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Abstract 
Kim, Heeringa, and Solenberger (2006) suggested two approaches for model-based sampling designs of reducing the 

variance of the Horvitz-Thompson (1952)’s estimator. Their methods are whole sample procedures based on 
optimization theory under a superpopulation model. With respect to the sample selection probabilities, we theoretically 
present the differences between those procedures and popular draw-by-draw procedures such as sampling methods of 
Mizuno (1952), Brewer (1963a), and Murthy (1957), when the sample size is two, which is a common situation in 
nationwide samples with many strata. We also compare the efficiencies between them for natural populations in the 
published literature. It appears that the methods of Kim, Heeringa, and Solenberger (2006) may be preferable to those 
draw-by-draw procedures in many situations. 
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1.  Introduction 
 

In recent decades there have been a number of developments in inclusion probabilities proportional to size ( PSπ ) 
sampling methods that employ an auxiliary variable as a measure of size of each unit in a finite population. These 
sample selection methods are applicable to a generalized regression (GREG) estimator based on an underlying 
superpopulation model, as well as the Horvitz and Thompson (H-T) (1952) estimator. The majority of these are 
traditional draw-by-draw procedures (TDDP) and some of them, described in the next section, can be easily run using 
software programs  available in SAS or SPSS. 

With respect to the efficiency of the GREG estimator, sampling methods for minimizing the anticipated variance 
(ANV) of the estimator have been developed (Fuller and Isaki, 1982). These methods depend on the variance pattern of 
the error terms in the superpopulation model. One such selection procedure is a model-based stratified simple random 
sampling (SSRS), proposed by Wright (1983).  

The GREG estimator is a design-consistent estimator when a large sample is selected, but it may be appreciably 
biased for a small sample size. For this reason, many sampling statisticians still view the H-T estimator as an attractive 
alternative for estimation of population parameters. 

For samplers who prefer the H-T estimator and are eager to increase its efficiency there have been few options to 
select samples, except for the traditional PSπ sampling methods, shown in the next section.    

One alternative to those PSπ sampling methods, proposed by Kim, Heeringa, and Solenberger (2006), is model-
based PSπ  sampling methods based on the optimization problem for minimizing the model expectation of the 
variance, or simply, the average variance (AV) of the H-T estimator under the superpopulation model. Note that the 
AV of the H-T estimator is the reduced form for the ANV of the GREG due to the unbiasedness of the H-T estimator. 
Their methods are whole sample procedures termed optimized whole sample procedures (OWSP). OWSP are 
optimized PSπ sampling methods that differ from traditional PSπ sampling. The following is the background for the 
development of the OWSP. 

Considering a finite population of N  units, one often assumes the population is drawn from an infinite 
superpopulation with the regression model ξ ,  as given by 
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i i iy xβ ε= + , 1, ,i N= ⋅ ⋅ ⋅ ,                                                                     (1.1) 

where ( ) 0i iE xξ ε = , ( ) g
i i iV x axξ ε = ( 0a > , 0g ≥ ), and ( ), 0i j i jE x xξ ε ε = , i j≠ . 

 
Eξ and Vξ in (1.1) denote the expected value and variance under the model ξ . It is further assumed that iε ’s in (1.1) 

are normally distributed.  
As shown by Rao and Bayless (1969) and Kim, Heeringa, and Solenberger (2006), when assuming (1.1) with zero 

intercept, the AV of the H-T estimator is the same for any PSπ sampling methods.  
However, if one assumes the regression  superpopulation model includes an intercept, this more practical choice of a 

model in many survey populations may be expressed as: 
 

i i iy xα β ε= + + , 1, ,i N= ⋅⋅⋅ .                                                                (1.2) 
 
Under this model, the AVs of the H-T estimator differ for the various PSπ sampling methods (Kim, Heeringa, and 

Solenberger, 2006). Accordingly, the OWSP for minimizing the AV of the H-T estimator can be considered, although 
the AV is a theoretical value that depends on the assumed superpopulation model. 

This study focuses on only the case where the sample size is two (as in two per stratum designs), which requires a 
simple sampling procedure and is a common situation in nationwide samples with many strata. In this paper, we first 
describe TDDP and OWSP. Second, we present the differences of the structures of sample selection probabilities 
between OWSP and TDDP procedures such as the methods of Mizuno (1952), Brewer (1963a), and Murthy (1957). 
Third, we empirically compare the variances between TDDP and OSWP for natural populations given in Rao and 
Bayless (1969). In order to estimate the parameters in the model (1.2) for OWSP, we use the algorithm of Harvey 
(1976).  

 
2. TDDP and OWSP 

 
The classification of TDDP and OWSP for sampling without replacement procedures follows the manner of Brewer 

and Hanif (1983) based on that of Carroll and Hartley (1964). As noted by Brewer and Hanif (1983), for TDDP, one 
unit is selected at each successive draw and the probability of selection is defined for each draw.  

A number of TDDP have been developed and many books on survey sampling basically refer to TDDP such as the 
methods of Mizuno (1952) and Brewer (1963a), which are PSπ sampling methods. Also, Rao and Bayless (1969) 
showed the superiority of Murthy (1957)’s method, which is not a PSπ sampling method. For his  method, Murthy’s 
estimator, which is an unbiased estimator, can be used instead of the H-T estimator. 

“Optimized” in the OWSP indicates “variance minimization.” One of the oldest methods for variance minimization 
is that of Raj (1956), which is a PSπ sampling method, followed by Jessen (1969) and Kim, Heeringa, and 
Solenberger (2003, 2005). The OSWP developed by Kim, Heeringa, and Solenberger (2006) is an alternative to those. 
For OWSP, the units are not drawn individually but the selection probability, ( )p s , of each possible sample of size n  
is specified by optimization approach. Hence one selection using these probabilities simultaneously selects the n  
sample units.  

 
3. Structures of Sample Selection Probabilities in TDDP and OWSP 

 
A sample of n units from the population of size N  is selected with a sampling method. Let i ip x X=  be the 

relative size of the unit, where 
1

N

i
i

X x
=

= ∑  and ix is an auxiliary variable correlated with the variable of the interest, iy . 

Let ( )p s denote the selection probability of a sample s . Then the probability that unit i will be included in a sample, 
denoted iπ  and called the first-order inclusion probability, is expressed as  

 
( )i

i s

p sπ
∈

= ∑                                                                                    (3.1) 
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Also, the probability that both of the units i and j  will be included in a sample, 
ijπ , called the second-order 

inclusion probability, is given by 
 

,

( )ij
i j s

p sπ
∈

= ∑                                                                                   (3.2) 

 
Note that ( )ij p sπ =  when 2n = . 

To differentiate between the sample selection probabilities ( )p s for TDDP and OWSP, we will use ( )dp s  for TDDP 
and ( )p sξ  for OWSP. The ( )dp s  indicate the design-based sample selection probabilities and the ( )p sξ  denote the 
model-based sample selection probabilities.  

 
3.1 Sample Selection Probabilities in TDDP 

 
The method of Mizuno (1952) uses the following selection procedure: 
 

 i. Select the first unit with unequal probabilities,
ip . 

ii. Select the remaining 1n −  units according to a simple random sampling without replacement. 
 
Then the sample selection probabilities for 2n =  are as follows: 
 

1 1
( )

1 1d i jp s p p
N N

= +
− −

                                                                    (3.3) 

 
(3.3) may be expressed in another form by using ( , )i j i jf x x x x= + . This gives  

 
1

( ) ( , )
( 1)d i jp s f x x
N X

=
−

                                                                     (3.4) 

 
It can be re-expressed as  
 

( )d i
i s

p s a b x
∈

= + ∑ ,                                                                             (3.5) 

where 0a =  and  
1

( 1)
b

N X
=

−
. 

 
(3.5) is similar to the form for the sample selection probabilities that Mukhopadhyay and Vijayan (1996, page 776) 

used for a special method called controlled sampling. 
The method of Brewer (1963a) may be used for situations where the sample size is just two (or two per stratum). The 

selection procedure is as follows: 
 

i. Select the first unit with probability
(1 )

1 2
i i

i

p p
p

−
−

. 

ii. Select the second unit with probability
1

i

j

p
p−

, where j  is the unit drawn first. 

 
The sample selection probabilities are the form of 
 

1
( ) ( , )d i jp s g x x

DX
= ,                                                                        (3.6) 
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where 
1

1
1

2 2

N
i

i i

x
D

X x=

 
= + 

− 
∑  and 

1 1
( , )

2 2i j i j
i j

g x x x x
X x X x

 
= +  − − 

. 

 
Note that although (3.6) looks like (3.4), (3.6) can not be re-expressed as the form of (3.5) because of the difference 

between ( , )i jf x x  and ( , )i jg x x . 

Murthy (1957)’s method follows the most natural sequence of steps, as denoted by Cochran (1977). That is, The 
successive units are selected with probabilities ip , (1 )j ip p− , (1 )k i jp p p− − , and so on.  

For 2n = , Murthy’s  method has the sample selection probabilities given by 
 

1
( ) ( , )d i jp s h x x

X
= ,                                                                          (3.7) 

where 
1 1

( , )i j i j
i j

h x x x x
X x X x

 
= +  − − 

. 

 
Note that (3.7) is similar to (3.6) for Brewer’s method. The methods of Brewer and Murthy can be easily run in 

software such as SAS or SPSS.  
 
3.2 Sample Selection Probabilities in OWSP 

 
The methods of Kim, Heeringa, and Solenberger (2006) are as follows. The H-T (1952) estimator for the population 

total 
1

N

i
i

Y y
=

= ∑ is given by                                                                                                                                                                                                                                                                                        

ˆ
n

i
HT

i i

y
Y

π1=

= ∑                                                                                     (3.8)                        

  
When using the form of the design variance of the H-T estimator given by 
 

( ) ( )ˆ
N N N

iji i
HT i j

i i j ii i j

y
Var Y y y

ππ
π π π

2

1
1 1

1
2

= = >

−
= +∑ ∑∑

N N

i j
i j i

y y
1

2
= >

− ∑∑ ,                                        (3.9) 

 
the AV of Var1  under the regression superpopulation model of (1.2) , denoted ( )E Varξ 1 , is  

 

µ( )( )HTE Var Yξ 1 =
( )

( )
N N

i j
ij

i j i i j

x xX
n

n n x x

α βα
π β

2
2

1

2
1

= >

 + +
+ − 

  
∑∑  ( ) ( )2 2 2 2

1

/ 1 ( ) 2
N

i i i
i

X nx x xα β σ αβ
=

+ − + + +∑   

                                     ( )2 22 ( )
N N

i j i j
i j i

x x x xα αβ β
>

− + + +∑∑                                                                               (3.10) 

 
In cases of 2n = , where ( )ij p sξπ = , the optimization problem (OP) for minimizing (3.10) has the form   
 

 Minimize   
( )

( )
N N

i j

i j i i j

x x
p s

x x ξ

α β

1= >

+ +
∑∑                                                         (3.11) 

 
subject to the linear inequality constraints   

 
( )i j i jc p sξπ π π π≤ ≤ , 1, ,j i N> = ⋅⋅ ⋅ ,                                                      (3.12) 

 where c  is a real number between 0 and 1, and      
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      ( ) i

i s

p sξ π
∈

=∑ , 1, ,i N= ⋅⋅⋅ ,                                                                  (3.13) 

where i inpπ = . 
  
Let us call this optimization problem OP I. Since the objective function in (3.11) and the constraints in (3.12) and 

(3.13) are linear forms, a linear programming (LP) algorithm can be used to find a solution for an optimal sampling 
design ( )pξ ⋅ .     

Considering a different form of the design variance of the H-T estimator given by 
 

 µ( ) ( )
N N

ji
HT i j ij

i j i i j

yy
Var Y π π π

π π

2

2
1= >

 
= − −  

 
∑∑

N N
ij ji

i j
i j i i j

yy
p p

p pn

π
2

2
1= >

  
= − −     

∑∑                             (3.14) 

 
here, the AV for Var2 , denoted ( )E Varξ 2 , is as follows: 

 

µ( )( )HTE Var Yξ 2 ( ) ( )
N N

j i i
i j i

V x x xξ α α β1

1

2 −

= >

 
= + − + 

 
∑ ∑  ( ) ( )

N N

j i i ij
i j i

X
x x x

n
α

α β π
2

1 1 1
2

1

2 − − −

= >

+ − +∑∑ ,           (3.15) 

where ( )
g N

g
i i

i

aX
V np p

nξ
1

1

1 −

=

= −∑ and 
ip n< . 

 

The AV in (3.15) is different from that in (3.10). For example, in order to simplify, let 0α = . Then µ( )( )HTE Var Yξ 2  

reduces toVξ , while µ( )( )HTE Var Yξ 1  amounts to  

 

2 2 1

1 1 1

1
2

N N N N

i i i j
i i i j i

n X
X x x x x V

n n
γ γ

ξβ −

= = = >

 −
+ − − + 

 
∑ ∑ ∑∑                                                (3.16) 

 
Note that since the first term in (3.16) involving 2β is not zero, (3.10) is not equal to (3.15).  
We may consider the following optimization problem to minimize (3.15), the AV of the H-T estimator for 2n = . 
 

Minimize  ( )( ) ( )
N N

j i i
i j i

x x x p sξα β1 1 1

1

− − −

= >

− +∑∑                                                     (3.17) 

subject to the constraints  (3.12) and (3.13). 
 
A solution on this problem can be obtained by using LP  algorithm like OP I. Here we call this problem OP II. Note 

that both OP I and OP II depend only on α  and β , regardless of the values of 2σ or γ  in the superpopulation model.  
 

3.3 Differences between TDDP and OWSP 
 
As shown in (3.4), (3.6) and (3.7), the sampling design ( )dp ⋅  in TDDP is a known function of ix  and jx . But ( )pξ ⋅  

in OWSP is an unknown function of 
ix  and

jx . 

The sampling design in OWSP depends on the optimization problems denoted by OP I or OP II, which are to 
minimize the AV of the H-T estimator under the assumed superpopulation model. In other words, ( )pξ ⋅  is a solution to 

the optimization problems and the solution can be obtained by using a LP algorithm. A number of software programs 
are available to specify LP algorithm and solve for the optimum.  
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4. Estimation of the Superpopulation Model 
 

As mentioned before, we assume that a finite population is drawn from an infinite superpopulation with the 
regression model ξ . If we know or can estimate the superpopulation model at the design stage, it is applicable to the 
theory of OWSP, developed by Kim, Heeringa, and Solenberger (2006). As denoted by Godfrey, Roshwalb and Wright 
(1984) and Särndal and Wright (1984), Harvey (1976)’s algorithm may be used to calculate the maximum likelihood 
estimates of α , β , 2σ and γ  in the superpopulation model such as (1.2). In Harvey’s algorithm the starting values of 

α and β  are the ordinary least squares (OLS) estimates and in each iteration the values of α and β  depend on 2σ and 
γ  or the reverse. See Harvey (1976, pages 463-464) for the details on the algorithm and see Godfrey, Roshwalb and 
Wright (1984) and Särndal and Wright (1984) for the real applications of the algorithm. 

 
5. Empirical Comparison of the Efficiencies between TDDP and OWSP 

 
Rao and Bayless (1969) empirically studied the efficiencies of several unequal probability sampling methods for two 

units per stratum under the superpopulation model (1.1). In this study we consider the model (1.2) with the intercept, 
which may be more appropriate than (1.1) in practical surveys. For the comparison between TDDP and OWSP we also 
choose 5 natural populations with the size N  ranging from 10 to 20 in Kish (1965), Rao (1963), Hanurav (1967), and 
Horvitz and Thompson (1952) among the populations Rao and Bayless considered in the paper. They have different 
scales and different distributions.  

Table 1 presents the maximum likelihood estimates of α , β , 2σ and γ  for those finite populations obtained from 
Harvey (1976)’s algorithm, assuming that those populations are drawn from infinite superpopulations. Some small 
values of α , which are away from zero, are negative and some are large. Although the values of γ  are expected in the 
interval (0, 2) or (1,2), as discussed by Cochran (1953), Brewer (1963b), and Särndal, Swensson and Wretman (1992), 
some here have values larger than 2. 

 
Table 1. Maximum Likelihood Estimates 

Pop No. N  No. of 
Iterations 

α  β  2σ  γ  

1 10 41 -0.5256 0.5058 0.0203 2.2964 

2 10 13 -0.8130 0.5951 0.1322 1.4108 

3 14 11 25.9264 1.0272 0.1989 1.6099 

4 20 38 185718.57 1015.3631 0.5370 3.2817 

5 20 14 1.1426 1.0381 0.0038 2.7461 

 
 
To obtain ( )pξ ⋅  , a solution to the optimization problems OP I or OP II, the “LP procedure” in SAS/OR was used. 

This procedure adopts the two phase revised simplex method. The solution from “LP procedure” may depend on the 
order of the units. But any solution can be accepted. We followed the order of units presented in the original sources. 
See SAS/OR (2004) for the details on “LP procedure.” 

Table 2 shows the results of the comparison of the variances under the different methods. In all populations 
Mizuno’s method has greater variance than the other methods. Brewer’s method and OP II do not perform as well as 
Murthy’s method and OP I.  More specifically, for population 1, where 10N = , Murthy’s method performs the best and 
OP I when 0.3c =  yields the second lowest variance. For population 2, again with 10N = , Murthy’s method is still 
best and OP  I when 0.1c =  is again in “second place.” In population 3 ( 14N = ) OP I with 0.2c =  is the best, beating 
Murthy’s method. In population 4 ( 20N = ) OP II with 0.1c =  is the best and OP I when 0.5c = is the second best, 
beating Murthy’s method. In population 5, OP I performs best. Based on these empirical tests with a limited number of 
populations, OP I is preferred to the other sample selection methods.  
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Table 2. Comparison of Efficiency 
µ( )Var Y  

Method  
Pop1 Pop2 Pop3 Pop 4 Pop 5 

Mizuno 2,908 2,183 53,353 1.49E13 6,411 
Brewer 622 568 37,211 3.46E12 3,011 
Murthy 598 480 36,771 3.44E12 3,031 
0.1 795 520 37,536 3.49E12 2,989 
0.2 793 539 32,021 3.47E12 2,875 
0.3 621 NA 38,639 3.49E12 2,831 
0.4 660 NA 37,588 3.57E12 2,859 

c  

0.5 

OP I 

NA NA 38,696 3.43E12 3,058 
0.1 778 612 53,565 3.33E12 3,195 
0.2 725 602 52,609 3.48E12 2,963 
0.3 662 NA 50,039 3.46E12 3,139 
0.4 694 NA 44,700 3.50E12 3,055 

c  

0.5 

OP II 

NA NA 38,324 3.49E12 3,009 
Note. “NA” indicates “not available due to no solution.” 

 
 
We do not compare the values of the AV between OP I and OP II or those with the design variance such as Var1  or 

Var2  because the value of the AV is a measure of a theoretical error computed for the assumed superpopulation and 
conceptually different from the design variance. For example, for population 5, OP I when 0.4c =  performs the best 
and OP II when 0.4c =  yields the second with regard to the AV. Then the values of the AV are 2,255 and 2,495, 
respectively. These results for the AV are not consistent with those for the OP I and OP II design variance for 
population 5 in Table 2. Also, note that for some populations the value of the AV (3.15) can be negative due to the 
second term in (3.15).  

 
6. Concluding Remarks 

 
We have used the algorithm of Harvey (1976) for estimating the superpopulation model in (1.2) and examined the 

capacity of OWSP developed by Kim, Heeringa, and Solenberger (2006) to yield a smaller design variance and a 
smaller AV.  

Based on our work, it appears that OWSP, especially OP I, may be preferable in many situations to TDDP such as 
the methods of Mizuno, Brewer and Murthy in terms of the efficiency. We also observe that OWSP shows better 
results as the population size increases. 

Since the objective function in the optimization problem for OP I and OP II has a simple linear form, finding a 
solution, the sample selection probabilities, is not complicated. It seems  that the linear constraints involving the value 
of c in (3.12) are quite useful to reduce the variance, but it obviously requires a careful choice of the value. Empirical 
studies for additional natural populations are needed to determine if there are sample designs where the optimal 
solution is not feasible. 

An investigation of the efficiency for 2n >  is also planned as well as a study on the sensitivity of these findings to 
misspecification of superpopulation model. The stability of the variance estimator as well as the efficiency may need to 
be studied for more sampling methods. A nonlinear superpopulation model might be adopted to develop a new sample 
selection procedure.  
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