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Abstract 
Recently, we proposed an autoregressive linear mixed effects model for the analysis of longitudinal data in which the 
current response is regressed on the previous response, fixed effects, and random effects (Funatogawa et al., Statist. 
Med. 2007; 26:2113-2130). The model represents profiles approaching random equilibriums. Because intermittent 
missing is an inherent problem of the autoregressive (conditional) model, we provided the marginal (unconditional) 
representation of the model and the likelihood. In this study, we further provide a state space form of the model for 
calculating the likelihood without using large matrices. The proposed state space form corresponds to the marginal 
form of the likelihood instead of the conditional one. We modified the method proposed by Jones (1993) for a state 
space form of a usual linear mixed effects model. Following Jones (1993), the regression coefficients of the fixed 
effects are concentrated out of the likelihood. 
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1. Introduction 
 
Recently, we proposed an autoregressive linear mixed effects model for the analysis of longitudinal data in which the 
current response is regressed on the previous response, fixed effects, and random effects (Funatogawa et al., 2007). The 
model represents profiles approaching random equilibriums. In biostatistical fields, the unconditional profile is usually 
more interested than the profile conditional on the previous response. Therefore we provided the unconditional 
(marginal) representation of this model. When there are intermittent missing values on responses, it means the missing 
values on previous responses as covariates in the conditional representation and we can not calculate the likelihood 
directly. To avoid this problem, we provided the unconditional (marginal) form of the likelihood (Funatogawa et al., 
2007). The model was extended to the bivariate longitudinal data, where repeated assessments of two response 
variables are performed and the response profiles approaching random equilibriums (Funatogawa et al., 2008a). When 
the dropout process is missing at random (MAR), we can obtain consistent maximum likelihood estimators as long as 
both the mean and covariance structures are correctly specified. We have shown that the model provide a new 
parsimonious covariance structure for the profiles approaching random equilibriums (asymptotes), and the estimate of 
the asymptote is unbiased in MAR dropouts (Funatogawa et al., 2008b). 
 
For a linear mixed effects model of longitudinal data, Jones (1993) showed a state space form and used the Kalman 
filter (Kalman, 1960) for calculating the likelihood without using large matrices. Jones (1993) described the merit of 
the state space form in the linear mixed effects model as follows. The calculation of likelihood usually requires 
matrices whose sizes depend on the number of observations on a subject. In the case of multivariate longitudinal data, it 
may become large. However, this method does not depend on the observation number and not use large matrices. We 
adopt this approach for the autoregressive linear mixed effects model. We provide a state space form of this model and 
use the Kalman filter to calculate the likelihood without using large matrices. The proposed state space form 
corresponds to the unconditional (marginal) form of the likelihood instead of the conditional form. We show the case 
of univariate and bivariate longitudinal data. 
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2. Autoregressive Linear Mixed Effects Model for Longitudinal Data 
 
2.1 Autoregressive Linear Mixed Effects Model 
Let T

iiiiii TYYYY ))(,),2(),1(),0(( L=Y  be the vector of responses corresponding to the i th ),,1( Ni L=  subject 

measured from 0  to iT . )0(iY  is a baseline measurement, and )(tYi  is the t th measurement after the baseline 

measurement. Note that t  is not an actual time. TA  denotes the transpose of A . We define an autoregressive linear 
mixed effects model by the following model, 

iiiiiii εβ +++= bZXYF Y ρ , (1) 

where β  is a 1×p  vector of unknown fixed effects parameters, iX  is a known pTi ×+ )1(  design matrix for fixed 

effects, ib is a 1×q  vector of unknown random effects parameters, iZ  is a known qTi ×+ )1(  design matrix for 

random effects, and iε  is a 1)1( ×+iT  vector of random errors. It is assumed that ib  and iε  are both independent 

across subjects and independently normally distributed with mean zero and covariance matrices G  and iR , 

respectively. iF  is a )1()1( +×+ ii TT  matrix whose elements just below diagonal are 1 and the other elements are 0. 
T

iiiiii TYYY ))1(,),1(),0(,0( −= LYF  is the vector of previous responses. ρ  is an unknown regression coefficient for 

previous responses. We show iF ρ  in the case of four measurement points, 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

000
000
000
0000

ρ
ρ

ρ
ρ iF . 

Assuming 1≠ρ , the equation (1) is transformed to 
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Assuming 10 << ρ , the elements of ( ) )1/( ρ−+ iii bZX β  in the parenthesis can be interpreted as the asymptotes 

of i th subject. These are normally distributed with means )1/( ρ−βiX and a covariance matrix 2)1/( ρ−T
iiGZZ . 

 
2.2 Covariance Structure 
Let iV  be the covariance matrix of the response vector iY  conditional on the previous response values, that is 

i
T

iii RGZZV += . We proposed the following error structure that is useful in practice (Funatoagawa et al., 2007). 
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This structure is the sum of a serially correlated error and an additional independent error when the model is 
transformed to the marginal model. 
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3. Calculation of Likelihood 
 
3.1 Conditional Model 
We can obtain the maximum likelihood estimates (MLEs) of (1) by some maximization methods. We can consider the 
autoregressive linear mixed effects model as a linear mixed effects model by treating the previous responses as a fixed 
effect as ),(*

iiii YFXX = . Therefore, as long as there is no intermittent missing, we can use the estimation method 
of the linear mixed effects model. The calculation of Mixed procedure of SAS are given in Funatogawa et al. (2008b).  
 
3.2 Marginal Model 
The marginal (unconditional) representation of the response vector of (1) is written as 

( )iiiiiTi i
εbZβXFIY ++−= −1)( ρ . 

Here aI  means the aa×  identity matrix. The corresponding unconditional covariance matrix is 
T

iTiiTi ii
}){()( 11 −− −−= FIVFIΣ ρρ . 

 
-2 log likelihood ( ll2− ) of the autoregressive linear mixed effects model is given by 

∑ −−−−++=− −

i
iiiii

T
iiiiiinll )}()(||ln)2ln({2 1 ββ XYFYVXYFYV ρρπ . 

This is transformed to the marginal (unconditional) form as 

∑ −−− −−−−++=−
i

iiTii
T

iiTiii ii
nll }])({})({||ln)2ln([2 111 βXFIYΣβXFIYΣ ρρπ , 

where ||ln iΣ  is equal to ||ln iV . We can get the MLEs based on either equation. When some elements of iY  are 

intermittently missing but the corresponding elements of iX  are known, we can use only the marginal form with 

deleting the missing part of iY  and the corresponding parts of ( ) iiTi
XFI 1−− ρ  and iΣ . 

 
3.3 State Space Form 
3.3.1 State Space Form 
For a linear mixed effects model, Jones (1993) showed a state space form of the model and used the Kalman filter 
(Kalman, 1960) for calculating the likelihood without using large matrices. He also used this method for multivariate 
longitudinal data. We adopt this approach for the autoregressive linear mixed effects model. We provide a state space 
form of the model. The model (1) with the covariance matrix of error in 2.2 can be written with the state equation 

tititittiti ,,)1()1;()( υβXsΦs ++= −− ,      (2) 
and the observation equation 

titititi ,)(,, ξsHY += ,                             (3) 

where TT
ititi ),( ,)( bs μ= , TT

tiARti ),( ,)(, 0υ ε= , titiVar ,, )( Qυ ≡ , )(, tYiti =Y , ( )qti ×= 1, 1 0H , 

tiMEti ,)(, ε=ξ , 2
,)( )( MEtiMEVar σε = , 
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When 0=t , 2
ARσ  in ti ,Q is replaced by 2

0ARσ , which is 0 in 2.2. In these equations, )(tis  is the state vector at time t , 

)1;( −ttiΦ  is the state transition matrix from time 1−t  to time t , ti ,H  shows which elements of the state vector are 

observed. The notation )1|( −ttis  and )|( ttis  is used for the estimate of the state at time t  given observations up to time 
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1−t  and t , respectively. The covariance matrices of these two state vector estimates are )1|( −ttiP  and )|( ttiP . The 

initial state and its variance are set to be 0s =−− )1|1(i  and 
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=−− G0

00
P )1|1(i . 

This state space form with the Kalman filter provides us the marginal (unconditional) form of the likelihood, so that 
this approach can be used even if there are intermittent missing responses. 
 
3.3.2 Kalman Filter 
In the case of a linear mixed effects model, the regression coefficients of the fixed effects can be concentrated out of 
the likelihood, by applying the Kalman filter not only to the observation vector, iY , but also to each column of the 

fixed effects design matrices, iX , so that only variance parameters need to be estimated (Jones, 1993). In the case of 

an autoregressive linear mixed effects model, we apply the Kalman filter to iY  and iiXFρ , so that only ρ  and 

variance parameters need to be estimated. β  is concentrated out of the likelihood. For this purpose, we use a state 

matrix )(tiS  the size of which is )1()1( +×+ pq , instead of the state vector )(tis  the size of which is 1)1( ×+ q . 

The values of iiXFρ  at time t  are recursively calculated in the following steps. The Kalman filter starts with the 

initial state matrix, )1|1( −−iS , and covariance matrix, )1|1( −−iP . We set 0S =−− )1|1(i . In the Kalman theory, the 
parameters of the model are assumed known, here, the unknown parameters are varied by a nonlinear optimization 
routine until MLEs are obtained. 
 
The steps in the Kalman filter are as follows: 
1. Calculate a one step prediction and the covariance matrix of this prediction, 

)1|1()1;()1|( −−−− = ttitttti SΦS , 

tittttitttti ,)1;()1|1()1;()1|( QΦPΦP +′= −−−−− . 
2. Calculate the covariate matrix of the fixed effect, 

tititi ,1,, XXX ** += −ρ , 

where 0X* =−1,i . 
3. Calculate the prediction of the next observation matrix,  

)1|(,)1|,()1|,( ][ −−− = ttitittitti SHYX* . 

The notation ][ BA  means the matrix A  augmented by the matrix B . 
4. Calculate the innovation matrix and the covariance matrix of this innovation, 

][][ )1|(,)1|(,,,, −−−= ttittitititi YXYXI ** , 

)(,)1|(,, MEtittititi rHPHV +′= − . 

5. Accumulate the quantities needed to calculate ll2−  at the end of the recursion, 

tititi ,
1

,, IVIMM −′+← , 

||ln ,tiV+Δ←Δ . 
6. Update the estimate of the state vector and the covariance matrix of the state vector, 

tititittittitti ,
1

,,)1|()1|()|( IVHPSS −
−− ′+= , 

)1|(,
1

,,)1|()1|()|( −
−

−− ′−= ttitititittittitti PHVHPPP . 
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If there is a missing observation in ti ,Y , the corresponding parts of ti ,H  and )( MEr  are removed. If both observations 

are missing, the steps 3, 4 and 5 are skipped and the step 6 is )1|()|( −= ttitti SS  and )1|()|( −= ttitti PP . Now return to step 

1 until the end of the data is reached. The matrix M  now contains 

⎥
⎦

⎤
⎢
⎣

⎡

′
′′

YY
YXXX
~~
~~~~

. 

The residual sum of squares is given by ( ) YXXXXYYY ~~~~~~~~ 1
′′′−′=

−
RSS . ll2−  is given by 

RSSnll i +Δ+=− ∑ )2ln(2 π . The MLEs of the fixed effects are given by ( ) YXXX ~~~~ˆ 1
′′=

−
β . 

 
3.3.3 Bivariate Longitudinal Data 
The autoregressive linear mixed effects model for bivariate longitudinal model was proposed in Funatogawa et al. 
(2008a). Let tirY ,,  be the observed response of the r th ( r =1,2) variable for subject i  at time t ( iTt ,,0 L= ). 
Consider the following model 

tiititititi ,,,1,, εbZβXYρY +++= − ,                        (4) 

where T
tititi YY ),( ,,2,,1, =Y , TTT ),( 21 βββ = , TT

i
T

ii ),( ,2,1 bbb = , T
tititi ),( ,,2,,1, εε=ε , 
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tir ,,X  is a known rp×1  design matrix for fixed effects， tir ,,Z  is a known rq×1  design matrix for random effects. 

With TT
Ti

T
i

T
ii i

),,,( ,1,0, YYYY L= , TT
Ti

T
i

T
iii i

),,,,0,0()( 1,1,0,2 −=⊗ YYYYIF L  is the vector of previous response 

values, where ⊗  means direct product. Then the model (4) can be written as 

iiiiiii εbZβXYρFY +++⊗= )( , 

where TT
Ti

T
ii i

),,( ,0, XXX L= , TT
Ti

T
ii i

),,( ,0, ZZZ L= , TT
Ti

T
ii i

),,( ,0, εεε L= . We define the errors as 

0,)(0,)(0, iMEiARi εεε +=  1,)(,)(,)(, −−+= tiMEtiMEtiARti ρεεεε  )0( >t . 
 
The state space form for the model (4) is defined by equations (2) and (3) with the following parameters, 

TT
i

T
titi ),( ,)( bμs =  with T

tititi ),( ,,2,,1, μμ=μ , TT
tiARti ),( ,)(, 0ευ = , titiVar ,, )( Qυ ≡ , ( ))(22, 21 qqti +×= 0IH , 

tiMEti ,)(, εξ = , )(,)( )( MEtiMEVar rε = , 
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We apply the Kalman filter to iY  and ii XρF )( ⊗ , so that only ρ  and variance parameters need to be estimated. β  

is concentrated out of the likelihood. For this purpose, we use a state matrix )(tiS  the size of which is 

)1()2( 2121 ++×++ ppqq , instead of the state vector )(tis  the size of which is 1)2( 21 ×++ qq . The values of 

ii XρF )( ⊗  at time t  are recursively calculated in the steps in 3.3.2. 

 
4. Discussion 

 
In this paper, we provide a state space form of autoregressive linear mixed effects model for calculating the marginal 
likelihood without using large matrices. The calculation of likelihood usually requires matrices whose sizes depend on 

Biometrics Section – JSM 2008

3061



the number of observations on a subject. In the case of multivariate longitudinal data, it may become large. However, 
this method does not depend on the observation number and not use large matrices as described in Jones (1993). In the 
case of the autoregressive linear mixed effects model, it is also important to calculate the marginal likelihood instead of 

the conditional likelihood. We used the latent variable, ti ,μ
, in the state vector, 

TT
ititi ),( ,)( bs μ=

 in 3.3, so that we 

can get the marginal likelihood. If we define the state vector as 
TT

ititi y ),( ,
*

)( bs =
 with the observed response, then it 

will provide the conditional likelihood and we can not use it when there are intermittent missing.  
 
In the previous study, we have shown that there are several representations of the autoregressive linear model; 
representations in conditional and unconditional form, representation by each observation time for each subject, a 
vector representation for whole observation for each subject (Funatogawa et al., 2007). Furthermore, the autoregressive 
model corresponds to the monomolecular (the Mitcherlich) growth curve in continuous time (Funatogawa et al., 2007). 
In this paper, we further provided a representation as a state space form. 
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