
In environmental epidemiology, researchers sometimes assume the existence of exposure thresholds above which the risk of

adverse effects begins to increment. In this work, we assume exposures are measured repeatedly over time, and the research
question of interest is to identify the relationship between a health-related outcome and whether or not the subject-specific
mean and/or variability of the exposure exceed known thresholds. As a subject’s true exposure mean and variability cannot be
observed directly, misclassification typically arises in the categorization of whether these quantities are above their respective
thresholds. Building off of random effects models for repeated exposure measurements and assuming balanced data, methods
based on the well-known regression calibration and matrix methods are demonstrated for the case of the mean exposure
only. For unbalanced data, and to incorporate categorizations based on both the exposure mean and variance, a maximum
likelihood approach is introduced. Simulation results and a real study example from the Mount Sinai Study of Women Office
Workers (MSSWOW) are presented to demonstrate the performance of the methods.

1. INTRODUCTION

In environmental epidemiology, the existence of exposure thresholds to some toxic reproductive and developmental
agents is sometimes assumed by researchers ([2], [3], [8], [11]). More specifically, [11] pointed out that a threshold
is a dose below which an outcome seen in excess of that is not produced, which can invalidate the non-threshold
models. Therefore, instead of assuming a linear association between exposure and a health outcome, researchers
sometimes assume a step-like relationship between them: the outcome takes on one distribution when the exposure
is less than a certain dose, and takes on another when the exposure exceeds that. Usually the latter indicates a
tighter exposure-disease association.

For a long time, people have been developing appropriate methods to find an exact threshold dosage. However,
instead of making contributions to the topic of estimating the threshold dosage itself, this paper aims to take a
different view of the threshold problem and propose methods for solving misclassification problems in threshold
settings. In this regard, suppose exposures to a toxic agent are measured repeatedly over time, and the research
question of interest involves the relationship between an adverse health outcome and an individual’s true mean
exposure over time. This is a reasonable hypothesis in cases where chronic exposure is deemed to make people
unhealthy, rather than an acute one-time exposure. However, since the true mean exposure for a specific subject
is unknown to researchers in most studies, a natural surrogate for it is the arithmetic average of the exposures
observed. Therefore, measurement error or misclassification would occur when taking this surrogate to define the
explanatory variable instead of the true mean exposure itself. The analytical problem becomes how to adjust for
the misclassification and correct the exposure-outcome relationship with a proper model.

The motivating example for this paper is provided by a reproductive health study known as the Mount Sinai
Study of Women Office Workers (MSSWOW). The prospective cohort study was conducted between 1991 and 1994
with our primary interest being the association between spontaneous abortion and repeated menstrual cycle length
data derived from the women’s diaries. However, when the subject-specific mean and variance describing each
woman’s cycle history are ‘true’ predictors of interest in models for spontaneous abortion, the sample mean and
variance researchers usually utilize as surrogates will introduce measurement errors to the study. A previous paper
[9] conducted careful analysis of this data and suggested that compared with 30- to 31-day cycles, women with
shorter and longer cycles were more likely to experience spontaneous abortion. However, this paper did not address
the misclassification issue as sample means and variances were “plugged in” to the health outcome models in the
analysis. Such misclassification errors may not be ignorable in some cases, especially for those women with small
numbers of cycles observed in the study. In particular, the use of surrogate sample means and variances as a basis
for classifying women into “high” or “low” groups with regard to the theoretically true subject-specific mean cycle
length and variability can introduce misclassification bias, when the research question is to assess the association
between this group membership status and some health outcome.

This paper is organized as follows: Model assumptions and details of parameter estimation for categorical health
outcomes will be presented in section 2. Simulation results are shown in section 3, followed by the motivating
example analysis results in section 4 and a brief discussion.
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2. METHODS

2.1 Homogeneous Within-Subject Variances

2.1.1 Matrix Method

Suppose we are interested in the association between whether an individual’s true mean exposure to a certain toxic
agent exceeds a certain threshold, and a binary adverse health outcome. An example of such an outcome in the
MSSWOW study is spontaneous abortion and the exposure of interest is the mean and/or variability of menstrual
cycle length. Then since the mean exposure of a subject is unknown, we impose the generally reasonable assumption
that a single measurement of exposure for a single subject, that the measurement fluctuates around that individual’s
mean exposure µi via a random normal disturbance εij . Also, assume the mean exposure (µi) for subject i varies
around the overall mean from the population µ via another random normal disturbance bi, i.e.,

xij = µi + εij i = 1, . . . , k; j = 1, . . . , ni (1)

and
µi = µ + bi i = 1, . . . , k (2)

where we assume bi
iid∼ N(0, σ2

b ), εij
iid∼ N(0, σ2

ε ), and bi and εij are mutually independent of each other. In this
section, we assume homogeneous within-subject variance σε; this assumption will be relaxed in section 2.2.

To simplify the model, we combine (1) and (2) into a single familiar linear mixed model as follows:

xij = µ + bi + εij i = 1, . . . , k; j = 1, . . . , ni (3)

To model the relationship between the adverse health outcome and whether the mean exposure exceeds the
threshold, we apply a simple logistic regression model, i.e.,

logit[P(Yi = 1)] = δ0 + δ1I(µi > t) (4)

where t is the exposure mean threshold level, and I(.) is an indicator function, which takes value one if the criteria
in the parentheses is satisfied and zero if not. Since the true individual mean exposure µi is not available directly,
a natural surrogate of that, denoted as µ̃i, would be the average of the repeated exposure measurements taken on
subject i, i.e., µ̃i = 1

ni

∑ni

j=1 xij . Hence, a ‘naive’ approach would take I(µ̃i > t) as the explanatory variable in (4)
instead of I(µi > t).

A special case in this setting is when we have balanced data so that every subject has the same number of
exposure measurements, i.e., n1 = n2 = . . . = nk = n. In this restrictive but instructive case, we develop an
approach as a special application of the matrix method [1] to correct for misclassification in binary exposure data.

In the current setting, the events ‘truely exposed’ and ‘exposed prone to misclassification’ (E=1 and W=1 in [1])
are correspond to ‘µi > t’ and ‘µ̃i > t’, respectively. Although in our case no validation study are assumed available,
we can still estimate the fundamental the sensitivity and specificity parameters based on the normal distribution
assumptions in (1) and (2), as suggested previously [5]. More specifically,

sen = [
√

2πσbp]−1

∫ ∞

t−µ

Φ[
√

n(bi − (t− µ))/σε]exp[−bi
2/(2σ2

b )]dbi (5)

sp = [
√

2πσb(1− p)]−1

∫ t−µ

−∞
Φ[
√

n((t− µ)− bi)/σε]exp[−b2
i /(2σ2

b )]dbi (6)

where ε̄i = 1
n

∑n
j=1 εij , p = Φ[(µ− t)/σb].

If we insert estimates of sen and sp into the classical matrix method formular, and replace the conditional
probability of misclassified exposure given disease status, i.e., P(W = 1|D = 1), P(W = 0|D = 1), P(W = 1|D = 0),
P(W = 0|D = 0) in [1] with the corresponding observed count proportions, (e.g., P̂ (W = 1|D = 1) = P̂ (µ̃i > t|D =
1)), we obtain the estimated probabilities of true exposure given disease status P(E = 1|D = 1), P(E = 0|D = 1),
P(E = 1|D = 0), P(E = 0|D = 0). The true odds ratio for the unobserved cells takes representation

P(µi > t, yi = 1)× P(µi < t, yi = 0)
P(µi < t, yi = 1)× P(µi > t, yi = 0)

=
P(E = 1|D = 1)× P(E = 0|D = 0)
P(E = 0|D = 1)× P(E = 1|D = 0)

Thus an adaptation of the matrix method provides a viable approach to the mean threshold problem in the
special case where exposure data are balanced, the outcome is binary, and there are no covariates.
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2.1.2 Likelihood Method

Given that the matrix method could only be adapted to estimate the odds ratio for balanced data, we next seek to
derive a maximum likelihood method to handle this misclassification problem with unbalanced data.

With the TDM specified in (4), and the MEM dictated in (3), along with the non-differential measurement error
assumption, we are able to write down the likelihood as

L(θ;Y,X)

=
k∏

i=1

(
∫ ∞

−∞
[f(yi|(bi, xij))× (

ni∏
j=1

f(xij |bi))× f(bi)]dbi)

=
k∏

i=1

(
∫ ∞

−∞
[f(yi|bi)× (

ni∏
j=1

f(xij |bi))× f(bi)]dbi) (7)

=
k∏

i=1

(
∫ ∞

t−µ

[(
ni∏

j=1

exp(− (xij−µ−bi)
2

2σ2
ε

)
√

2πσε

)× [
exp(δ0 + δ1)

1 + exp(δ0 + δ1)
]yi [

1
1 + exp(δ0 + δ1)

](1−yi)

×
exp(− b2i

2σ2
b
)

√
2πσb

]dbi

+
∫ t−µ

−∞
[(

ni∏
j=1

exp(− (xij−µ−bi)
2

2σ2
ε

)
√

2πσε

)× [
exp(δ0)

1 + exp(δ0)
]yi [

1
1 + exp(δ0)

](1−yi) ×
exp(− b2i

2σ2
b
)

√
2πσb

]dbi)

Note that (7) holds under the non-differential measurement error, i.e., assuming that the observed measurements
give no more information about the outcome once the true mean exposure is known. This follows from the definition
of the TDM in (4). We are able to estimate θ = (µ, σb, σε, δ0, δ1) by maximizing the integrated likelihood above
using a Newton-Raphson algorithm. Available optimization routines such as the SAS NLPQN function in PROC
IML can be used to conduct this optimization. The SAS procedure NLMIXED also allows user specification of the
observation-specific likelihoods and optimizes the full likelihood via various optimization algorithms ([6], [7]). We
conducted the analysis in both PROC IML and PROC NLMIXED to assess numerical reliability.

For balanced data, the matrix method with MLEs of exposure model parameters inserted into (5) and (6) is
equivalent to the likelihood method but computationally less demanding. However, for unbalanced data, the matrix
method is no longer available because the sensitivity and specificity calculated in (5) and (6) vary when ni varies.
Hence a constant expectation across different subjects is not available, which is required for the matrix method. On
the other hand, the likelihood method is not subject to the restriction that the number of exposure measurements
has to be equal across the subjects and it can also handle other covariates in the TDM and/or MEM. In other
words, the likelihood method can be more generally applied than the matrix method. Another difference between
the two methods is that the the matrix method can only provides an estimated crude odds ratio, i.e., addressing
the crude association between the outcome and whether the individual mean exposure exceeds the threshold. For
other parameters, such as possible covariate effects in the TDM, only the likelihood method can provide appropriate
estimates.

2.2 Heterogeneous Within-Subject Variances

2.2.1 Likelihood Method

As our motivating example from the MSSWOW study requires modeling the variance of the menstrual cycle length,
in this section we generalize the homogeneous within-subject variance assumption proposed in (3) in section 2.1.
Instead of assuming a constant within-subject variance σε for the error term ε, we assume the within-subject variance
vi follows a lognormal distribution, as proposed in prior research [4], i.e.,

Xij = µ + bi + εij i = 1, . . . , k; j = 1, . . . , ni

where
εij |vi

iid∼ N(0, vi), log(vi)
iid∼ N(α, φ2) (8)

Therefore, the log-normally distributed vi accounts for randomness in variability of women’s cycle lengths (Xij) in
the same way that bi accounts for randomness in the mean. The advantage of this extension is that it allows the
true within-subject variances in cycle length (vi), as well as the mean cycle lengths (µi = µ + bi), to vary randomly
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across subjects. In the likelihood representation, vi can be integrated out in the same way that bi is in (8). For
example, if we look at the exposure data only, expressing the likelihood of observing the repeated exposures xij for
each subjects requires a double integration as in the following:

L (θ;X) =
k∏

i=1

{
∫ ∞

0

∫ ∞

−∞
f(xij |bi, vi)f(bi|vi)f(vi)dbidvi}

To allow for possible correlation between bi and vi are correlated, we presume bi and log(vi) to be bivariate normally
distributed [4], i.e., [

bi

log(vi)

]
∼ N

[(
0
α

)
,

(
σ2

b σbv

σbv φ2

)]
(9)

where here σbv is the covariance between bi and log(vi).
In order to incorporate both subject-specific mean and variance in a disease-exposure relationship, we consider

generalized linear models of the following type:

g[E(Yi)] = δ0 + δ1I(µi > µ) + δ2I(vi > eα) + δ3I(µi > µ)I(vi > eα)

where the threshold for mean cycle length is set at the overall mean µ, and the threshold for cycle length variance
is set at its population median, eα. Here, g is the link function accommodating different types of outcomes (e.g.,
continuous, binary, count etc.)

The structure of the threshold indicator could vary according to different research questions. For example, in the
MSSWOW study, where the exposure pertains to women’s menstrual cycles, researchers believe the risk of devel-
oping an adverse reproductive outcome is associated with abnormally long or short menstrual cycle length, and/or
anomalously large variation in the cycle length [9]. To be consistent with this hypothesis, the above generalized
linear model can be adjusted to take the form:

g(E(yi)) = δ0 + δ1I(t1 < µi < t2) + δ2I(vi < ω) + δ3I(t1 < µi < t2)I(vi < ω) (10)

where t1, t2 are the lower and upper bound of the normal lengths of menstrual cycles, and ω is the threshold for the
normal variation in the lengths. All of those may be set as fixed known constants prior to the analysis, e.g., based
on prior research [9].

Although previous investigaors [9] conducted an epidemiologically sophisticated study that involved careful sta-
tistical modelling, from a measurement error/misclassification perspective their approach is consistent with what
might be termed a ‘naive’ method. That is, the models used were analogous to model (10), except with the sample
mean (x̄i) and sample variance (s2

i ) of cycle lengths replacing the true quantities (µi and vi).
The likelihood considering both disease outcome and the exposure measurements will be as follows:

L (Θ;Y,X) =
k∏

i=1

{
∫ ∞

0

[
∫ ∞

−∞
f(yi|xij , bi, vi; θ)f(xij |bi, vi; θ)f(bi|vi; θ)f(vi; θ)dbi]dvi}

where Θ here includes all the parameters to be estimated, i.e., (δ0, δ1, δ3, σe, µ, σb, α, φ).
As with our previous work to adjust for misclassification, the advantage of this likelihood representation is that

it allows direct estimates of and inference about the association between true cycle length means and variances and
the outcome of interest.

2.2.2 Empirical Bayes (EB) Method

As an alternative to the naive method, where the subjects are grouped based on the raw sample quantities (x̄i

and s2
i ), the EB method will utilize the empirical Bayes predictors for µi and log(vi) as surrogates for the true

classifications. These EB predictions are estimates of the corresponding posterior means, i.e.,

µ̃i,B = E(µi|Xi) and η̃i,B = E[ln(vi)|Xi]

where ηi = ln(vi), and subscript B indicates the EB estimates. We obtain the EB predictions by utilizing the
standard software, e.g., NLMIXED in SAS ([6], [7]).

Prior work [4] pointed out the tremendous amount of shrinkage by the EB estimates in comparison with the
sample quantities. Therefore, sensitivity would generally be lower but specificity would be higher when basing mean
or variance classification relative to threshold on the EB predictions as the surrogates, rather than relying on the
sample quantities. The details on comparing the two surrogates will be discussed in the simulation section.
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3. SIMULATION RESULTS

3.1 Homogeneous Within-Subject Variances

3.1.1 Matrix Method

To demonstrate the performance of the matrix method adaptation, we simulated 500 datasets, each with a sample
size of 300. The true parameter values are (δ0, δ1, µ, σb, σε) = (1, 1.5, 2.5, 1, 1.5) with the threshold t as 2.5. The
number of repeated exposure measurements is 5 for each subject in the simulation.

Since we are interested in the association between the health outcome and whether the true mean exposure (µi)
exceeds the threshold, and the matrix method can only provide direct estimates of the odds ratio, the simulation
results in Table 1 will present estimates only for δ1 only based on 500 simulations. Also in Table 1, five situations of
different combinations of the overall mean and between- and within-subject variance components are listed to show
how those parameters affect the sensitivity and specificity and the limiting value (δ∗1) of the naive estimators. The
threshold t remains constant at 2.5 throughout all situations.

Table 1: Simulation results and hypothetical situations illustrating the matrix method for binary outcome: simu-
lation results based on 500 simulated datasets, sample size = 300, t=2.5, number of replicates = 5, and (δ0, δ1) =
(0, 1)

µ σb σε SEN SPC δ∗1 δ1(SD)
2.5 1 1.5 0.81 0.81 0.61 1.01 (0.41)
2.5 1 2.5 0.74 0.74 0.47 1.02 (0.53)
2.5 2 1.5 0.90 0.90 0.79 1.01 (0.32)
1.5 1 1.5 0.75 0.90 0.48 1.03 (0.75)
3.5 1 1.5 0.90 0.75 0.54 0.99 (0.57)

From Table 1 we can see that the matrix method performs well, in the sense that the bias and the empirical
standard deviation of the parameter δ1 are reasonably small. Figures (not shown here) plotting sensitivity and
specificity versus one of the parameters µ, σb and σε at a time reveal the fact that sensitivity and specificity increase
as the between-subject variance σb increases. The intuition behind this is that when the between-subject variance
is large, true subject-specific mean exposures of each subject tend to be quite different from the threshold so that
it would be easier to detect whether the mean exceeds the threshold or not. However, the sensitivity and specificity
decrease when the within-subject variance increases. This is also reasonable because when the within-subject variance
is relatively larger, the true mean exposure becomes harder to approximate by the surrogate (x̄i) which makes the
sensitivity and specificity relatively lower. These trends could also be perceived in formulas (5) and (6).

3.1.2 Likelihood Method

For demonstrative and comparison purposes, we also assume balanced data in this section with the same simulation
settings applied for the matrix method. The simulation results are shown in Table 2.

Table 2: Simulation illustrating the likelihood approach for binary outcome: results based on 500 simulated datasets,
sample size = 300, t=2.5, number of replicates = 5, and (δ0, δ1, µ, σb, σε) = (0, 1, 2.5, 1, 1.5)

Parameters True values Mean Est. Emp.SD Mean Est. SE 95% coverage
δ0 0.00 0.000 0.23 0.20 0.92
δ1 1.00 1.000 0.38 0.36 0.95
µ 2.50 2.505 0.07 0.07 0.94
σb 1.00 1.001 0.06 0.05 0.96
σε 1.50 1.506 0.03 0.03 0.94

As we can see from Table 2, the bias associated with each MLE is quite small, indicating that the estimates are
close to the true parameter values on average. The empirical standard deviations are not far off from the means of
the estimated standard errors. The 95% coverages of the parameters δ0, δ1 and µ are close to 95%.
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3.2 Heterogeneous Within-Subject Variances

Analogous to the real data example situation (details will be presented in the next section), and based on the model
described in section 2.2, we conducted simulation where the outcome is binary, the variances of the exposure for each
subject are considered to be different, and the mean and the variance of the exposures are assumed to be correlated.
Simulation results are shown in Table 3

Table 3: Simulation illustrating the likelihood approach for modeling correlated mean and variance: results
based on 500 simulated datasets, sample size = 800, threshold is [26.90, 30.65], number of replicates = 8, and
(δ0, δ1, δ2, µ, σb, α, φ, σbv) = (-0.8, -0.4, 0.3, 28, 2.8, 1.8, 1.0, 2.0)

δ0 δ1 δ2 µ σb α φ σbv

Results Based on Likelihood Method
True Values -0.8 -0.4 0.3 28 2.8 1.8 1.0 2.0
Mean Est. -0.812 -0.371 0.302 27.982 2.742 1.803 0.970 1.902
Emp.SD 0.191 0.230 0.230 0.180 0.140 0.060 0.034 0.211

Mean Est. SE 0.190 0.215 0.221 0.093 0.053 0.038 0.031 0.151
95% coverage 95.4% 93.9% 95.8% – – – – –

Results Based on EB Method
True Values -0.8 -0.4 0.3 – – – – –
Mean Est. -0.801 -0.298 0.208 – – – – –
Emp.SD 0.147 0.167 0.161 – – – – –

Mean Est. SE 0.151 0.157 0.160 – – – – –
95% coverage 96.6% 89.0% 90.6%

Results Based on Naive Method
True Values -0.8 -0.4 0.3 – – – – –
Mean Est. -0.814 -0.286 0.140 – – – – –
Emp.SD 0.274 0.170 0.279 – – – – –

Mean Est. SE 0.263 0.156 0.270 – – – – –
95% coverage 95.6% 89.3% 84.4% – – – – –

The simulation results show that the estimates of the parameters from the likelihood are reasonably close to the
true parameter values, and the empirical standard deviations are close to the mean estimated standard errors. The
95% Wald confidence interval coverages for the model coefficients are near nominal, all of which suggest the favorable
performance of the likelihood method in modeling both correlated mean and variance with the heterogeneous subject-
specific variation assumption. Compared to the likelihood estimates, those from both the EB method and the naive
method tend to attenuate the effect to the null, which is consistent with the findings from much of the measurement
error literature. We observe from the simulation that the method of “plugging in” the EB predictors still introduces
misclassification and does not guarantee smaller bias than the naive method, which makes sense given that sensitivity
is generally decreased and specificity increased via this approach. Although prior work [10] found for continuous
exposures that the use of the surrogate of EB predictors performs similarly to the likelihood method, our simulation
confirms the expected result that the estimates from dichotomizing the independent variable based on the EB
predictors does not provide a consistent estimator.
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4. REAL-DATA EXAMPLE

To demonstrate the proposed method, we get back to the motivating example of the MSSWOW study introduced in
Section 1. The research objective here is to examine whether women with menstrual cycle lengths within a normal
range, and/or with cycle length variation less than a certain threshold, are at lower risk of experiencing spontaneous
abortion. Among a total number of 470 with menstrual cycle length information in the study (see [9] for details), 162
women are included in this analysis with pregnancy outcome of either live birth (118 women [73%]) or spontaneous
abortion (44 women [27%]), including subclinical spontaneous abortion, blighted ovum and clinical spontaneous
abortion. For those women with more than one pregnancy outcome, only the first outcome and cycles up to the first
outcome are included in the analysis. We begin with a preliminary look into the exposure of menstrual cycle data
with heterogeneous within-subject variance model structure when the mean and variance are correlated, as in (3),
(8) and (9).

Using the estimated nuisance parameters from the exposure model (results not shown), we dichotomize the
subjects’ mean and variation of menstrual cycle lengths based on whether their mean cycle length in days is within
the normal range of [26.90, 30.65] (corresponding to the 25th and 75th percentile of the normal distribution with
mean and variance from the estimated parameters) and whether the variance exceeds the threshold of 4.8 (mean of
the lognormal distribution from the estimated parameters). The threshold cut-offs for the mean are different from
[9], due to taking advantage of the estimates from the exposure model with random effects. We apply the same
thresholds across the three methods (likelihood method, EB method and naive method) for comparison purposes,
although in the absence of a random effects exposure model, people often utilize sample quantiles as the cut-off
points.

Regarding the outcome model, the interaction between the mean and variance is perceived to be insignificant in
our data example, and herefore is left out of the model. In addition to the dichotomized mean and variance of the
cycle lengths as the independent variable, we control in the model for dichotomized maternal age by the cutoff of 35
years of age. In the analysis, we built models with cycle mean only (results not shown), cycle variance only (results
not shown) and both mean and variance in the model. Table 4 presents the estimates for those models from the
likelihood method, empirical Bayes method and the naive method.

Table 4: Estimated odds ratio for the association between spontaneous abortion and whether the menstrual cycle
mean and variance exceed their respective thresholds based on MSSWOW Data

Results based on Results based on Results based on
likelihood model Emp. Bayes method naive model

Risk Factors OR 95% Wald CI OR 95%Wald CI OR 95% Wald CI
Mean of the cyles

0.22 0.05, 0.97 0.42 0.20, 0.92 0.41 0.17, 0.99
([29,33] vs. (<29 or >33))

Variance of the cycles
0.69 0.20, 2.39 0.68 0.31, 1.50 0.57 0.26, 1.24

(<23 vs. ≥23)
Maternal Age (<35 vs. ≥35) 0.56 0.22, 1.47 0.61 0.25, 1.47 0.62 0.25, 1.49

The analysis results show that those women with cycle mean within the middle two quantitles [26.90, 30.65]
bear lower probability of experiencing spontaneous abortion than those with cycle mean shorter or longer than
the normal range, suggested consistently by the likelihood method, EB method and naive method (see Table 4 for
partial results). In terms of the magnitude of the estimated effects, the naive method and the EB method both
appear to attenuate the effect, compared to the likelihood method. On the other hand, analyses also reveal that the
dichotomized cycle variability appears to be an insignificant risk factor for spontaneous abortion as implied by all
methods. The estimated variance effect from the models with only dichotomized cycle variance and maternal age
is slightly further from the null by the naive method as compared to the likelihood method, while the EB has the
estimated effect closest to the null. However, with mean cycle length and maternal age controlled for in the model,
the magnitude of the estimated variance effects are all similar across the three methods (Table 4). The same occurs
for maternal age, i.e., it is an insignificant covariate with very similar estimated effects from all the methods after
adjusting for the cycle means and variability. The confidence intervals stemming from the EB method are narrower
than those from the likelihood method, likely due to the fact that the variances of the EB predictions were not
incorporated into inferences based on the second stage model, where the predictions are “plugged in” as surrogates.
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