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Abstract
In the context of small area estimation, hierarchical Bayesian (HB) models are often proposed to produce more reliable

estimators of small area quantities than direct estimates, such as design-based survey estimators. A method that benchmarks
HB estimates with respect to higher level direct estimates and measures the relative inflation in the posterior mean square
error of distributions due to benchmarking is developed to evaluate the performance of hierarchical models. The benchmarked
hierarchical Bayesian posterior predictive model comparison method is shown to be able to select proper models effectively
in a simulation study. The method is then applied to fitting models to a stratified multi-stage sample survey conducted by
Iowa’s State Board of Education. In this study a small sample of school districts was selected from a two-way stratification
of school districts. The survey strata serve as small areas for which hierarchical Bayesian estimators are suggested. Here
the method is used to select a generalized linear mixed model for the survey data. Potential applications extend beyond the
survey and education contexts.

Key Words: generalized linear mixed models; Poisson-gamma model; Poisson-lognormal model; posterior predictive checks;
small area estimation.

1. Introduction

In 2004, representatives of Iowa’s State Board of Education (ISBE) approached the Center for Survey Statistics and
Methodology (CSSM) at Iowa State University (ISU) for help in planning a series of surveys. The purpose of one of
the surveys is to study the availability of employment preparation (EP) courses and the degree to which students in
Iowa’s public high schools enroll in those courses. Budget, time and policy restrictions influenced the survey design.
A stratified three-stage survey was designed to produce estimates of average numbers of EP courses of certain types
taken by students for the State of Iowa and populations of small , medium and large school districts. Districts
in Iowa are organized into twelve area education agencies (AEAs) for the purposes of administration and support.
District size and AEA were used as stratifying variables. All large districts were included with certainty due to their
extreme size. Medium and small districts were sampled with probability proportional to total enrollment size within
stratum. For political reasons all schools in selected districts were included in data collection. A simple random
sample of students was selected in each sampled school. The samples were split between grade nine and grade twelve
students from general and special education groups. As a result of restricted sample size of schools, for each of the
medium and small size levels, seven strata were assigned two PSUs and the remaining five strata that have relatively
fewer districts had only one PSU sampled.

Since the design takes a small sample of PSUs within strata, the direct estimator tends to produce highly
unreliable estimates for individual strata. To make more efficient and reliable estimates of small area quantities,
we consider using hierarchical Bayesian (HB) estimation. The method borrows strength across strata with similar
characteristics and makes better use of auxiliary information than direct estimation. A fully Bayesian analysis
provides a unified framework for surveys with small and large sample sizes and deals with nuisance parameters in
a natural and appealing way. Monte Carlo integration techniques are employed to produce posterior estimates of
parameters.

Generalized linear mixed models (GLMMs) are considered for small area modeling in Section 2. The HB estima-
tors for the finite population mean under the GLMMs are proposed in Section 3. The precision of the HB estimators
is measured by their posterior variances. In Section 4, a new discrepancy measure based on evaluating the inflation
of posterior mean square error due to benchmarking the HB estimates with respect to the reliable direct estimates
in the larger regions is developed. The use of the new discrepancy measure in posterior predictive checking also is
defined. In Section 5, the performance of the estimators and the model selection methods is examined using a single
simulated finite population. The methods are applied for analyzing the actual data from the ISBE survey in Section
6. Section 7 contains a discussion about using HB estimation with careful and efficient model selection in small area
estimation and suggests possible future research work.
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2. Small Area Models

The survey for ISBE recorded the number of EP courses taken by students in a sample of students from Iowa’s public
high schools. School districts are grouped in to AEAs and are categorized by size. Some districts have multiple high
schools. Other applications in a wide array of areas use comparable designs: stratification (or blocking) factors and
clustered (nested) units within cells.

Given the population structure and the sampling design, two GLMMs are considered for modeling the population
distribution. In both models, let yijkl denote the number of EP courses taken by the lth student from the kth school
in AEA j in size level i. Assume yijkl, l = 1, · · · , nijk, independently follow a Poisson distribution: yijkl|λijk ∼
Poisson (ωijklλijk), where λijk is the rate of taking EP courses per semester for students in the kth school in AEA
j in size level i and ωijkl is the number of semesters that the lth student has had in the school.

In the Poisson-Lognormal model, we assume the rate of the Poisson distribution for each school is related to some
auxiliary variables at the school level and random effects due to district size and AEA through a Lognormal model:
log (λijk) = x′ijkβ+ τi+ηj + ζij + vijk. The xijk of length p is a vector of covariate variables at the school level. The
τi ∼ N(0, σ2

τ ), ηj ∼ N(0, σ2
η) and ζij ∼ N(0, σ2

ζ ) are independent random effects from size, AEA, and the interaction
between size and AEA. The random error term for the school is vijk ∼ N

(
0, σ2

v

)
. The model hyperparameters are

β, σ2
τ , σ2

η, σ2
ζ and σ2

v .
In the Poisson-Gamma model, the Poisson rate is assumed to follow a Gamma distribution with a mean related

to the random effects and auxiliary variables through a log-linear model: λijk|α, γijk ∼ Gamma (α, α/γijk) and
log (γijk) = x′ijkβ + τi + ηj + ζij . The probability density function for a Gamma (a, b) distribution is f(x) =
abxa−1 exp(−bx)/Γ(a). The α is a shape parameter in the Gamma distribution, which could be assumed common
for the entire population (or varied across size levels or AEAs). The distributions on τi, ηj , and ζij are the same as
in the previous model. The hyperparameters are α, β, σ2

τ , σ2
η, and σ2

ζ .
Under both models, the sample design is considered as ignorable because it is an inherent part of the models.

That is, the design variables AEA, district size, and school are included in the models. Although these models are
specific to the school survey example, the proposed methodology could as easily apply to other hierarchical models
fit to data collected on other topics using different sample designs.

3. Hierarchical Bayes Analysis

In this section, we apply hierarchical Bayes (HB) analysis to the GLMMs introduced in Section 2. Estimates of the
posterior mean and variance of parameters are obtained from Markov Chain Monte Carlo (MCMC) simulation.

3.1 Prior distributions

In a hierarchical Bayesian framework, we assume mutually independent diffuse prior distributions for the hy-
perparameters. Let β have a (locally) uniform distribution with p (β) ∝ 1. Independently σ2

τ ∼ IG (aτ , bτ ),
σ2
η ∼ IG (aη, bη), and σ2

ζ ∼ IG (aζ , bζ), where IG denotes an Inverse-Gamma distribution and aτ , bτ , aη, bη, aζ ,
and bζ are known positive constants. In the Poisson-Lognormal model, it is assumed that σ2

v ∼ IG (av, bv), where av,
and bv are also known positive constants. The constants usually are set to be very small to reflect vague knowledge
about the parameters. If a Poisson-Gamma model is employed, the scale parameter α can be assumed to have an
independent prior distribution as α ∼ Exponential (1). By using the proposed prior distributions, the corresponding
posterior (conditional and marginal) distributions are proper.

3.2 Posterior estimates

The posterior distribution of unknown quantities can be approximated by replicative simulates generated using
a MCMC algorithm, which was executed using WinBUGS and R in our application. Simulations such as those
implemented for this model are commonly implemented for hierarchical models of various specifications in other
applications. For each model, L = 3 parallel Markov chains were produced. Performance of the MCMC sampling
procedure was tested on up to 10 chains, but little difference in results was noted. The convergence of the draws of
parameters to their posterior distribution was diagnosed using the Brooks-Gelman-Rubin (BGR) statistic (Gelman
et al. 1995). After the convergence had been achieved for all parameters, a subsequence of R = 1, 000 iterates from
each chain was retained for posterior estimation.

Estimates of the posterior mean, variance, and covariance of λ terms are given below. These are followed by the
hierarchical Bayesian estimates of µij , the average response within stratum (i, j).
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The posterior mean and variance of λijk under the Poisson-Lognormal model are given by E(λijk|ys) = E{exp(x′ijkβ+
τi + ηj + ζij + 1

2σ
2
v)|ys} and V (λijk|ys) = E{exp[2(x′ijkβ + τi + ηj + ζij + σ2

v)]|ys}−E2(λijk|ys), respectively. These
can be estimated using the iterated simulates from MCMC as follows: Ê (λijk|ys) = 1

LR

∑L
l=1

∑R
r=1[exp{x′ijkβ(lr) +

τ
(lr)
i + η

(lr)
j + ζ

(lr)
ij + 1

2σ
(lr)
v

2
}] and V̂ (λijk|ys) = 1

LR

∑L
l=1

∑R
r=1[exp{2(x′ijkβ

(lr) + τ
(lr)
i + η

(lr)
j + ζ

(lr)
ij + σ

(lr)
v

2
)}] −

[Ê(λijk|ys)]2. In the equations above and ones that follow, the superscript (lr) denotes the rth iteration in
the lth chain in the retained subsequences. The posterior covariance of λijk and λi′j′k′ is C (λijk, λi′j′k′ |ys) =
C{exp(x′ijkβ+τi+ηj+ζij+ 1

2σ
2
v), exp(x′i′j′k′β+τi′ +ηj′ +ζi′j′ + 1

2σ
2
v)|ys}. It can be estimated by Ĉ (λijk, λi′j′k′ |ys) =

1
LR

∑L
l=1

∑R
r=1 exp{(xijk + xi′j′k′)′ β(lr) + τ

(lr)
i + τ

(lr)
i′ +η

(lr)
j +η

(lr)
j′ + ζ

(lr)
ij + ζ

(lr)
i′j′ +σ

(lr)
v

2
}− Ê (λijk|ys) Ê (λi′j′k′ |ys).

If using the Poisson-Gamma model, the posterior mean and variance of λijk are E(λijk|ys) = E{exp(x′ijkβ+ τi+
ηj + ζij)|ys} and V (λijk|ys) = E{exp[2(x′ijkβ + τi + ηj + ζij)(1 + 1/α)]|ys} −E2(λijk|ys), respectively. They can be

estimated using the iterated simulates from MCMC as follows: Ê (λijk|ys) = 1
LR

∑L
l=1

∑R
r=1[exp{x′ijkβ(lr) + τ

(lr)
i +

η
(lr)
j + ζ

(lr)
ij }] and V̂ (λijk|ys) = 1

LR

∑L
l=1

∑R
r=1[exp{2(x′ijkβ

(lr) + τ
(lr)
i + η

(lr)
j + ζ

(lr)
ij )(1 + 1/α(lr))}]− [Ê(λijk|ys)]2.

The posterior covariance of λijk and λi′j′k′ is C (λijk, λi′j′k′ |ys) = C{exp(x′ijkβ + τi + ηj + ζij , exp(x′i′j′k′β + τi′ +

ηj′ + ζi′j′)|ys}. It can be estimated by Ĉ (λijk, λi′j′k′ |ys) = 1
LR

∑L
l=1

∑R
r=1 exp{(xijk + xi′j′k′)′ β(lr) + τ

(lr)
i + τ

(lr)
i′ +

η
(lr)
j + η

(lr)
j′ + ζ

(lr)
ij + ζ

(lr)
i′j′ } − Ê (λijk|ys) Ê (λi′j′k′ |ys).

Let µij denote the average number of EP courses taken by twelfth grade students in stratum (i, j) over eight
semesters of high school. These quantities are of primary interest in the application. Let sij and Uij be sets that
denote the sample and the population of schools, respectively, in stratum (i, j). Let sijk and Uijk denote the sample
and the population of students in school (i, j, k). The number of students in the stratum is Nij =

∑
k∈Uij

Nijk,
where Nijk is the number of students in a school. The average µij can be considered as the sum of three terms:
µij = N−1

ij {
∑
k∈sij

∑
l∈sijk

Ỹijkl +
∑
k∈sij

∑
l/∈sijk

Ỹijkl +
∑
k/∈sij

∑
l∈Uijk

Ỹijkl}, where Ỹijkl|λijk ∼ Poisson (8λijk).
The first term consists of values observed in the sample adjusted to represent eight semesters. The second term
consists of unobserved student values in the selected schools. The third term consists of values from schools not in
the sample.

A Bayesian estimator of µij is E (µij |ys) = N−1
ij {

∑
k∈sij

8
∑
l∈sijk

yijkl/ωijkl+
∑
k∈sij

8(Nijk−nijk)E (λijk|ys)+∑
k/∈sij

8NijkE (λijk|ys)} ≡ N−1
ij {

∑
k∈sij

8
∑
l∈sijk

yijkl/ωijkl+ l′ijE (λ|ys)}. In the above, λ = {λijk} is a parameter

vector of Poisson distribution rates for schools in the entire population and l′ij = {0, · · · , 0, l̃ij , 0, · · · , 0} is the vector
of coefficients for stratum (i, j). In the latter expression, l̃ij = {lijk}k∈Uij

is the vector of values lijk in stratum (i, j).
The value lijk equals 8(Nijk − nijk) if k ∈ sij . It equals 8Nijk if k /∈ sij . The proposed HB estimator of µij is µ̂ij =
N−1
ij {

∑
k∈sij

8
∑
l∈sijk

yijkl/ωijkl + l′ijÊ (λ|ys)}. The posterior variance of µ̂ij is V (µij |ys) = N−2
ij {l′ijV (λ|ys) lij},

which can be estimated by plugging V̂ (λ|ys).

4. Benchmarked HB Model Selection

Model selection has always been an important dimension of model-based inference. If a statistical model is not
appropriate for a given relationship in the population, then analysis based on the model could be very misleading.
The appropriateness of a model is measured by not only the form of model structure but also the involvement of
covariate information. Variable selection concerns which of the possibly several predictor variables to use in a model.
The problem of variable selection can be viewed essentially as a problem of model selection in a statistical application.
The posterior predictive methods such as posterior predictive p-value, L-criterion, and deviance information criterion
(DIC) are commonly used for model selection.

The posterior predictive p-value (Meng 1994, Gelman, Meng, and Stern 1996) measures the tail-area probability
in the posterior predictive distribution based on a discrepancy measure which could be a test statistic or more
generally involving the unknown nuisance parameters from the model. A small p-value provides ”evidence” against
the assumed model. The L-criterion (Laud and Ibrahim 1995) measures the performance of a model by evaluating
expected posterior predictive errors and also calibrating on the uncertainty associated with the criterion value.
Hoeting and Ibrahim (1998) defined a calibration comparison score (CCS) which measures the number of calibration
units that a given model is from the model with the smallest criterion value. A simple model with a relatively small
CCS is preferred. The DIC (Spiegelhalter et al. 2002) calculates the sum of the posterior mean deviance and the
effective number of parameters, which is a Bayesian measure of fit or adequacy penalized by model complexity pD.
A model with smallest DIC value is tend to be selected. All the methods allow the use of non-informative prior
distributions, which could be desirable for model checking and comparison especially at the preliminary stage of
model exploration. They are easy to implement in many hierarchical models for which MCMC simulation can be
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performed. The posterior predictive p-value method can use multiple discrepancy measures to evaluate a model
based on just one set of simulation. On the other hand, a shortcoming of all the methods is that they can be
very conservative and have low power due to the double use of data. This shortcoming has been addressed and
discussed by Draper (1996) and Bayarri and Castellanos (2007). Alternative methods of avoiding the double use
of data include the partial posterior predictive p-value (Bayarri and Castellanos 2007) and cross-validated posterior
predictive checking (Stern and Cressie 2000; Larsen and Lu 2007). These alternatives are not considered here but
could be studied in the future.

In studies in which small areas are of interest but have small sample sizes, it can happen that there is a big
enough sample for producing reliable estimates for larger regions composed of groups of small areas. You, Rao, and
Dick (2004) proposed “benchmarking” the HB estimators of small areas so that the benchmarked HB estimators will
add up to the direct estimators in larger regions. For example, in the ISBE EP survey, we can benchmark the HB
estimators for AEAs (strata) in a certain size level so that the sum of the benchmarked HB estimators over all strata
in the size level equals the direct estimator of the size level. The benchmark property with respect to the size level
direct estimator is given by

∑
j Nij µ̂

BHB
ij =

∑
j Nij ˆ̄yij , where i ∈ {size level: 1 = large; 2 = medium; 3 = small},

j ∈ {12 AEAs}, and ˆ̄yij denotes the direct estimate of the population mean for stratum (i, j). In particular, the

raking-benchmarked HB (RBHB) estimator for stratum (i, j) is µ̂RBHBij = µ̂HBij

∑
j Nij ˆ̄yij∑

j Nij µ̂HB
ij

.
The variation associated with the BHB estimator under the assumed model can be measured by the posterior

mean square error (PMSE): PMSE(µ̂BHBij ) = E[(µ̂BHBi −µi)2|yobs]. When the BHB estimators are the same as the
HB estimators, E[(µ̂HBi − µ)|yobs] = 0 under the assumed model and the PMSE is equal to the posterior variance.
PMSE of the BHB estimator can be estimated as PMSE

(
µ̂BHBij

)
= V

(
µij |yobs

)
+
(
µ̂BHBij − µ̂HBij

)2, which is the

sum of posterior variance V
(
µij |yobs

)
and a bias correction term

(
µ̂BHBij − µ̂HBij

)2.
Benchmarked HB estimators are design consistent in larger regions, which is an attractive property. Due to

benchmarking the BHB estimators should be more robust to model failure than the HB estimators. When the
model is misspecified, benchmarking could correct the bias of the HB estimator to some degree. The PMSE derived
under the model, however, would be inflated correspondingly due to the bias correction. The farther the specified
model is from the true model, the more serious the inflation of PMSE there could be. Therefore, a big inflation of
PMSE can suggest possible model inadequacy. We can measure the degree of discrepancy between the model and
the observed data based on the degree to which benchmarking inflates the PMSE of the HB estimator. Below we
describe using benchmarked HB estimation results and PMSE inflation for the purpose of model selection.

Let ∆ = (PMSEBHB − PMSEHB)/PMSEHB , which is the relative change of PMSE due to benchmarking.
Equivalently ∆ = (µ̂BHB− µ̂HB)2/E[(µ̂HB−µ)2|yobs]. There are at least a couple of ways to translate this measure
into a discrepancy measure. Let h index small areas (strata) and ∆h be the value of ∆ for area h. We define D1;BMB

as the proportion of small areas having ∆h bigger than a certain value, say δ. The discrepancy can be expressed
as D1;BHB(y, θ) = H−1

∑H
h=1 I∆h>δ. For example, if we choose δ = z2

0.975 where z0.975 = Φ−1(0.975) is the 97.5%
percentile of a standard normal distribution, then ∆h > δ is equivalent to |µ̂BHBh −µ̂HBh | > z0.975

√
V (µh|yobs), which

means we are measuring the number of strata having benchmarked HB estimates falling out of the 95% asymptotic
normal posterior predictive intervals of the HB estimators. Alternatively, we can quantify the overall inflation of
PMSE for BHB versus HB as D2;BHB(y, θ) = H−1

∑H
h=1 ∆h, which is the average relative change of PMSE over all

small areas.
For a given discrepancy D(y, θ), the posterior predictive check will be based on the comparison between the

predictive discrepancy D(ypred, θ) and the realized discrepancy D(yobs, θ). The posterior predictive p-values based
on the discrete discrepancy D1;BHB(y, θ) and on the continuous discrepancy D2;BHB(y, θ) measure are defined as
ppost,1;BHB = Pr(D1;BHB(ypred, θ) ≥ D1;BHB(yobs, θ)|yobs) and ppost,2;BHB = Pr(D2;BHB(ypred, θ) > D2;BHB(yobs,
θ)|yobs). Estimating these posterior predictive discrepancies can be accomplished from MCMC output with a little
effort. In particular, for each value of θ and ypred, one must compute D1;BHB and D2;BHB . Thus, both the HB and
BHB estimates themselves are computed using MCMC for each ypred.

5. Simulation

To illustrate the performance of the proposed estimators and model comparison methods, we simulated a finite
population of EP courses taken by twelfth grade students from Iowa’s public high schools from a Poisson loglinear
model with random effects from size levels and AEAs: yijkl|λijk ∼ Poisson (λijk), log(λijk) = β0 +β1xijk;1 + τi+ηj .
Students in the simulated population were assumed to attend the same number of semesters so that the exposure
variable of the attendance of semesters was excluded. The enrollment size in twelfth grade was used as an auxiliary
variable x1 in generating the population data set. Population sizes in the simulation match actual population sizes
in Iowa’s school districts in 2004. One sample data set was drawn from the simulated population under the stratified
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three-stage design. Seven Poisson-loglinear models consisting of different combinations of auxiliary variables and
random effects (Lu and Larsen 2007a) were fit to the sample data. Among these models, model 3 is the model from
which the population was simulated.

Table 1 shows the results of comparing the seven models using the three existing methods discussed in Section
4 and the method of posterior predictive checking based on the newly developed benchmark discrepancies. The
posterior predictive p-value using the χ2-discrepancy

∑
i,j,k,l∈s(yijkl − λijk)2/λijk is denoted ppost;χ2 . The p-values

based on the benchmark discrepancies are denoted ppost,1;BHB and ppost,2;BHB , respectively. According to Ppost;χ2 ,
models 1, 2, 5 and 6 show strong evidence of model failure. Models 3, 4 and 7 have no indication of model inadequacy
based on the same measure. Of these, model 3 is the most parsimonious. When using the L-criterion, model 7 has
the smallest criterion value. Calibrated by the standard deviation of the criterion value under model 7, the CCSs
for models 1, 2, and 6 are larger than the value of 3, which is too extreme. Model 5 is the smallest model with a
not extreme CCS. Among models having small DIC value, model 3 has the smallest number of effective parameters.
When using benchmarked HB model selection based on discrepancy D1;BHB(y, θ), only models 2 and 6 end up with
extreme ppost,1;BHB values. The other models show no significant incompatibility between model and data. Of
these, model 1 is the winner according to the parsimonious rule. When using the discrepancy D2;BHB(y, θ), models
1, 2 and 6 have very extreme ppost,2;BHB values. The other models have shown no extreme patterns of the observed
data relative the replicate predictive data in terms of the discrepancy D2;BHB(y, θ). Model 5 is the simplest model
among models with ppost,2;BHB bigger than 0.05. The ppost;χ2 and DIC criteria successfully choose the true model.
The L-criterion and ppost,2;BHB select model 5 which is only different from the true model by omitting the first
covariate variable x1. The reason could be the coefficient of x1 is very small and the range of x1 is also very short
so that the effect of the first covariate term is small relative to other effects. By comparing the HB estimates under
models 3 and 5, model 5 produces slightly larger absolute relative bias (ARB) to the realized finite population mean
and higher posterior mean square error (PMSE) in most of strata, but the estimates under two models are still very
close. The ARB is defined as the absolute value of the relative bias of the estimate over the realized finite population
value. The ppost,1;BHB fails to detect the significant model inadequacy of model 1. The discrepancy D1;BHB(y, θ),
being discrete, probably loses some power relative to quantitative D2;BHB(y, θ). Basically, all the Bayesian model
comparison methods discussed above except discrepancy D1;BHB(y, θ) work well in selecting an appropriate model
for further analysis. One lesson of this work is that referring to multiple criteria if practically feasible should be
helpful in making a good decision. See Larsen and Lu (2007) for another example in this spirit.

Table 1: Model selection results for the simulation. Model 3 is the true model. ppost:χ2=posterior predictive
p-value based on the χ2 discrepancy. CCS=calibration comparison score for the L-criterion value. DIC=deviance
information criterion. pD=effective number of parameters. ppost,1;BHB=posterior predictive p-value based on the
discrepancy D1;BHB(y, θ). ppost,2;BHB=posterior predictive p-value based on the discrepancy D2;BHB(y, θ). Bold
values indicate models that cannot be declared inappropriate.

ppost;χ2 CCS DIC pD ppost,1;BHB ppost,2;BHB

M1 0.000 5.51 20410 2.22 0.455 0.000
M2 0.000 3.92 20160 3.85 0.035 0.000
M3 0.125 0.03 19500 14.93 1.000 1.000
M4 0.146 0.01 19500 20.70 1.000 1.000
M5 0.011 0.67 19610 13.78 1.000 1.000
M6 0.000 5.40 20350 4.05 0.019 0.000
M7 0.146 0.00 19500 24.98 0.978 0.997

In a preliminary study (Lu and Larsen 2006), we compared direct survey estimates based on a ratio estimator
and on the Horvitz-Thompson estimator for estimates within strata. The ratio estimator produced estimates with
smaller variance and mean square error (MSE) in the Monte Carlo study. Then we compare the model-based HB
estimator with the design-based ratio estimator based on the absolute relative bias (ARB) and root mean square
error (RMSE) for individual strata (Lu and Larsen 2007a). The MSE of the ratio estimator is estimated through
Monte Carlo simulation. For the single randomly selected sample in the simulation, the ratio estimator produces
consistently larger ARBs for most of strata and shows much higher variation and produces consistently larger RMSE
than HB estimator at the small area level when the model is correct. As a hybrid of ratio and HB estimators, the
BHB has ARBs and variation of estimates between the other two.

Also since in reality we usually have only one set of sample data, it is difficult to estimate MSE through replicated
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samples that are really generated from the finite population. People usually use the standard error to quantify the
design variation of direct estimator. Unfortunately, in a one-PSU-per-stratum design, there are not enough degrees
of freedom to estimate variance directly. Besides the concern of reliability of the direct estimator, the assessment of
precision of the estimator is also a challenging problem. In the case of our application, the collapsing strata synthetic
variance (CSSV) estimator significantly overestimated the variances in small areas. The collapsed strata restricted
generalized variance function synthetic variance (CRGVFSV) estimation method (Lu and Larsen 2007b, 2008) did
better, but since it is still design-based in substance, it would inherent the instability of the direct estimator in small
sample cases. In contrast with the direct estimator, the HB estimator with a properly specified model produces
more reliable estimates in terms of smaller PMSE. The advantage of using a model-based estimator is significant in
terms of producing more efficient and reliable estimates. The BHB estimator has larger PMSE than HB estimator
due to the benchmarking procedure, but it still produces smaller variance than the ratio estimator for most of the
strata, especially for strata with a single PSU in the sample.

6. ISBE Survey Data

The actual survey data were collected in 2005 from 51 sample schools in 11 AEAs. Hierarchical Bayesian (HB)
estimation are applied to analyze the survey data. We fit both Poisson-Lognormal and Poisson-Gamma models to
the survey data and compare models with different combinations of auxiliary variable and random effects. Neither
of the L-criterion and DIC methods can tell even a slight difference between the models. The posterior predictive
p-values based on nine discrepancy measures are calculated under each model structure. The p-values based on all
measures do not show any difference between the models under the same model structure. For example, the nine
discrepancies used for Poisson-Gamma model are: D1 =

∑
i

∑
j

∑
k ȳijk =

∑
i

∑
j

∑
k

(∑
l∈sijk

yijkl/
∑
l∈sijk

ωijkl

)
,

D2 =
∑
i

∑
j

∑
k

∑
l∈sijk

(yijkl−ωijklλijk)2

ωijklλijk
, D3 =

∑
i

∑
j

∑
k
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, D4 = maxi,j,k,l∈s (yijkl/ωijkl), D5 =

mini,j,k,l∈s (yijkl/ωijkl), D6 = maxi,j,k,l∈s (yijkl/ωijkl)−mini,j,k,l∈s (yijkl/ωijkl), D7 = maxi,j,k∈s ȳijk, D8 = mini,j,k∈s ȳijk,
and D9 = maxi,j,k∈s ȳijk −mini,j,k∈s ȳijk, where ωijk =

∑
l∈sijk

ωijkl. Measures D2 (the first level χ2-discrepancy)
and D5 (the minimum) indicate an inadequacy of the Poisson model at the school level. Accordingly, we would
like to consider a more complex model structure such as a zero-inflated Poisson model or a mixture Poisson model
for capturing the distribution pattern of students within schools in the future. Results for the Poisson-Lognormal
model structure are the same. The one difference is that the p-values based on measure D3 (the second level χ2-
discrepancy) under the Poisson-Lognormal models are consistently larger than those under Poisson-Gamma models.
This difference suggests distinct performance of two model structures.

Consider, for example, the models with only AEA effects. The Poisson-Lognormal model produces significantly
higher second level χ2-discrepancy measure (D3) in the posterior predictions than it does for the realized data.
Using the same explanatory variables, the Poisson-Gamma model produces posterior predictive discrepancies fairly
evenly around the realized discrepancy value. This indicates the data generated from the fitted Poisson-Lognormal
model have more variation than the observed data. The data generated from the fitted Poisson-Gamma model show
no extreme pattern compared with the acutal data. The underlying reason for this is the higher skewness for the
Poisson-Gamma distribution.

Figure 1 shows the probability density functions of Gamma ( 1
e−1 ,

1
(e−1)e1/2 ), Lognormal(0, 1) and Lognormal(0, 2.5)

distributions. The Gamma ( 1
e−1 ,

1
(e−1)e1/2 ) and Lognormal(0, 1) have exactly the same mean (e1/2) and variance

(e(e − 1)), but the shapes of the two distributions are different. The Gamma distribution is more skewed towards
zero with much bigger probability for values around zero. The Lognormal(0, 2.5) with larger variance than the other
lognormal distribution matches the Gamma distribution except around the area very close to zero. Therefore, if the
data were actually generated from a Poisson-Gamma distribution, to fit the data using Poisson-Lognormal model
would result in an estimated model with larger variance.

Table 2 shows the posterior predictive p-values based on the discrepancy D2;BHB(y, θ). The model with only an
auxiliary variable and no random effects has the biggest average inflation of PMSE under either model structure. The
models including only size effect with and without the auxiliary variable also have much larger realized discrepancy
values than other models that include an AEA effect. To see whether the realized discrepancy is extreme or not under
the assumed model, we compare the ppost,2;BHB values. For the Poisson-Gamma models, the ppost,2;BHB values show
that there are relatively smaller chances to have more extreme discrepancy values in the replicated predictions than
for the actual data under the three models with significantly larger realized discrepancies. The relatively small
ppost,2;BHB values indicate these three models are less compatible with the actual data than other Poisson-Gamma
models in terms of producing model-based mean estimates that differ from the reliable direct estimates.

None of the Poisson-Lognormal models has an extreme ppost,2;BHB value. Even the three models (with Aux.,
Aux. & size, and Size) that have quite large realized discrepancy measures (greater than 3) have ppost,2;BHB values
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no less than 0.25. So the posterior predictive check based on the p-value for the given discrepancy measure shows no
evidence of model incompatibilities with the actual data for all Poisson-Lognormal models. Since for models which
have the same basic model structure and all fit the data well we usually choose the most parsimonious model for
further analysis. By only referring to the ppost,2;BHB values, we would like to select the Poisson-Gamma model with
only an AEA effect or a Poisson-Lognormal model with only an auxiliary variable. Further, to compare these two
models with different model structures, we computed (D2;BHB(ypred, θ)−D2;BHB(yobs, θ)) for the two models. The
posterior predictive discrepancies under the Poisson-Lognormal model have a much wider spread than those under
the Poisson-Gamma model. This indicates that there is generally more variation in the fitted Poisson-Lognormal
model than the Poisson-Gamma model, which is consistent with our previous finding based on examining the second
level χ2-discrepancy in the posterior predictions. This also explains why the Poisson-Lognormal models with very
large realized discrepancy values do not have extreme ppost,2;BHB values. Therefore, we prefer the Poisson-Gamma
model with only an AEA effect, which fits the data well with a relatively simple model structure and produces
reliable posterior estimates of means for small areas.

The analysis of the Iowa survey data gives an example in which the L-criterion and the DIC method have less
ability to choose models than the proposed method. The posterior predictive p-values using different discrepancy
measures show advantages of detecting incompatibilities between the data and different parts of the model. This
also was seen in Larsen and Lu (2007). The posterior predictive check based on the newly developed discrepancy
measure of the inflation of PMSE due to benchmarking the HB estimator did much better in assessing overall fit of
models than other examined discrepancies.
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Figure 1: The probability density function of Gamma (a = 1
e−1 , b = 1

(e−1)e1/2 ), Lognormal(0, 1) and
Lognormal(0, 2.5) distributions.

Table 2: The posterior predictive p-value ppost,2;BHB based on the discrepancy D2;BHB(y, θ) and the realized
discrepancy D2;BHB(yobs, θ) using the Poisson-Gamma and Poisson-Lognormal models for the Iowa survey data.
Bold realized discrepancy values indicate large deviation of HB from direct estimate in large regions, which suggest
potential model inadequacy. Bold p values indicate relatively small probability of observing more extreme predictive
data in terms of the discrepancy measure than the observed data, which suggest more incompatibilities between the
data and the models.

Models Poisson-Gamma Poisson-Lognormal
ppost,2;BHB D2;BHB(yobs, θ) ppost,2:BHB D2;BHB(yobs, θ)

Aux. 0.063 6.783 0.265 5.990
Aux. & Size 0.115 4.065 0.649 3.850
Aux. & AEA 0.345 0.644 0.879 0.733
Aux. & Size & AEA 0.389 0.362 0.639 0.474
Aux. & Size & AEA & Inter. 0.557 0.293 0.994 0.099
Size 0.057 3.407 0.315 3.255
AEA 0.475 0.588 0.762 0.987
Size & AEA 0.381 0.288 0.652 0.333
Size & AEA & Inter. 0.468 0.250 0.952 0.152
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7. Conclusion

In studies involving small areas with very small sample sizes, using a model-based estimator to produce reliable
estimates of small area quantities is desirable. A survey on transcripts of Iowa’s public high school students motivated
an examination of small area estimation through model-based inference. A hierarchical Bayes (HB) estimator was
proposed to obtain the estimates of the average number of EP courses taken by twelfth grade high school students
for strata defined by district size and AEA and for populations of aggregations of strata. When an appropriate
model is used, the HB estimator is shown to outperform the ratio estimator in a simulation study by borrowing
strength across strata and making better use of auxiliary information in terms of producing consistently smaller
absolute relative bias (ARB) (relative to the realized finite population mean) and root mean square error (RMSE)
for individual strata.

Effective model selection is crucial in the HB analysis. The issue of model selection not only includes selecting
proper model structure but also selecting covariate variables and proper forms of transformations of the variables.
A HB posterior predictive model comparison method utilizing benchmarking is developed and shown to have the
power to choose appropriate models in both a simulation study and a real data analysis. The proposed method
was compared to Bayesian model comparison based on the posterior predictive p-values using multiple discrepancy
measures, the L-criterion, and the deviance information criterion. The last two methods did a reasonable job in
the simulation study but showed less ability to detect inadequate models in analyzing the real data. The posterior
predictive p-value using multiple discrepancy measures showed advantages in comparing models which are undis-
tinguishable using the other two methods. The proposed discrepancy which measures the inflation of PMSE due
to benchmarking the HB estimator outperforms other examined discrepancy measures in terms of evaluating the
overall fit of models.

Future study will examine methods of choosing transformations of predictive variables and developing an efficient
strategy to combine the selection of variables and transformations in the application of Bayesian model selection.
In large-scale studies, since it is practically inefficient or impossible to compare all possible models with various
combinations of variables, we also hope to explore methods to narrow the range of candidate models. Further, given
the similarity of overall performance of many models, Bayesian model averaging in the small area context might be
another option for future study.
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