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Abstract

Recently, we proposed an autoregressive linear mixed effects model for the analysis of longitudinal data in which the
current response is regressed on the previous response, fixed effects, and random effects (Funatogawa et al., Statist.
Med. 2007; 26:2113-2130). The model represents profiles approaching random equilibriums. Because intermittent
missing is an inherent problem of the autoregressive (conditional) model, we provided the marginal (unconditional)
representation of the model and the likelihood. In this study, we further provide a state space form of the model for
calculating the likelihood without using large matrices. The proposed state space form corresponds to the marginal
form of the likelihood instead of the conditional one. We modified the method proposed by Jones (1993) for a state
space form of a usual linear mixed effects model. Following Jones (1993), the regression coefficients of the fixed
effects are concentrated out of the likelihood.
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1. Introduction

Recently, we proposed an autoregressive linear mixed effects model for the analysis of longitudinal data in which the
current response is regressed on the previous response, fixed effects, and random effects (Funatogawa et al., 2007). The
model represents profiles approaching random equilibriums. In biostatistical fields, the unconditional profile is usually
more interested than the profile conditional on the previous response. Therefore we provided the unconditional
(marginal) representation of this model. When there are intermittent missing values on responses, it means the missing
values on previous responses as covariates in the conditional representation and we can not calculate the likelihood
directly. To avoid this problem, we provided the unconditional (marginal) form of the likelihood (Funatogawa et al.,
2007). The model was extended to the bivariate longitudinal data, where repeated assessments of two response
variables are performed and the response profiles approaching random equilibriums (Funatogawa et al., 2008a). When
the dropout process is missing at random (MAR), we can obtain consistent maximum likelihood estimators as long as
both the mean and covariance structures are correctly specified. We have shown that the model provide a new
parsimonious covariance structure for the profiles approaching random equilibriums (asymptotes), and the estimate of
the asymptote is unbiased in MAR dropouts (Funatogawa et al., 2008b).

For a linear mixed effects model of longitudinal data, Jones (1993) showed a state space form and used the Kalman
filter (Kalman, 1960) for calculating the likelihood without using large matrices. Jones (1993) described the merit of
the state space form in the linear mixed effects model as follows. The calculation of likelihood usually requires
matrices whose sizes depend on the number of observations on a subject. In the case of multivariate longitudinal data, it
may become large. However, this method does not depend on the observation number and not use large matrices. We
adopt this approach for the autoregressive linear mixed effects model. We provide a state space form of this model and
use the Kalman filter to calculate the likelihood without using large matrices. The proposed state space form
corresponds to the unconditional (marginal) form of the likelihood instead of the conditional form. We show the case
of univariate and bivariate longitudinal data.
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2. Autoregressive Linear Mixed Effects Model for Longitudinal Data

2.1 Autoregressive Linear Mixed Effects Model
Let Y,=(Y(0.YMDY.(,--Y.(T)) be the vector of responses corresponding to the i th (i =1,---,N) subject
measured from O to T,. Y;(0) is a baseline measurement, and Y, (t) is the tth measurement after the baseline

measurement. Note that t is not an actual time. AT denotes the transpose of A. We define an autoregressive linear
mixed effects model by the following model,

Y, =pFY, +XB+Zb, +&,(1)
where B isa px1 vector of unknown fixed effects parameters, X; is a known (T, +1) x p design matrix for fixed
effects, b, is a @ x1 vector of unknown random effects parameters, Z; is a known (T, +1) x q design matrix for
random effects, and € is a (T, +1) x1 vector of random errors. It is assumed that b, and g, are both independent
across subjects and independently normally distributed with mean zero and covariance matrices G and R, ,
respectively. F, isa (T, +1) x (T, +1) matrix whose elements just below diagonal are 1 and the other elements are 0.
EY =0Y,0) Y, --Y,(T-D) is the vector of previous responses. o is an unknown regression coefficient for
previous responses. We show p F, in the case of four measurement points,
00O00O0

Assuming p # 1, the equation (1) is transformed to

Y, =FY, + (1—,0){L(Xiﬁ+Zibi)—FiYi}Jr.o,i .
1-p)

Assuming 0 < p <1, the elements of (Xi[3 +Z.)b, )/(1— ) in the parenthesis can be interpreted as the asymptotes
of i th subject. These are normally distributed with means X;B/(1— p) and a covariance matrix ZiGZiT I(1- p)?.

2.2 Covariance Structure
Let V, be the covariance matrix of the response vector Y, conditional on the previous response values, that is

V, = ZiGZiT + R, . We proposed the following error structure that is useful in practice (Funatoagawa et al., 2007).

e ~ POe 0 0
_ 2 2 1 2 2 _ 2 O
R = POye O +(1+ 0% )oye PO ve
I 0 - pafAE O'AZ\R +(1+ ,02)0',%,”5 - po—r%mz
0 0 ~ PO O + L+ p*)ome

This structure is the sum of a serially correlated error and an additional independent error when the model is
transformed to the marginal model.
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3. Calculation of Likelihood

3.1 Conditional Model
We can obtain the maximum likelihood estimates (MLES) of (1) by some maximization methods. We can consider the
autoregressive linear mixed effects model as a linear mixed effects model by treating the previous responses as a fixed

effect as X: = (X, F,Y,) . Therefore, as long as there is no intermittent missing, we can use the estimation method
of the linear mixed effects model. The calculation of Mixed procedure of SAS are given in Funatogawa et al. (2008b).

3.2 Marginal Model
The marginal (unconditional) representation of the response vector of (1) is written as

Y, =(I; - pF) *(XB+Zb; +¢,).
Here I, means the axa identity matrix. The corresponding unconditional covariance matrix is
L= (ITi _pFi)ilvi{(ITi _pFi)il}T-

-2 log likelihood (— 2l1) of the autoregressive linear mixed effects model is given by
=2 = Z{ni In27) +In| V; [+(Y, - pFY, =X,B)" V" (Y, - pF,Y, - X;B)}.

1
This is transformed to the marginal (unconditional) form as

=2l =3Iy In@27) +In | 2, [ HY, = (I, ~ pF) XY 2, 7Y, — (I, — pF) " XiB},
where In | Z; | is equal to In |V, |. We can get the MLEs based on either equation. When some elements of Y, are

intermittently missing but the corresponding elements of X; are known, we can use only the marginal form with

deleting the missing part of Y; and the corresponding parts of (IT, - pF, )lei and X,.

3.3 State Space Form

3.3.1 State Space Form

For a linear mixed effects model, Jones (1993) showed a state space form of the model and used the Kalman filter
(Kalman, 1960) for calculating the likelihood without using large matrices. He also used this method for multivariate
longitudinal data. We adopt this approach for the autoregressive linear mixed effects model. We provide a state space
form of the model. The model (1) with the covariance matrix of error in 2.2 can be written with the state equation

Sicy = PieenSicy T Xi B+, (2
and the observation equation
Y, =H; 8 +&iy 3)
where  8;(, = (@, b1)" Ly =(8(AR)i,tT 0", Var(v,)=Q;, . Y, =Y(t) . H :(1 01><q) ’

2
&t = Emeyin Yar(&oueyic) = Ove

P ZitJ (O-iR OJ
D .. .= "l,and Q.. = )
i(tit-1) ! i
tt (0 Iq t 0 0

When t =0, a,iR in Q, ,is replaced by UiRO , which is 0 in 2.2. In these equations, s;,, is the state vector at time t,
@, . ;) is the state transition matrix from time t—1 to time t, H;, shows which elements of the state vector are

observed. The notation §;,, ;) and s, is used for the estimate of the state at time t given observations up to time
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t—1and t, respectively. The covariance matrices of these two state vector estimates are P, ;) and P, . The

initial state and its variance are set to be s, ; ;) =0 and

p 3 0 0
iy g o)

This state space form with the Kalman filter provides us the marginal (unconditional) form of the likelihood, so that
this approach can be used even if there are intermittent missing responses.

3.3.2 Kalman Filter
In the case of a linear mixed effects model, the regression coefficients of the fixed effects can be concentrated out of

the likelihood, by applying the Kalman filter not only to the observation vector, Y;, but also to each column of the
fixed effects design matrices, X, , so that only variance parameters need to be estimated (Jones, 1993). In the case of
an autoregressive linear mixed effects model, we apply the Kalman filter to Y; and pE, X, so that only p and
variance parameters need to be estimated. f is concentrated out of the likelihood. For this purpose, we use a state
matrix S; ) the size of which is (1+ Q) x (p +1), instead of the state vector s, ,, the size of which is (1+q) x1.
The values of pF,X; at time t are recursively calculated in the following steps. The Kalman filter starts with the
initial state matrix, S; , ,,, and covariance matrix, P, ; ;. We set S; ; ;=0 . In the Kalman theory, the
parameters of the model are assumed known, here, the unknown parameters are varied by a nonlinear optimization
routine until MLESs are obtained.

The steps in the Kalman filter are as follows:
1. Calculate a one step prediction and the covariance matrix of this prediction,

Si(tlt—l) = (I)(t;t—l)si(t—ut—l) '
Pi(tlt—l) = (I)(t;t—l)Pi(t—l|t—1)q)£t;t—l) + Qi,t-
2. Calculate the covariate matrix of the fixed effect,
Xi*,t = pX?,t—l + X0
where X; , =0.
3. Calculate the prediction of the next observation matrix,
[X:,(tﬂ—l) Yi,(t|t—1)] = Hi,tsi(t|t—l) :
The notation [A  B] means the matrix A augmented by the matrix B .
4. Calculate the innovation matrix and the covariance matrix of this innovation,
Ii,t = [Xi*,t Ylt] - [X?,(t|t—l) Yi,(t|t—1)] '
Vi =H; P Hi +rg-
5. Accumulate the quantities needed to calculate — 21l at the end of the recursion,
M«M+I V1,
AA+In|V, |
6. Update the estimate of the state vector and the covariance matrix of the state vector,
Si(t|t) = Si(t|t—1) + Pi(t|t—1)Hi,,tVi,7tlli,t '

-1
P‘(m) = Pi(t|t—1) - Pi(t|t—1)Hi’,t‘]i,t Hi,tPi(t|t—l) :
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If there is a missing observation in Y; ,,

the corresponding parts of H;, and 1y, are removed. If both observations
are missing, the steps 3, 4 and 5 are skipped and the step 6 is S; ) = S; 1y and B,y = Py 1) - Now return to step
1 until the end of the data is reached. The matrix M now contains
XX XY
k]
The residual sum of squares is given by RSS = Y'Y - \?'5((5('~ )_15(’\? . =2l is given by

1~ ~

-2l = Zni In(27) + A + RSS . The MLEs of the fixed effects are given by ,é = (~ '5()7 X'Y.

3.3.3 Bivariate Longitudinal Data
The autoregressive linear mixed effects model for bivariate longitudinal model was proposed in Funatogawa et al.

(2008a). Let Y, ,, be the observed response of the rth (r=1,2) variable for subject i at time t(t=0,---,T;).

Consider the following model
Yi. =pYi 1 + X B+Z;;b; +5;,, (4)

where Y, = (Yl,i,t’YZ,i,t)T B= (BI ) B; )T by = (bI,i'b;,i)T 1 &y = (gl,i,t'gZ,i,t)T '

X' 0 ) 0
p= (1011 plzj’ X, = Lit T and Z,, = Lit - .
Pa P2 Y 0 Xt ’ 0 Z,;,

is a known 1x (], design matrix for random effects.

rit

Xr,i,t
with Y; = (YiTO,YiTl,---,YiTTI ) (F,®L)Y, = (O,O,YiTO,YiTl,---,YiTTrl)T is the vector of previous response

values, where @ means direct product. Then the model (4) can be written as
Y, =(F, ®p)Y, +X,B+Z,b, +¢,,
where X, = (XTO,~--,XITi)T , Z, = (ZvTO,n-,ZiTVTi)T , € = (SIO,~--,SITi )" . We define the errors as

is a known 1x p, design matrix for fixed effects, Z, ;.

I, I,
€0 =€r)io TE€mir)io &ir = Earyit T Eme)it — PE(ME)it1 (t>0).
The state space form for the model (4) is defined by equations (2) and (3) with the following parameters,
T TH\T . T T T _
Siy = (Wi by ) with = (et t50) 0 O3 = (e 0) . Var(v ) =Q;. Hy = (Iz 02><(q1+q2))’

it = Emeyins Var(S(ME)i,t) = vy s

p Z, I 0
(Di(t;t—l) = (0 I J and Q; , :( (SR) 0}

G140

We apply the Kalman filter to Y; and (F, ® p)X;, so that only p and variance parameters need to be estimated. 8
is concentrated out of the likelihood. For this purpose, we use a state matrix S, the size of which is
(2+0,+0,)x(p, + p, +1), instead of the state vector s, ,, the size of which is (2 + ¢, + @,) x1. The values of

(F, ® p)X; attime t are recursively calculated in the steps in 3.3.2.

4. Discussion

In this paper, we provide a state space form of autoregressive linear mixed effects model for calculating the marginal
likelihood without using large matrices. The calculation of likelihood usually requires matrices whose sizes depend on

3061



Biometrics Section —JSM 2008

the number of observations on a subject. In the case of multivariate longitudinal data, it may become large. However,
this method does not depend on the observation number and not use large matrices as described in Jones (1993). In the
case of the autoregressive linear mixed effects model, it is also important to calculate the marginal likelihood instead of

TA\T
i . S = . 1b.
’u"t, in the state vector, () (44, D7)

* TN\T

. . . . S. = . b . .
can get the marginal likelihood. If we define the state vector as ~'(") (y"t ) with the observed response, then it
will provide the conditional likelihood and we can not use it when there are intermittent missing.

the conditional likelihood. We used the latent variable, in 3.3, so that we

In the previous study, we have shown that there are several representations of the autoregressive linear model,
representations in conditional and unconditional form, representation by each observation time for each subject, a
vector representation for whole observation for each subject (Funatogawa et al., 2007). Furthermore, the autoregressive
model corresponds to the monomolecular (the Mitcherlich) growth curve in continuous time (Funatogawa et al., 2007).
In this paper, we further provided a representation as a state space form.
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