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Abstract
Surveys frequently have missing values for some variables for some units. Imputation is a widely used method in
sample surveys as a method of handling missing data problems. We provide a new imputation procedure for various
imputation models retaining many of the desirable properties of model-based imputation estimation and hot-deck
imputation under fractional imputation. The main objective of this procedure is to construct an easy-to-use data set
for general purpose estimation. We provide an extension of fractional imputation methods to general patterns of
missing data via maximum likelihood calibration.
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1. The EM Algorithm for Missing Data

When the full data model is correct and the response mechanism is ignorable, the observed-data likelihood contains
all relevant information about the parameters. Maximum likelihood estimates can be found by solving the estimating
equations produced by setting the derivaties of the observed data log likelihood equations to zero. In some cases, the
expressions for the first derivatives of the observed data log likelihood equation set to zero do not have a closed-form
solution. In such a case, iterative methods can be applied. The Newton Raphson algorithm is one of the candidate
algortihms for solving this problem. This method requires calculating the matrix of second partial derivativs of the
observed data log likelihood function. In pratice, the method requires careful algebraic manipulations and efficient
programming. An alternative strategy for incomplete-data problems, which does not require second derivatives to
be calculated, is the Expectation-Maximization (EM) algorithm propsed by Dempster, Laird and Rubin (1977).

Each iteration of the EM algorithm consists of two process: the E-step (Expectaion) and the M-step (Maximization).
In the E step, the functions of the missing data in the complete data log likelihood function are estimated by their
conditional expectations given the observed data and the current estimated parameters. In the M-step, the completed
log likelihood is maximized as it would be for ordinary ML estimation from the complete data log likelihood
under the assumption that the estimate of the missing data functions from the E-step have their estimated values.
A calculation involving Jensen’s Inequality shows that the algorithm is guaranteed to increase the observed data
likelihood at each iteration. If the log likelihood function is concave, then convergence is assured.

2. Fractional Imputation and Maximum Likelihood

A limitation so far of fractional imputation methods has been the existence of missing data in only a single variable.
Here we consider multivariate normal data with arbitrary patterns of missing data in several variables. Our objective
is to provie compeleted data sets with donors and weight sets retaining many of the desirable properties of ML
estimation. That is, we want the weighted data set with multiple donors for each missing value to match the results
for ML estimation.

In Section 4, we define the imputation method using adjusted fractional weights under the multivariate normal model
and an ignorable response model, which leads to missing data. The resulting estimates of parameters using the
completed data set including the imputed data will be algebraically the same as the maximum likelihood estimates
using only the observed data. As with other fractional imputation methods, one can estimate other parameter that
were not included in the imputation model, such as domain means and proportions. Experience suggests that the
fractional imputation methods provide reasonable estimates for these other parameters.

3. Notation and Model

Consider a finite populationU = {1, 2, . . . , N} with p variables potentially recorded for each subject. For theith

element of the finite population,yi = (yi1, . . . , yip), are the values of thep variables. We assume that the finite
population is a random sample from a superpopulation model. In this case, we assume the superpopulation model
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is thep-variate normal distribution with meanµ and covariance matrixΣ = (σjk). For i = 1, . . . , n, independently
and identically distributed,yi ∼ Np(µ,Σ). Let YN = (y1, y2, . . . , yN )

′
be the finite population of sizeN . The

interesting parameters are the finite population mean of each variable and the finite population covariance between
two variables. There are defined as follows:Ȳj,U = 1

N

∑
i∈U yij andSjk,U = 1

N−1

∑
i∈U (yij− Ȳj,U )(yik− Ȳk,U ).

For simplicity, the shorter notationYjandSjk are used in this section. Note thatSjk can be expressed as functions of
the population means̄Yj = N−1

∑
i∈U yij , Ȳk = N−1

∑
i∈U yik, Ȳjj = N−1

∑
i∈U y2

ij , Ȳkk = N−1
∑

i∈U y2
ik,

andȲjk = N−1
∑

i∈U yijyik. asSjk = N
N−1 (Ȳjk − Ȳj Ȳk).

If data were observed on the complete sample, estimators ofȲj and Ȳjk based on the sampleA with sizen are
ȳj,n =

∑
i∈A wiyij andȳjk,n =

∑
i∈A wiyijyik, wherewi = N−1π−1

i , πi = P (i ∈ A) is the probability that unit
i is in the sample, andA is the set of indices in the sample.

An estimator ofSjk is constructed as follows:sjk,n = N
N−1 (ȳjk,n − ȳj,nȳk,n), whereȳjk,n, ȳj,n, and ȳk,n are

sample estimates of the corresponding population means. For simplicity, the shorter notationyj , yjk andsjk are
used in the remainder of this section. By the definition ofwi, we haveE(ȳj |FN ) = Ȳj , E(ȳjj |FN ) = Ȳjj ,
E(ȳjk|FN ) = Ȳjk, andE(sjk|FN ) = Sjk, whereFN = {y1, . . . , yN}.

Assuming thatπi is greater than zero for alli and does not depend on values ofy for any units in the population,
since the population comes from a model for which all moments exist, the folllowing lemma is true.

LEMMA : Under the superpopulation model and an ignorable sampling mechanism,ȳj andsjk are consistent esti-
mators for finite population parameters.

4. Missing Data and the Proposed Method

Let Yn be a sample from the finite population produced by the sampling design. Assume that the sample design and
the response mechanism are ignorable. That is, we assume thatπi is greater than zero for alli and does not depend
on values ofy for any units in the population. We also assume the probability that a sampled unit is observed does
not depend on unobserved variables. We writeYn = (Yobs, Ymis), whereYobs is the set of observed values andYmis

is the set of missing values in the sample. Under a missing at random (MAR) assumption, treating the sample as an
iid sample from a multivariate normal distribution, the marginal distribution of the observed dataYobs can be used
to construct the correct likelihood for use in estimating the model parameters. In the multivariate normal case, under
the MAR assumption, the ML estimates ofµ andΣ can be obtained by maximizing the observed log likelihood with
respect toµ andΣ. In some cases, however, even for the multivariate normal model, the observed log likelihood
equations do not have a closed form solution. As was mentioned, iterative methods, such as Newton-Raphson,
Fisher scoring, and the EM algorithm can be used to produce ML estimates.

If the only interest were to produce estimates of model parameters without respect to the finite population and its
sampling design, then estimates ofµ andΣ using maximum likelihood estimation would have been sufficient. The
goal here, however, is estimation of finite population parameters. Further, the estimated parameters in the imputation
model do not necessarily lead to estimates of other parameters not included in the model, such as domain means and
proportions. To repeat, our objective in this section is to provide a method for making an easy-to-use data set for
the analyst that retains properties of the ML estimates and at the same time provides reasonalbe estimates for other
parameters.

To acheive our objective, the imputed valuesy∗ij for subjecti on variablej has to satisfy the following conditions.
We define the response indicator variable ofyij by Rij = 1 if variable j is observed for uniti andRij = 0 if
variablej is not observed for uniti.

WhenRij = 0, Rik = 0, andRis = 1 for s 6= j, k, y∗ij = E(yij |yobs,i, θ̂), y∗2ij = E(y2
ij |yobs,i, θ̂), andy∗ijy

∗
ik =

E(yijyik|yobs,i, θ̂), whereyobs,i denotes the set of variables observed for uniti andθ̂ = (µ̂, Σ̂) are ML estimates,
which possibly are obtained by iterative methods.

Since a single imputated donor value can not satisfy the above conditions, our approach is to use multiple donors
and assign adjusted fracional weights to the donors in order to satisfy the conditions. The imputed values based on
several donors and fractional weights can be defined as follows:y∗ij =

∑
t∈AD,i

w∗
itytj , whereAD,i is the donor set

of indices for missing uniti. Note that this donor set for uniti can be constructed by a systematic sampling method
from available donors sorted in some manner, simple random sampling without replacement from the observed
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cases, or selection of donors using some nearest neighbor method. If it is not important to use observed values as
imputed values, the imputed values can be generated from the conditional distribution given by observed casesyobs

and ML estimates. Then, the proposed method consists of finding the fractional weights satisfying the following
constraints. Two cases can be considered. First, forRij = 0 andRik = 1, j 6= k,∑

t∈AD,i

w∗
it

(
1, ytj , y

2
tj

)
=

(
1, E(yij |yobs,i, θ̂), E(y2

ij |yobs,i, θ̂)
)

. (1)

Second, forRij = 0, Rik = 0 andRis = 1 for s 6= j, k, the constaints are∑
t∈AD,i

w∗
it

(
1, ytj , ytk, ytjytk, y2

tj , y
2
tk

)
=

(
1, E(yij |yobs,i, θ̂), E(yik|yobs,i, θ̂), E(yijyik|yobs,i, θ̂), E(y2

ij |yobs,i, θ̂), E(y2
ik|yobs,i, θ̂)

)
. (2)

We can use a regression weighting technique or an empirical likelihood technique to find a solution to (1) and (2).
To avoid the chance of extreme weights, including possibly negative weights, the nonnegative fractional weights
method of Paik and Larsen (2007) or a modified Newton-Raphson method as in Chen, Sitter and Wu (2002) can be
used to solve the constraints. The size of donor sets for missing values do not necessarily need to be very large in
order to do this in general.

5. An Example: Trivariate Normal Sample with Bivariate Missing Data

Suppose that (y, z, x) have a trivariate normal distribution with a mean vectorµ = (µy, µz, µx) and a covariance
matrixΣ with entriesσ̃ = (σyy, σyz, σyx, σzz, σzx, σxx). Let θ = (µ, σ̃). Suppose a random sample with a certain
pattern of missing data is obtained from this distribution. The values ofx are observed for all units. Some values
of y andz are missing under the MAR assumption. We can define four groups of units based on their missing data
patterns. The first groupArr of units have bothy andz observed. The second groupAmr hasz observed but is
missingy. The third groupArm hasy observed but is missingz. The fourth groupAmm has bothy andz missing.
Under a MAR assumption, the ML estimatesθ̂ of θ can be obtained by maximizing the observed data log likelihood,
possibly with iterative methods of solution.

The constraints (1) and (2) in this situation can be expressed as follows. Fori ∈ Amr,
∑

t∈AD,i
w∗

it(1, yt, y
2
t ) =(

1, E(yi|zi, xi, θ̂), E(y2
i |zi, xi, θ̂)

)
. For i ∈ Arm,

∑
t∈AD,i

w∗
it(1, zt, z

2
t ) =

(
1, E(zi|yi, xi, θ̂), E(z2

i |yi, xi, θ̂)
)

.

Fori ∈ Amm,
∑

t∈AD,i
w∗

it(1, yt, zt, ytzt, y
2
t , z2

t ) =
(
1, E(yi|xi, θ̂), E(zi|xi, θ̂), E(yizi|xi, θ̂), E(y2

i |xi, θ̂), E(z2
i |xi, θ̂)

)
.

Since the data are assumed to come from a multivariate normal distribution, we can give explicit formulas for
expectations and conditional expectations:

E(yi|zi, xi, θ̂) = µ̂y + (σ̂yz, σ̂yx)
(

σ̂zz σ̂zx

σ̂zx σ̂xx

)−1 (
zi − µ̂z

xi − µ̂x

)
,

V (yi|zi, xi, θ̂) = σ̂yy − (σ̂yz, σ̂yx)
(

σ̂zz σ̂zx

σ̂zx σ̂xx

)−1 (
σ̂yz

σ̂yx

)
,

E(yi|xi, θ̂) = µ̂y +
σ̂yx

σ̂xx
(xi − µ̂x),

V (yi|xi, θ̂) = σ̂yy −
σ̂2

yx

σ̂xx
, and

C(yi, zi|xi, θ̂) = σ̂zy −
σ̂yxσ̂zx

σ̂xx
. (3)

Similarly, we can calculate other conditional expectationsE(zi|xi, θ̂), V (zi|xi, θ̂), E(zi|yi, xi, θ̂), andV (zi|yi, xi, θ̂).

The proposed imputed estimators of population means in Section 3 are defined respectively as

ȳI,j =
∑
i∈A

∑
t∈AD,i

wiw
∗
itytj and ȳI,jk =

∑
i∈A

∑
t∈AD,i

wiw
∗
itytjytk, (4)
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wherewit = 0 whenRij = 1 andi 6= t, AD,i has only one unityij , andwii = 1. In addition, the imputed estimators
of population covariance in Section 3can be written as

sI,jk =
N

N − 1
(ȳI,jk − ȳI,j ȳI,n). (5)

6. A Theoretical Result

THEOREM : The imputed estimators in (4) and (5) based on the fractional imputation described in this section
are consistent estimators for finite population parameters under the superpopulation model in Section 3 and the
following assumptions. First, assume that

K1 ≤
n

N
wi ≤ K2 (6)

for all i = 1, . . . , N , uniformly in n, whereK1 andK2 are fixed constants implying that no extreme weights
dominate the others. Second, suppose that the maximum likelihood estimatorθ̂ of θ is available and, under some
regularity conditions,̂θ = θ + Op(1/

√
n). Third, the first derivatives of the conditinal distributionE(ymis|yobs, θ)

are bounded.

The proof of this result will be included a paper to be submitted to a refereed journal. Please contact the authors if
you are interested.

7. Discussion of Practical Issues

In order to use the proposed fractional imputation method, one must construct weights satisfying (1) and (2). It is
important to avoid the extreme weights beacuse applying these weights to make estimates for various domain means
and proportions may produce unrealistic estimates for some domains and proportions. In this section, we consider
the method of constructing fractional weights to avoid the chance of extreme weights like negative weights.

We want to select fractional weightsw∗
tj satisfying (1) and (2) with0 ≤ w∗

tj ≤ 1 for t ∈ AD,i. This leads to a
constrained minimization problem that can be solved by Lagrange multipliers. We must minimize the following
expression. For each missing uniti,

Q(w∗
tj) = d(w∗

tj , αtj)− λ
′
T (w∗)− λ0

 ∑
t∈AD,i

w∗
tj − 1

 , (7)

whereαtj = 1/M is an initial weight under simple random sampling without replacement,M is the size of donor
set,T (w∗) is a re-expression of the statistic in terms of the fractional weights,w∗ = {w∗

tj , t ∈ AD,i} andd(., .) is
a distance measure. Note that initial weightsα can be considered the empirical probabilites on the donor variables.

Various distance measures can be used for our problem. Specially, Hellinger distance and Entropy distance measures
can be applied for nonnegative weights. A common distance measure between two sets of probabilities is Entropy

measure,d(w∗
tj , αtj) =

∑
t∈AD,i

w∗
tj log(w∗

tj

αtj
). Then we need to solve the following expression under entropy

distance measure:

log(Mw∗
ij) + 1− λ

′ ∂

∂w∗
ij

T (w∗)− λ0 = 0, (8)

subject to the constraintsT (w∗) = 0 and
∑

tinAD,j
w∗

tj = 1.

In the case of (1), implying that onlyjth variable is missing amongp variables,T (w∗) can be written as

T (w∗) =
∑

t∈AD,i

w∗
it

(
1, ytj − E(yij |yobs,i, θ̂), y2

tj − E(y2
ij |yobs,i, θ̂)

)
(9)

and the expression in (8) can be reduced tolog(Mw∗
tj) + 1− λ1ytj − λ2y

2
tj − λ0 = 0. Using the previous formula

and
∑

t∈AD,i
w∗

tj = 1, the adjusted fractional weights can be written asw∗
tj = e

λ̂1ytj+λ̂2y2
tj∑

t∈AD,i
e

λ̂1ytj+λ̂2y2
tj

, where thêλk,

k = 1, 2 are the solutions toT (w∗) = 0 in (9). In general, a Newton-Raphson method can be used to solve the
nonlinear equationsT (w∗) = 0. The resulting fractional weights will be positive and0 ≤ w∗

tj ≤ 1, t ∈ AD,i and
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be satisfying the constraints (2) or (1).

Note that the Euclidean distance always has a solution in (7) but the resulting weights can be negative and extremly
large. Otherwise, the Entropy distance measure is guaranteed to obtain non-negative weights but a solution is not
guaranteed for some unlucky samples of donor. To avoid an “unlucky” donor set, one apprach is to use a modified
sampling mechansim to select donors where the first and second moments in donor sets are possibly close to those
of the conditional distribution given by observed data and estimated values of parameters.

Further practical consideration for fractional imputation are discussed in regard to the implementation of the simu-
lation.

8. Variance Estimation

When the final user is different than the data provider, it is common practice to include a set of replicate weights
in the data set for purposes of variance estimation. Fuller and Kim (2005) point out the advantage of providing a
single set of replicate weights: “A single set of replicates can be used for variance estimation for imputed variables,
variables observed on all respondents, and under assumptions, for function of the two types of variables.”

To consider replication variance estimation, let a replication variance estimator for the complete sample be

V̂ (ξ̂n) =
K∑

k=1

ck(ξ̂(k)
n − ξ̂n)2, (10)

with ξi being any component of the matrixyiy
′

i, ξ̂(k) is thek-th estimate ofξN , based on the observation included
in thek-th replicate,K is the number of replicates andck is a factor associated with replicatek determined by the
replication method. When the original estimatorξ̂n is a linear estimator, thek-th replicate estimate of̂ξn can be
written asθ̂(k)

n =
∑

i∈A w
(k)
i ξi, wherew

(k)
i denotes the replicate weight for theith unit of thek replication.

Let thekth replicate of the fractional imputation estimator beξ̂
(k)
I,n. Let a replication variance estimator for the

fractional imputed estimator be

V̂ (ξ̂I,n) =
K∑

k=1

ck(ξ̂(k)
I,n − ξ̂I,n)2, (11)

whereξ̂I,n =
∑

i∈A

∑
t∈AD,i

wiw
∗
itξi andξ̂

(k)
I,n =

∑
i∈A

∑
t∈AD,i

w
(k)
i w

(∗k)
it ξi.

The replicated fractional weightsw∗(k)
tj in (11) are to be constructed using a regression weighting technique that

leads to a solution satisfying the following constraints. ForRij = 0 andRik = 1, j 6= k,
∑

t∈AD,i
w∗

it

(
1, ytj , y

2
tj

)
=(

1, E(yij |yobs,i, θ̂
(k)), E(y2

ij |yobs,i, θ̂
(k))

)
. ForRij = 0, Rik = 0 andRis = 1 for s 6= j, k,∑

t∈AD,i
w

(k)∗
it

(
1, ytj , ytk, ytjytk, y2

tj , y
2
tk

)
=

(
1, E(yij |yobs,i, θ̂

(k)), E(yik|yobs,i, θ̂
(k)), E(yijyik|yobs,i, θ̂

(k)),

E(y2
ij |yobs,i, θ̂

(k)), E(y2
ik|yobs,i, θ̂

(k))
)

, whereθ̂(k) is the MLE estimate ofθ based on thekth replicate sample.

Provided that the variance estimator of the complete estimator in (10) is consistent, the proposed variance estimator
of the FI estimator is also consistent for the finite population means and covariances.

9. Simulation

In order to demonstrate the performance of the proposed estimators, we generate a finite population of sizeN =
5, 000 with three variablesUi = (Yi, Zi, Xi) from trivariate normal distribution with the mean vectorµ = (1, 2, 3)
and covariance matrixΣ with entriesσ̃ = (σyy = 1, σyz = 0.8, σyx = 1, σzz = 2, σzx = 1.5, σxx = 2). In
addition, an indicator of membership in a domain,Di, is generated from the uniform(0, 1) distribution, independent
of Yi, Zi andXi. The domain will be defined byDi being below a set cutoff value.

Monte Carlo samples of sizen = 200 were generated by simple random sampling from the finite population. From
each sample, we also generated response indicator variablesR1i andR2i from a Bernoulli distribution with the
response ratesp1 = 0.65 andp2 = 0.55, independently. The variableYi is observed if and only ifR1i = 1. The
variableZi is observed if and only ifR2i = 1. The probability of responding to both variables is then0.55 ∗ 0.65 =
0.3575, or 35.75%. In simulations, the average rate of responding to both variables was approximately36.6%.

For the comparison, we used following methods:
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1. ML Maximum Likelihood Estimation using EM algorithm.

2. FI Fractional Imputation Estimation proposed in this section withM = 10 donors.

3. MI Multiple imputation withM = 10 repeated imputations.

In ML, we used estimates based on complete data set (bothY andZ are observed) as the starting values.

In the case of FI, the selection of donors must be done carefully. Since the fractional weights constructed by the
regression weighting technique in FI can be quite variable, producing some large weights, or even negative weights
to satisfy the constraints (1) and (2). In this simulation, we used a slightly modified selection method based on
the nearest neighbor criterion and simple random sampling. The nearest neighbor criterion is used for avoiding
some extreme weights. Simple random sampling without replacement is used for preserving the observational
distribution, instead of relying on the model to generating simulated values for imputation. In particular, for missing
unit j, two closet donors are selected where one is the closest oneE(Umis|Uobs, θ̂) among the set of observed unit
havingUobs-values greater thanE(Umis|Uobs, θ̂) and the other one is the closest oneE(Umis|Uobs, θ̂)-value among
the set of observed unit havingUobs-values less thanE(Umis|Uobs, θ̂). After selecting two donors, theM − 2
donors are selected with simple random sampling without replacement. One option when the fractional weights are
negative is to select a new set of donors in the hope that the resulting weights will all be positive. When some of
the final fractional weightsw∗

tj are still negative or extreme, then the algorithm for producing nonnegative fractional
regression weights proposed by Paik and Larsen (2007) was applied to produce nonnegative fractional weights
satisfying (1) and (2).

For MI, the missing values are generated from the posterior predictive distribution of the data given the observed
values. The method of multiple imputation for the multivariate normal model is used as follows:

MI 1 For each repetition of the imputation,k = 1, . . . ,M , drawΣ∗(k)|Uobs ∼i.i.d Inverse-Wishartv−1(S), wherev
is the size of the setArr andS is the sum of squares matrix about the sample mean on complete dataArr:
S =

∑
Arr

(Ui − Ūr)(Ui − Ūr)
′
, whereŪr is the mean ofUi onArr.

MI 2 GenerateŪ∗
(k)|

(
Uobs,Σ∗(k)

)
∼i.i.d N(Ūr,Σ∗(k)).

MI 3 For missing unitj, generatee∗j(k)|
(
Ū∗

(k),Σ
∗
(k)

)
∼i.i.d N(0,Σ∗(k)). ThenUj(k) = E(Uj |Uobs, Ū

∗
(k)) + e∗j(k)

is the values associated with unitj for kth imputation.

MI 4 Repeat steps 1-3 independentlyM times.

10. Simulation Results

The population parameters that are studied in this simulation are listed below.

1. Population values:̄YN , Z̄N , Syy,N , Szz,NSyz,N , Syx,N andSzx,N ,

2. Domain values:̄YD,N andZ̄D,N are means ofY andZ whereD < 0.45,

3. Py,N = proportion ofY > 1.65, and

4. Pz,N = proportion ofZ < 1.38.

For variance estimation, we have considered the FI estimator and the MI estimator of variance. For the FI variance
estimator, we used the jackknife variance estimation method discussed in previous section. In case of the MI
variance estimator, the simple variance formula of Rubin (1987) is used.

The Monte Carlo results for 5,000 samples generated are given Table 1 and Table 2. Table 1 shows the mean
and variance of the point estimators for three methods. The properties of the variance estimators (MI and FI) are
given in Table 2. Table 2 shows the relative bias and t-statistic for the variance estimators. The relative bias of the

variance estimator is estimated byRB = EMC(V̂ (ξI))−VMC(ξ̂I)

VMC(ξ̂I)
× 100, whereVMC is the Monte Carlo variance

given in Table 1. The t-statistic is the statistic used to test the significance of the bias of the variance estimator:
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t =
√

B × EMC(V̂ (ξ))−VMC(ξ̂I)

VMC(V̂ (ξ))
, whereB is the number of replications.

The proposed FI estimator provide the same results as the EM method for the finite populations parameters except
for domain means and proportions. The estimation of domain mean and proportions are not available based on EM
methods.

In Table 1, the proposed FI estimator shows more efficency than the MI estimator for all parameters except the
proportions. Results are about the same when the imputed values are generated from the conditional distribution
given the observed data.

In Table 2, the replication variance estimation procedures are nearly unbiased for all parameters except for the
domain means in this set up. Since the adjusted replicate weights constucted as part of the process for estimating
the variance of the fractional imputed estimator for the finite population means was applied to obtain estimates for
variance of the domain estimators, variance estimation for the domain mean estimators is slighly biased. However,
the FI variance estimators for domain means are much better than the MI variance estimators. The MI variance
estimation procedure provides consistent estimates for the variance of the parameter estimates in the imputation
model. Even though the correct imputation model is used, the variance estimators are seriously biased for domain
means and proportions which are not included in the imputation model. A bias of the MI variance estimator for
domain means where the domain information is not used for imputation was pointed out by Fay (1992) and Kim
and Fuller (2004).

11. Conclusion

Based on the simulation results, the proposed fractional imputation method seems to be a good imputation method
because it retains the diserable propoerties of maximum likelihood estimation when estimating the parameters of
the super population model, uses actually observed values, and produces a single set of general purpose replicate
fractional weights. In addition, it provides reasonable estimates for other parameters that were not included in the
imputation models. As with other fractional imputation methods, an easy-to-use data set was constructed for general
purpose estimation. For the completed data set constructed by the proposed procedure, the standard estimates at the
aggregate level of analysis are equivalent to model-based imputation estimates based on maximum likelihood for
parameters in the imputation model.
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Table 1: Monte Carlo means and variances for imputa-
tion estimators, based on 5,000 samples.

Parameter Method Mean Variance
Actual 1.02

ȲN EM 1.02 0.0062
FI(M=10) 1.02 0.0062
MI(M=10) 1.02 0.0065
Actual 2.03

Z̄N EM 2.03 0.0137
FI(M=10) 2.03 0.0137
MI(M=10) 2.03 0.0147
Actual 1.00

S̄yy,N EM 1.00 0.0146
FI(M=10) 1.00 0.0146
MI(M=10) 0.97 0.0153
Actual 2.03

S̄zz,N EM 2.02 0.0063
FI(M=10) 2.02 0.0063
MI(M=10) 2.04 0.0087
Actual 0.82

S̄yz,N EM 0.82 0.0207
FI(M=10) 0.82 0.0207
MI(M=10) 0.82 0.0213
Actual 1.01

S̄yx,N EM 1.01 0.0172
FI(M=10) 1.01 0.0172
MI(M=10) 1.01 0.0177
Actual 1.51

S̄zx,N EM 1.51 0.0384
FI(M=10) 1.51 0.0384
MI(M=10) 1.51 0.0404
Actual 1.02

ȲD,N FI(M=10) 1.02 0.0135
MI(M=10) 1.02 0.0191
Actual 2.03

Z̄D,N FI(M=10) 2.03 0.0211
MI(M=10) 2.03 0.0245
Actual 0.26

Py,N FI(M=10) 0.26 0.0012
MI(M=10) 0.26 0.0012
Actual 0.32

Pz,N FI(M=10) 0.32 0.0013
MI(M=10) 0.32 0.0013

Table 2: Relative biases and t-statistics for the variance
estimators, based on 5,000 samples.

Parameter Method RB(%) t-statistic
ȲN FI(M=10) 0.51 0.12

MI(M=10) -1.61 -0.80
Z̄N FI(M=10) 4.06 2.05

MI(M=10) 5.09 2.47
S̄yy,N FI(M=10) -2.66 -1.23

MI(M=10) -2.76 -1.38
S̄zz,N FI(M=10) 2.34 1.42

MI(M=10) -3.07 1.48
S̄yz,N FI(M=10) 1.07 0.37

MI(M=10) 5.07 2.50
S̄yx,N FI(M=10) -1.28 -0.60

MI(M=10) 3.92 1.91
S̄zx,N FI(M=10) 3.51 1.22

MI(M=10) 8.47 4.25
ȲD,N FI(M=10) -6.12 -3.13

MI(M=10) 14.68 7.29
Z̄D,N FI(M=10) -7.21 -3.97

MI(M=10) 27.93 13.28
P̄y,N FI(M=10) -1.51 -0.71

MI(M=10) 14.35 6.49
P̄z,N FI(M=10) 1.60 0.78

MI(M=10) 24.00 12.02
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