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Abstract

For longitudinal data with dropouts, pattern mixture models (PMM) stratify the dataset by dropout patterns and model
the repeated measures within each pattern. We propose a hierarchical PMM (HPMM) that incorporates not only dropout pat-
terns but also various dropout reasons. Subjects are classified into random and nonrandom dropout groups and subsequently
stratified according to dropout patterns within each group. The statistical inference is based on maximum likelihood. An
ad-hoc method was also developed by estimating the potential dropout reasons for completers with a latent variable model and
making inference with standard procedures for PMMs as if the group memberships were fully observed. Since classification of
dropout reason is subjective, a simulation study was conducted to examine the potential bias of HPMM methods from group
misclassification. These methods were also compared to the standard PMM, which disregarded differential dropout reasons,
and a selection model that assumed ignorable dropouts.
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1. INTRODUCTION

Missing outcome data are prevalent in clinical trials with repeated measurements. Consequently, one of the most
important considerations when selecting an analytic strategy is how it accounts for the missing data mechanism.
If the data are missing completely at random (MCAR) or missing at random (MAR), available case analyses for
repeated measures, such as a standard mixed model, can be used. However, if the data are missing not at random
(MNAR), using a standard mixed model without accounting for the missingness may produce biased estimates.

1.1 Pattern Mixture Models

One analytical method that incorporates nonignorable missing values in repeated measures data is the pattern
mixture model (PMM) (Little, 1995). This method factorizes the joint likelihood as:

[yi, Ri,βi|Xi] = [yi|Xi,βi, Ri][βi|Xi, Ri][Ri|Xi], (1)

where yi = {yi1, yi2, . . . , yiK} is a vector of repeated measures, Ri is the dropout pattern such that Ri = k if
{yi1, . . . , yik} are observed and {yik+1, . . . , yiK} are missing, βi represents the random intercept and slope effects, and
Xi represents the baseline covariates. For an individual i, [yi|Xi,βi, Ri] models the repeated measures, [βi|Xi, Ri]
models the between-subject variation, and [Ri|Xi] models the distribution of the dropout pattern.

A typical pattern mixture model that can handle nonignorable dropouts is the random-effects-dependent dropout
pattern mixture model, which assumes that the outcome yi only depends on the dropout pattern Ri through the
random effects βi. Thus, the joint likelihood is simplified from (1) as (Little, 1995):

[yi, Ri,βi|Xi] = [yi|Xi,βi][βi|Xi, Ri][Ri|Xi]. (2)

Little (1995) considered a special case of this model for repeated measures data on subjects in J treatment groups:

[yi|βi] ∼ NK

( 1 ti1
...

...
1 tiK

[ βi0
βi1

]
, σ2
eI

)
,

[βi|xi = j, Ri = k] ∼ N2(β(k)
j ,Γ), j = 1, . . . , J,

and
[Ri|xi = j] ∼Multinomial(πj1, . . . , πjK),

where βi = [βi0, βi1]T represents a random intercept and slope, xi indicates the treatment group, πjk represents the
proportion of the population with dropout pattern Ri = k given treatment xi = j, and β

(k)
j = (β(k)

j0 , β
(k)
j1 )T is the
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expected intercept and slope for subjects in treatment group j with dropout pattern k. The expected value of the
parameter of interest, βi, is estimated by averaging over the dropout pattern as follows:

E(βi|xi = j) =
K∑
k=1

πjkβ
(k)
j . (3)

2. HIERARCHICAL PATTERN MIXTURE MODELS

2.1 HPMM Likelihood

All dropouts are considered to be nonrandom in standard PMMs such as those discussed in Section 1.1. However, in
many clinical trials dropouts occur for a variety of random and nonrandom reasons, and ignoring these differential
dropout reasons may lead to biased estimates. To account for the fact that some individuals may be classified
as having random dropout and others classified as having nonrandom dropout, we propose a hierarchical pattern
mixture model (HPMM) that incorporates the dropout reason classification, denoted by G, into the random-effects-
dependent dropout pattern mixture model (2).

As in a standard PMM, an individual who drops out after time k is assigned dropout pattern Ri = k. However,
unlike the standard PMM, if their dropout is nonrandom they are classified as Gi = 1 and if their dropout is
random they are classified as Gi = 0. A completer (Ri = K) is assumed to have an unobserved potential dropout
reason classification Gi. To illustrate the hierarchical pattern mixture model, Figure 1 shows an example of this
data structure with four repeated measurements and three unique dropout patterns. For the general case, the joint
likelihood for the HPMM is:

[yi,βi, Ri, Gi|Xi] = [yi|βi,Xi][βi|Ri, Gi,Xi][Ri|Gi,Xi][Gi|Xi]. (4)

We focus on a special case of this model, where the fixed treatment effect α is of primary interest:

[yi|βi,Xi] ∼ NK

( xi 1 ti1
...

...
...

xi 1 tiK


 α
βi0
βi1

 , σ2
eI

)
,

[βi|Ri = k,Gi = g, xi = j] ∼ N2(β(g)
jk ,Γ

(g)), k = 1, 2 . . . ,K, j = 0, 1,

[Ri|Gi = g, xi = j] ∼Multinomial(π(g)
j1 , . . . , π

(g)
jK),

and
[Gi|xi = j] ∼ Bernoulli(γj).

In this model, α reprents the parameter for the fixed treatment effect, βi = [βi0, βi1]T represents a random intercept
and slope, xi is an indicator for treatment group, π(g)

jk represents the proportion of the population with dropout

pattern Ri = k given treatment xi = j and dropout reason classification Gi = g, and β
(g)
jk = (β(g)

j0 , β
(g)
j1 )T is the

expected intercept and slope for subjects in treatment group xi = j with dropout pattern Ri = k and dropout reason
classification Gi = g. The expected value of the parameter of interest, α, is estimated as:

E(α|xi = j) = γjα
(1) + (1− γj)α(0), (5)

where γj is the proportion of individuals with nonrandom dropout classification Gi = 1 given treatment xi = j and
α(g) is the treatment effect for dropout reason classification Gi = g.

2.2 Two Different Approaches for Estimation of the Treatment Effect

In order to obtain the overall treatment effect α we first need to estimate the individual treatment effects for the
random and nonrandom dropout groups. To accurately estimate these treatment effects it is necessary to have some
complete data within each dropout group, but unfortunately the potential dropout reason classification Gi for each
completer is unobserved. We propose two methods of estimation that accomodate this challenge: an ad-hoc method
based on a trajectory analysis and the maximum likelihood method.
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Figure 1: Illustration of Hierarchical Pattern Mixture Model Data Structure.

2.2.1 Inference-Based Trajectory Analysis

To include the data from the completers in our model, we utilize a trajectory analysis such as PROC TRAJ in SAS
(Jones et al., 2001). A trajectory model is created based on the observations with complete follow-up data and is
subsequently used to classify the completers as belonging to either the random or nonrandom dropout group. After
classifying the completers based on the trajectory analysis we use all the data to fit a mixed model. Hedeker et al.
(1997) presented a mixed model which included dropout pattern in order to obtain PMM estimates. We utilize this
concept to create a model which will allow us to obtain HPMM estimates. Essentially, it is a mixed model which
includes the treatment effect and the interaction of treatment by dropout reason group, adjusting for time, dropout
pattern, and other covariates of interest as follows:

yit = βi0 + α1xi + α2Gi + βi1Timei + α3Ri + α4GiRi + α5Gixi + α6RiTimei. (6)

We also separately estimate γ̂j , the proportion of individuals with nonrandom dropout given treatment xi = j.
Finally, we obtain the overall treatment effect estimate for α using:

E(α|xi = j) = γ̂j(α̂1 + α̂5) + (1− γ̂j)α̂1,

where α̂1 and α̂5 are the model estimates from (6).

2.2.2 Maximum Likelihood Estimation

To directly estimate the treatment effect, we construct separate joint likelihoods for completers (Ri = K) and each
combination of dropout reason classification Gi = g and possible dropout pattern Ri = k, k = 1, . . . ,K − 1. Each of
these likelihoods is written in the form of the hierarchical pattern mixture model in (4). The missing outcome data
and the random effects are then integrated out of each likelihood.

The set of completers is denoted S. Individuals in this set do not have an observed dropout reason. However,
if they had dropped out, we assume they would have been assigned either Gi = 1 or Gi = 0. Therefore, the
contribution to the likelihood function from subjects in S is

LS(α, φ) =
∏
i∈S

∫ [
f(yi1, . . . , yiK ,βi, Ri = K|Gi = 0, xi, α, φ)pr(Gi = 0|xi) (7)

+ f(yi1, ..., yiK ,βi, Ri = K|Gi = 1, xi, α, φ)pr(Gi = 1|xi)
]
dβi,

where φ represents nuisance parameters.
The individuals in dropout pattern Ri = k have observed data yobs = {yi1, . . . , yik} and missing data ymis =

{yik+1, . . . , yiK}. The set of these individuals with Gi = g are denoted S(g)
k . The contribution to the likelihood from

subjects in dropout pattern Ri = k and dropout reason classification Gi = g is:

L
S

(g)
k

(α, φ) =
∏
i∈S(g)

k

∫
. . .

∫ ∫
f(yi1, . . . , yiK ,βi|Ri = k, xi, Gi = g) dyiK . . . dyik+1 dβi. (8)

Biometrics Section – JSM 2008

3024



The full likelihood function is written as:

LF (α, φ|yobs) =
[ 1∏
g=0

K−1∏
k=1

∏
{i:Gi=g,Ri=k}

L(α, φ|yi,obs)
][∏

i∈S
L(α, φ|yi)

]
(9)

= LS(α, φ)
K−1∏
k=1

[
L
S

(0)
k

(α, φ)L
S

(1)
k

(α, φ)
]
. (10)

LF is maximized with respect to α and φ, and equation (5) is used to obtain the overall estimate for the treatment
effect α.

2.3 Assigning Dropout Reason

The key to the HPMM is that individuals are grouped based on whether they dropped out randomly or nonrandomly.
Typically, this “reason for dropout” assignment is based on information collected from a clinical trial termination
form, which provides a list of potential reasons for an individual to drop out of the study. Although the termination
form standardizes reasons for dropout within one study, it may vary greatly from one study to another based on the
study design.

Even when utilized correctly, many termination forms from clinical trials are not adequate to determine whether
dropout was random or nonrandom. Take, for example, the section of a termination form from a depression study
in Table 1. This termination form lists six possible reasons for dropping out of the study. It may be clear that
“Unacceptable Side Effects” and “Committed \ Attempted Suicide” are nonrandom reasons for dropout because it
is very likely that they are related to the individuals’ missing depression observation. Alternatively, it is most likely
that someone who dropped out of a depression study because they “Became Pregnant” or because they “Moved
from the Area” is dropping out for a random reason. However, it is unclear whether an individual who “found
research too burdensome” or “lost contact” is dropping out randomly or nonrandomly based on the wording of the
termination form. In these situations, the dropout reason is very subjective and may be easily misclassified by even
the most competent data analyst.

Although some group misclassification may come from the wording of the termination form, it is often the case
that individuals, by no fault of their own, are unable to verbalize adequately why they have decided to drop out of
a study. In addition, many individuals may drop out of a study for a variety of reasons, not all of which they wish
to discuss. This is a right of any study participant. However, in these situations, there is inherent error in assigning
dropout reason, even with the most well-designed termination form.

Table 1: Termination Form Example

Dropout Reasons Classification of
Dropout Group

1. Unacceptable Side Effects Non-Random
2. Committed \ Attempted Suicide Non-Random
3. Moved From the Area Random
4. Became Pregnant Random
5. Found Research too Burdensome ?
6. Lost Contact ?

3. SIMULATION STUDY

Due to the subjective nature of classifying dropout reasons, we conducted a simulation study to determine how well
the HPMM trajectory and MLE models perform under different percentages of misclassified reason-for-dropout. We
compared these methods to the standard pattern mixture model and a selection model assuming random dropout.

3.1 Data Generation

We simulated 300 datasets of N = 300 observations each. Data were simulated in the context of a repeated mesaures
clinical trial with four follow-up time points. Some individuals remained in the study for all four time points (Ri = 4),
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whereas others dropped out of the study for random and nonrandom reasons between times t2 and t3 (Ri = 2) or
between times t3 and t4 (Ri = 3), as shown in Figure 1. We simulated each xi, Gi, and Ri as shown in Table 2.

The random effects βi were simulated as:

[βi|Ri = k,Gi = g] ∼ N2(B(g)
k ,Γ(g)),

where

B(0)
k =

(
b00 + b01
b10 + b11

)
,

B(1)
k =

(
b00 + b01ηk
b10 + b11ηk

)
,

and

Γ(g) =

 σ
(g)
0 ρ(g)

√
σ

(g)
0 σ

(g)
1

ρ(g)

√
σ

(g)
0 σ

(g)
1 σ

(g)
1

 .
We selected the parameter values: (η2, η3, η4) = (3, 2, 1), (b(0)00 , b

(0)
01 , b

(0)
10 , b

(0)
11 ) = (15, 0, 1, 0), (b(1)00 , b

(1)
01 , b

(1)
10 , b

(1)
11 ) =

(25, .7, .6, .8), (σ(1)
0 , σ

(1)
1 , ρ(1)) = (2, .2, .002), and (σ(0)

0 , σ
(0)
1 , ρ(0)) = (1, .1, .004).

The repeated mesaures outcome was simulated as

[yi|βi, xi,Z] ∼ N4(xiα(g) + Zβi,Σ
(g))

where α(0) = −2 and α(1) = −.5 were the treatment effects for the random and nonrandom dropout groups, Z was
the design matrix for the random slope and intercept, and

Σ(g) = σ2
eI4 + ZΓ(g)ZT ,

with σ2
e=2. The true treatment effect α was calculated to be .3α(1) + (1− .3)α(0) = −1.55.

Table 2: Data Simulation

Variable Notation Distribution
Treatment Indicator [xi] Bernoulli(.5)
Dropout Reason [Gi|xi] Bernoulli

(
.3I(xi = 1) + .5I(xi = 0)

)
Dropout Time [Ri|Gi = 0] Multinomial(4/8, 3/8, 1/8)
Dropout Time [Ri|Gi = 1] Multinomial(3/8, 3/8, 2/8)

3.2 Trajectory Method

The trajectory model was created using only the completers’ data with the following SAS code:

PROC TRAJ DATA=COMPLETERS OUT=OF OUTPLOT=OP OUTSTAT=OS;
VAR Y1 Y2 Y3 Y4;
INDEP TIME1 TIME2 TIME3 TIME4;
MODEL CNORM;
MIN 0;
MAX 45;
NGROUPS 2;
ORDER 2 2;

RUN;
%TRAJPLOT(OP,OS,“Y”, “TIME”);

The groups created by the trajectory were separated mainly by the difference in intercept between the random and
nonrandom dropout groups. Therefore, based on our assumptions regarding how random and nonrandom dropout
would affect the outcome, we selected the trajectory group with the higher intercept to be nonrandom dropout and
the trajectory group with the lower intercept to be random dropout. After classifying the completers based on this
trajectory model, we created the following mixed model with random intercept and slope:

yit = β0i + α1xi + α2Gi + β1iTimei + α3Ri + α4GiRi + α5Gixi + α6RiTimei,

Biometrics Section – JSM 2008

3026



and used the following SAS code based on Hedeker, et al.(1997) to generate treatment effect estimates for the random
and nonrandom dropout groups:

PROC MIXED DATA= ;
MODEL Y=X G Time R G*R G*X R*Time;
RANDOM INTERCEPT Time \ TYPE=AR(1);

RUN;

We also estimated the frequency of observations with Gi = 1 given xi = 1 to obtain γ̂1. Finally, we estimated the
overall treatment effect α as follows:

E(α|xi = 1) = γ̂1(α̂1 + α̂5) + (1− γ̂1)α̂1.

3.3 MLE Method

We constructed the joint likelihoods as follows:

LS =
∏
i∈S

[
(1− γj)π(0)

jK(2π)−K/2|Σ(0)|−1/2e{−
1
2 (yi−xiα

(0))T Σ(0)−1
(yi−xiα

(0))}

+ γjπ
(1)
jK(2π)−K/2|Σ(1)|−1/2e{−

1
2 (yi−xiα

(1))T Σ(1)−1
(yi−xiα

(1))}

]

L
S

(0)
k

=
∏
i∈S(0)

k

[
(1− γj)π(0)

jk (2π)−k/2|Σ(0)
k |
−1/2e{−

1
2 (yi−xiα

(0))T Σ(0)
k

−1
(yi−xiα

(0))}

]

L
S

(1)
k

=
∏
i∈S(1)

k

[
γjπ

(1)
jk (2π)−k/2|Σ(1)

k |
−1/2e{−

1
2 (yi−xiα

(1))T Σ(1)
k

−1
(yi−xiα

(1))}

]
,

where Σ(g)
k = σ2

eIk×k+Zk×2Γ(g)ZT2×k. After each likelihood was created, we maximized the log of the full likelihood,
LF (α, φ|yobs), with respect to all parameters using the “nlminb()” function in R. After maximization, we used the
equation

E(α|xi = 1) = γ̂1α̂
(1) + (1− γ̂1)α̂(0)

to estimate the overall treatment effect α.

3.4 Results

Simulation results are shown in Table 3. Without any misclassification, the HPMM Trajectory and HPMM MLE
both had low biases and relatively small standard deviations. As the rate of misclassification increased, the biases and
standard deviations of both methods also increased, however, the trajectory method had smaller bias than the MLE
method for each level of misclassification. In this simulation study, both the MLE method and the trajectory method
performed better than the standard pattern mixture model and the selection model assuming random dropout, even
under 40% misclassification of dropout reason.

4. DISCUSSION

Through our simulation study, we showed that both the HPMM trajectory and HPMM MLE methods can produce
treatment effect estimates with lower bias than alternative models such as the pattern mixture model or the selection
model assuming random dropout. However, before more generalized conclusions can be drawn regarding the effec-
tiveness of the HPMM method, extended simulation studies should be conducted. We generated data with a large
difference between intercepts for the random and nonrandom dropout groups. In this scenerio, the trajectory model
was shown to perform better than the MLE model with classification. However, it is possible that with a smaller
difference between the intercepts, the MLE will perform better than the trajectory due to the nature of each of these
methods. Another area to reserach before drawing further conclusions regarding the HPMM is the robustness of our
method under different sample sizes. Our sample size was 300, however, the smaller-sample abilities of the method
have not been assessed.
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Table 3: Simulation Study Results

Method Percent |Bias| (Empirical SD)
Misclassification True α = −1.55

1. HPMM with Trajectory 0% .01 (.26)
10% .34 (.38)
25% .72 (.47)
40% .93 (.51)

2. HPMM with MLE 0% .02 (.24)
10% .46 (.39)
25% 1.31 (.58)
40% 1.69 (.67)

3. Assume MAR 1.92 (.65)
4. Standard PMM 1.75 (.60)

One way we believe we can further increase the accuracy of the trajectory method is to utilize multiple imputation.
Specifically, after creating the trajectory model, we plan to extract each individual’s estimated probability of being
in either the random or nonrandom reason-for-dropout group. We will repeatedly draw from these estimates to
create new datasets with which to re-estimate the treatment effects. The overall treatment effect and standard error
will be calculated, and power analyses will be performed to better understand the coverage rates.

Missing data are prevalent in clinical trials, particularly when a mental illness such as depression is the outcome
of interest. When individuals drop out for a variety of both random and nonrandom reasons, the hierarchical pattern
mixture model is a promising alternative to current methods such as the standard pattern mixture model because
it allows for the strength of the dropout effect to differ based on whether individuals dropped out randomly or
nonrandomly.
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