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ABSTRACT 
 

Two phase designs are useful for increasing estimation efficiency (i.e., reduced mean squared error) for reasons 
including deep stratification, improved nonresponse adjustment and calibration controls, and reduced coverage bias.  
They are also useful for increasing sample efficiency (i.e., reduced operational cost and implementation difficulties) 
for reasons including reduced screening cost, current contact information, and integrating surveys by using the first 
phase as a master sample. Despite these benefits, such designs are not in wide use due to difficulty in variance 
estimation unlike the two stage single phase designs under the with-replacement-primary-sampling-unit (wrpsu) 
assumption. A nesting modification of two phase (cluster followed by element sampling) designs is proposed in the 
sense that the second phase sampling is nested within each first phase cluster and is performed pps (probability 
proportional to size) with size measures determined by sample allocation rates to domains defined by second phase 
stratification variables. It also allows for implicit stratification within each cluster with respect to primary 
stratification and other auxiliary variables. However, due to clusters being treated as design strata, actual sample 
sizes in the original second phase design strata are random but in expectation nearly match the target sample 
allocations. With this modification, which is a two phase-stage hybrid, the usual single phase simplified variance 
estimation under the wrpsu-assumption remains applicable even if the second phase variance is not estimable. 
Comparison with alternative methods is discussed. 
 
Key Words: Conditionally Unbiased and Conditionally Independent Cluster Total Estimates; Two Phase 
Variance Estimation; With Replacement PSU Assumption. 
 

1. Introduction and Summary 
 

In a fundamental paper on survey sampling, Neyman (1938) introduced double (or two phase) sampling for 
stratification for more sample efficiency (i.e., reducing operating cost and implementation difficulties) as well as  for 
more estimation efficiency  (i.e., reducing MSE-mean squared error).  For a study variable with high variability in 
the population, it may be expensive to obtain a reasonable parameter estimate because of the need of a large sample 
size. This is even more so if information on the variable is expensive to collect.  The success of two phase sampling 
rests on the fact that it may be inexpensive to collect data on auxiliary variables well-correlated with the study 
variable in a large first phase sample, and then this is used for stratification (for over- or under- sampling) in the 
second phase to collect a much smaller sample of data on the study variable. Although the two phase sampling may 
seem to be more expensive to implement because of two phases of interviewing and field operational cost, the 
resulting gain in efficiency may offset the extra cost. The large first phase sample can produce a frame with rich 
information about correlated auxiliary variables that could not only be used for deep stratification at the second 
phase, but also for calibration control totals (random but based on a large sample) for more efficient estimation. It is 
also known that a rich frame (i.e., having good auxiliary variables) is highly advantageous for reducing nonresponse 
bias; see Scheuren (2006) on the use of para data and Groves (2006) for an interesting discussion on the importance 
of good auxiliary variables versus efforts to reduce nonresponse rates.  
 
Two phase designs have the potential of offering new solutions to some challenging and pressing problems. As an 
example, a cost effective alternative to dual frame designs can be suggested to deal with the well known problem of 
bias due to noncoverage of cell-only households in telephone surveys, see e.g., Wolter and Chowdhury (2008). 
Suppose in the first phase, clusters defined as geographic neighborhoods are selected by pps (probability 
proportional to size) and a rich frame containing basic information on age, gender, race along with contact 
information and interview preference (mail, telephone-landline or cell, or internet) for each household is constructed. 
For sample efficiency, the first phase data can be collected by neighbor-administered personal interview where using 
a telephone list a person in the neighborhood can be recruited for a moderate compensation somewhat similar to part-
time student employment. Note that respondents’ trust and cooperation are expected for the interview conducted by a 

Section on Survey Research Methods – JSM 2008

2501

mailto:avi.singh@statcan.gc.ca


neighbor provided there are no sensitive questions raising privacy concerns. Next the primary auxiliary variables 
collected in the first phase are used for stratification in the second phase and then households in the second phase 
strata are selected pps perhaps with implicit stratification on secondary auxiliary variables. Finally data on study 
variables are collected by trained interviewers using respondent’s preferred mode. This two phase design with 
possibly different interview modes in the two phases may be useful in reducing high screening costs associated with 
rare or specific target populations (such as households with special health care needs) by collecting appropriate basic 
information in the first phase. An example of an alternative to two phase is the single phase approach considered by 
Srinath (2004) using dual frame designs for telephone surveys by random digit dialing in the context of National 
Immunization Survey (re: Smith et al., 2001). Two phase designs may also offer a cost effective alternative for 
updating contact information for the second phase interview if the basic information can be collected inexpensively 
in the first phase as in the case of neighbor-administered personal interview mentioned earlier. Recently, two phase 
designs are also being used for secondary surveys in the interest of sample and estimation efficiencies, where the 
sample from the main survey (or surveys) serves as the first phase, i.e., as a master sample for integrating secondary 
surveys; for example, the American Community Survey conducted by the US Census Bureau. However, issues such 
as respondent fatigue may be of concern with the master sample approach because data collected at the first phase 
consist of more than just the basic information about respondents. 
 
Despite a long list of possible advantages of two phase designs, such designs are not commonly used unlike single 
phase two (or higher) stage designs, the main reason being that the golden rule of wrpsu-based simplified variance 
estimation formula for single phase designs is not applicable in general to two phase designs. Consequently, various 
popular replication methods for variance estimation, which are particularly convenient for taking account of 
variability due to nonreponse and poststratification adjustments, are rendered invalid in general. With more design 
information, two phase variance estimation is of course possible. However, the lack of computer software suitable 
for two phase designs compounds the problem further for practitioners. As a result, survey data analysis using 
models becomes even more difficult. Another important reason for common use of single phase two stage designs is 
operational efficiency as it allows for fixed interviewer load per cluster or psu. However, this may be offset by using 
two phase designs in view of the potential of reducing biases due to nonresponse and noncoverage as well as the 
associated cost to overcome these problems. 
 
The problem of variance estimation for two phase designs has generated considerable interest among researchers in 
recent years; see e.g., Binder et al. (2000), and Hidiroglou, Rao and Haziza (2008) among others. Important 
contributions on the use of replication methods related to the problem considered here for designs with cluster 
sampling at the first phase and element at the second phase have also been made, the main references being Kott and 
Stukel (1997) and Kim, Navarro, and Fuller (2006).  However, their results are restricted to simple random sampling 
in the second phase strata which makes it possible to neglect the covariance between cluster-level estimates under 
mild conditions.  Although often in practice, the second phase sample is indeed simple random within strata, it would 
be useful to have a method that could allow for implicit stratification (with respect to auxiliary variables not used for 
second phase stratification) and possibly unequal sampling rates in the second phase such as pps of elementary units 
(within strata) where each unit’s size measure is collected at the first phase.  It may be noted that for the basic two 
phase design where there is no second phase stratification with the sampling design not depending on the first phase 
sample and the second phase sampling being nested within first phase clusters, the single phase simplified variance 
estimator remains directly applicable. This is for the reason that the basic two phase design satisfies the conditions of 
invariance and independence (Sarndal, Swensson, and Wretman, 1992, Ch. 4, pp. 134); see Section 3 for more 
details. Such designs are also in common use as, for example, in the case of unequal probability selection of 
individuals within selected households. In this paper, for two phase designs (with cluster sampling at the first phase 
and element at the second phase), we generalize the above result for basic two phase designs to more sophisticated 
ones where pps sampling of elementary units is nested within first phase clusters, and the size measures correspond 
to sample allocation rates determined for domains defined by primary auxiliary or stratification variables; all 
auxiliary variables (primary and secondary) can also be used for implicit stratification within each cluster. As a 
byproduct, for simplified variance estimation, no extra assumptions are needed to neglect covariance contributions 
from cluster level estimates.  However, due to clusters being treated as design strata, actual sample sizes in the 
original second phase design strata are random but in expectation nearly match the target sample allocations. 
 
The original idea of the proposed design was developed in the context of analyzing disclosure treated data due to 
subsampling (for suppression) of records by Singh, Yu, and Dunteman (2003). Thus the need for a simpler analysis 
in the back end motivated suitable modifications of the second phase design in the front end.  With the proposed 
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design, cluster level total estimates satisfy the sufficient conditions of conditional unbiasedness (CU) of the cluster 
totals and conditional independence (CI) between clusters given the first phase sample for the simplified variance 
estimation under the wrpsu assumption. It turns out that the CUCI conditions are sufficient, and the stronger 
conditions of invariance and independence in addition to CU are not needed. The proposed design is two phase but 
the second phase design is nested within the first phase cluster as in two stage designs. Thus it is a hybrid design and 
is termed as a two phase-stage design.  In Section 2, we present a review of variance estimation for two phase 
designs and a motivation for the proposed design. Section 3 describes the proposed two phase-stage design while a 
comparison with other methods is given in Section 4. The final Section 5 contains concluding remarks. 
 

2. Variance Estimation for Two Phase Designs: Review and Motivation 
 

Consider a two phase design with cluster level sampling at the first phase followed by element level sampling at the 
second phase. Let denote the first phase finite population of clusters with total number of clusters 1U 1 1( )U N= ,  

1s denote the first phase sample of size 1 1( )s n= , and 
11 1{ }i i Nπ ≤ ≤ denote the sample inclusion probabilities at the first 

phase. The sample 1s with (random) total number of elementary units (=2N
1

2is
N∑ , being the size of the ith 

cluster selected) is stratified into 

2iN

H strata at phase two based on the auxiliary variable information from 1s where it 
is assumed that the stratum definition does not depend on 1s .  Now conditional on 1s , from each stratum h 
(1 ), a second phase sample h H≤ ≤ 2hs of size 2 2(h h )s n= is selected with sample inclusion probabilities 

2 1{ }
hhk k nπ ≤ ≤ . Thus the total sample size of the resulting two phase sample is 2 ( hh

n n= 2 )∑ .The parameter of interest 

is the population total of the study variable y and is defined as yT 1

( )1

N

y ii
T

=∑ where is which also 

equals , being the y-observation on the kth unit in the hth stratum subgroup of the ith cluster. 

( )y iT 2( )

( )1

iN

k ik
y

=∑
2 ( )

( )1 1

h iH N

hk ih k
y

= =∑ ∑ ( )hk iy

 
The standard double expansion (not Horvitz-Thompson but similar) estimator of is given by  yT

( )
2

1( ) 2 ( )
h

y hk hk hkh s h
t y π π=∑ ∑ ∑ y ht= ,     (2.1) 

 
which can alternatively be expressed in terms of estimated cluster totals as in two stage designs by 

1 2 ( )
( ) 1 ( ) ( ) 2 ( ),

h i
y y i i y i hk i hs h s

t t t yπ= =∑ ∑ ∑ k iπ .    (2.2) 

Note that the sample size 2( ) 2(i i ) s n= for the ith cluster is random but the total sample size in the second 

phase is fixed under the design. 
1

2 (  is
n n=∑ 2 )

 
2.1 Standard Variance Estimator for Two Phase Designs 
 
First we observe that is unbiased for because the domain estimate at the ith cluster level is conditionally 
unbiased (CU) for given 

yt yT ( )y it

( )y iT 1s .  Now the variance of under two phase designs is given by yt

( ) ( )
1

1 ( ) 1 1 2 (

1 2

( )

            

y y i is
V t V T E V t

V V

π= +

+

∑ )y hh∑

( )y h

 ,    (2.3) 

where is the phase one component and is the phase two component of the total variance. An unbiased variance 
estimate can be suitably obtained as 

1V 2V

1 2
ˆ ˆ ˆ( ) ( )y h

V t V V t= +∑ .      (2.4) 

 
2.2 Nonstandard Variance Estimator for Two Phase Designs 
 
Here with the alternative expression (2.2) for and again using the fact that is CU  for , we obtain yt ( )y it ( )y iT
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( )
1

1 2 2 2 ( ) 1( ) ;y s
V t V V V V ty i iπ∗ ∗= + = ∑ .     (2.5) 

It follows that can be alternatively expressed as  ( )yV t

  ( )( ) ( )( )
1 1

1 1 2 ( ) 1 1 2 ( ) 1 ( ) 1( ) ,y y i i y i is i j s
V t V E V t E C t tπ π

≠ ∈
= + +∑ ∑ y j jπ ,   (2.6) 

where is the conditional covariance given 2 ( , )C ⋅ ⋅ 1s .  Clearly, for all clusters i, we need the realized sample size 

in the ith cluster of the second phase sample at least 2 for unbiased estimation of variances 2in ( )2 ( ) 1y i iV t π and 

covariances (2 ( ) 1 ( ) 1,y i i y j jC t t )π π in the phase two variance component. 
 
2.3 Single Phase Type Simplified Variance Estimator: Issues 
 
Suppose we blindly use the single phase two stage simplified variance estimator under the commonly made wrpsu 
assumption. We have 

( )( )
1 1

2
1 1

1 1 ( ) 1 1 ( ) 1( ) ( 1)y y i i ys s
V t n n t n tπ− −= − −∑ ∑ i iπ .    (2.7) 

The above estimator is not unbiased due to nonzero conditional covariance between cluster level total estimates. 
More specifically, 
     ( )( ) ( )( ) ( )( )

1 1 1 1

2
1 1 1

1 1 1 ( ) 1 1 ( ) 1 1 2 ( ) 1 1 1 2 ( ) 1 ( ) 1( ) ( 1) ( 1) ,y i i y i i y i i y i i y j js s s i j s
E V E n n T n T E V t n E C t tπ π π π− − −

≠ ∈

⎛ ⎞= − − + − −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ π , (2.8) 

which simplifies to  

( )( )
1

1
1 1 1 2 ( ) 1 ( ) 1( ) ( ) ( 1) ,y y ii j s

E V V t n n E C t tπ π−

≠ ∈
= − − ∑ i y j j .   (2.9) 

For simple designs at the second phase such as simple random sampling without replacement, the terms can 

be neglected under mild conditions, and so V becomes approximately unbiased; see Section 4 for further discussion. 
2 ( , )C ⋅ ⋅

It follows from (2.6) that if sampling designs 
12{ ( )}i i sp s ∈ at the second phase are chosen such that the cluster level 

estimates are CI, then the terms disappear and the two phase variance reduces to single phase two 
stage type variance. Moreover, it follows from (2.9) that under the wrpsu-assumption, the usual simplified variance 
estimator can be used without any bias. We observe that for simplified unbiased variance estimation, we only need 
cluster level estimates to be CUCI--conditionally unbiased and conditionally independent.  As mentioned in the 
introduction, the two conditions of CU and CI are satisfied by basic two phase designs. This motivates the hybrid 
design proposed in the next section which allows for unequal sampling rates at the second phase for units within the 
same second phase stratum, but the nesting modification to the traditional two phase design consists of treating 
clusters (and not the original second phase strata) as design strata for the second phase. 

1( ) 1{ }y i i nt ≤ ≤ 2 ( , )C ⋅ ⋅

 
3. Proposed Hybrid Design: Two Phase-Stage 

 
3.1 Description of the Proposed Two Phase-Stage Design 
 
It consists of the following steps. 
 
Step I: Draw the phase one sample 1s of clusters with sampling rate 1n 1iπ for the ith cluster. 
Step II: Given 1s , stratify the total number of elementary units as in second phase stratification and obtain 
sampling rates 

2N

2hkπ for the unit k in stratum h. Note that 2hkπ ’s need not be equal within stratum h. 
Step III: For second phase sampling, define clusters as design strata as in two stage designs and not the original 
second phase strata used for determining 2hkπ ’s. Allocate sample sizes 2in∗ to each cluster such that  

2 ( )

2 (1 1
( )h iH N

i approx hk i ih k
n Eπ∗

= =
= ) 2 2n=∑ ∑ ,   (3.1) 

where are subject to controlled rounding to satisfy 2in∗ 1

2 21

n

ii
n n∗

=
=∑ . 

Step IV: Perform implicit stratification of all units within each selected cluster via serpentine sort with highest 
priority assigned to phase two stratification variables. 

Section on Survey Research Methods – JSM 2008

2504



Step V: Draw a pps (with size measures 2hkπ ) sample of size 2in∗  nested within each cluster and independently across 
clusters given 1s so that CUCI estimates of cluster-level totals can be obtained. 
 
Observe that for the hybrid two phase-stage design, first phase clusters are treated as explicit design strata at the 
second phase, and the original phase two stratification is essentially preserved in expectation through size measures 
for pps selection and through implicit stratification within each cluster via serpentine sort. Thus it allows for deep 
stratification (implicit) within each cluster with fixed sample sizes, but the realized sample sizes in the original 
second phase strata become random, but in expectation nearly match the target sample allocations. 
 
3.2 Simplified Variance Estimation for Two Phase-Stage Designs 
 
For two phase-stage designs, it follows by construction that the cluster level estimates satisfy the CUCI 

property. If we also make the wrpsu-assumption, then the simplified variance estimator is unbiased. We note 
that as in single phase two stage designs, we can also use for two phase-stage designs, the easily implementable  pps-
systematic sampling with implicit stratification within each cluster without requiring unbiased estimation of 

1( ) 1{ }y i i nt ≤ ≤

( )yV t

(2 ( ) 1y i iV t )π at the cluster level and still can justify use of the simplified variance estimator under the wrpsu-
assumption.  We also remark that for single phase designs, the usual conditions of invariance and independence 
along with CU of cluster level estimates are invoked to render ( ) 1y i it p (where i

1
1 1i 1p n π−= ) as iid under the wrpsu-

assumption.  This is used to justify an SRS-type simple variance estimator of (2.7).  Note that the term 
invariance signifies that the design at the second stage is same regardless of the outcome of the first stage sample, 
while independence signifies that the second stage sampling is done independently from psu to psu, i.e., psu’s are 
treated as design strata; see Sarndal et. al (1992, Ch. 4, p. 134).  However, it follows directly from (2.8) that the 
weaker condition of CI along with CU cluster estimates is sufficient to justify unbiasedness of under wrpsu. In 
this case, 

( )yV t

( )yV t

( ) 1y i it p ’s continue to have common mean but no longer have common variance, and thus are no longer iid 

because (2 ( ) 1y i iV t p ) depends on 1s and not just 1is part that belongs to the cluster i.  
 

4. Comparison with Other Methods 
 
In this section, we present a brief review as well as comparison with some alternative methods. For simpler two 
phase designs (with general first phase cluster sampling but simple random sampling at the second phase), Kott and 
Stukel (1997) considered the important problem of justifying the use of a replication method (such as jackknife) for 
variance estimation of post-stratified or reweighted expansion estimator (REE).  This estimator is obtained from 

(double expansion estimator-DEE) by adjusting the sampling weight  by the stratum-specific 
multiplicative adjustment factor  which is given by 

yt 1 2hk hkw w

ha
2 2 1

1 1 2 1 1 21 1
; ,h hN n

h hk hk hk hk hk hk hk k
a w w w w w 1

2 kπ π− −

= =
= =∑ ∑ = ,   (4.1) 

where 1hkπ is 1iπ if  unit hk belongs to cluster i, and 2hkπ is constant for each stratum and equals under 
simple random sampling. It follows that cancels out in the REE.  Kott and Stukel raised concerns about the 
applicability of jackknife replication method for DEE.  Kim, Navarro, and Fuller (2006) addressed this concern and 
showed that replication methods are applicable to DEE as well.  They considered the following alternative 
expressions for REE and DEE: 

2 2/hN n h

2hkw

( )
( )

2 2 2

2 2 2

, 1 1 11 1 1 1

1
, 1 1 1 11 1 1 1

( ) ,

( ) ; ,

h h h

h h h

H N n n

y REE hk hk hk hkh k k k

H N n n

y DEE hk hk hk hk hk hk hk hk hk hk hk hkh k k k

t w w y w

t w x w x y w x x w y

= = = =

−

= = = =

=

= =

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ 1w y=

.   (4.2)  

 
The above expressions show easily for both REE and DEE how the jackknife replicate will perturb the estimates 
when a cluster is dropped because it basically adjusts the weight . It uses a clever way of re-expressing DEE as a 
poststratified estimator which makes it transparent how a replication strategy would work.  However, in the 

1hkw
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traditional expression of DEE, appears which makes it nontrivial for cluster-based replication as pointed out by 
Kott and Stukel. 

2hkw

 
For justification of replication methods, besides the wrpsu-assumption, we need to express the estimator at least 
approximately as a linear statistic zt  (where is the linearized variable corresponding to  in ) such that cluster 
level total estimates 

hkz hky yt

( )z it  satisfy (approximately) CUCI conditions, the same conditions required for a simplified 
variance estimator.  The DEE estimator is clearly a linear statistic but is not. However, for 

sufficiently large, REE can be approximately expressed as a linear estimator 
,y DEEt ,y REEt

2hn ,z REEt using standard results on 
linearization of regression calibration estimators.  Now, following the arguments of Kott and Stukel (1997) and Kim 
et al. (2006), if the second phase design were Poisson with sampling rates 2hkπ , then clearly the CUCI conditions 
would be satisfied by both DEE and REE. However, for simple random sampling designs at the second phase, the 
above result continues to hold approximately using the asymptotic equivalence of stratum mean estimators (such as 

2

11 1

hn n

hk hk hkk k
w y w

=∑ ∑ 2

1
h

=
) with those under the Poisson design. Thus both and ( ),y i REEt ( ),z i REEt satisfy CUCI 

conditions approximately.  Unlike the above case of simpler two phase designs, the proposed two phase-stage design 
allows for implicit stratification and unequal sampling rates for units in the domains defined by stratification 
variables, but this is achieved by defining clusters as design strata and targeted sample allocations to the original 
design strata are nearly satisfied in expectation. The cluster level estimates, of course, satisfy CUCI by construction. 
So, replication methods remain applicable for variance estimation of under two phase-stage designs.  yt
 
It may be of interest to note that the key idea of satisfying CUCI conditions under the proposed two phase-stage 
design has a direct link with methods for finding imputation adjusted variance estimator; in particular, with the 
significant technique of Rao and Shao (1992) on an adjusted jackknife method for variance estimation in the 
presence of hot deck imputation. This analogy was also noted by Kott and Stukel (1997).  The imputed estimator can 
be viewed as an estimator under a two phase design by regarding the occurrence of a responding unit as a second 
phase unit selection under a random nonresponse mechanism—the analogy being that the information on the study 
variable is obtained only at the second phase except that the nonresponse mechanism is unknown here unlike the 
case of known sampling design for standard two phase designs. Now assuming that the nonresponse 

mechanism is ignorable for the imputation model, and that it does not depend on the realized sample 
12{ ( )}i i sp s ∈

1s (this is like 
the invariance assumption and is also assumed under Fay’s population response model), the imputation model 
parameters can be consistently estimated using data from respondents only while accounting for the sampling design. 
For example, use of mean imputation over imputation classes requires sampling design-weighted class means, and is 
analogous to post-stratification of for which replication methods can be used for design-based variance estimation 
assuming negligible sampling fraction and the usual wrpsu. Here, clusters correspond to usual psu’s in the first 
phase, and the unknown nonresponse mechanism is assumed for convenience to be uniform, i.e., selection of 
respondents for the second phase design follows Bernoulli sampling. Thus the CI condition is satisfied at the cluster 
level estimates, and the CU-condition is satisfied under the imputation model.  If imputation is stochastic as in hot 
deck, then the value of a donor selected from the imputation class is used instead of the mean. So to ensure CU of 
imputed values, the weighted hot deck procedure was suggested by Rao and Shao. It may be of interest to note that 
the need of weighted hot deck for satisfying CU motivated the work of Singh, Folsom, and Vaish (2004) to propose 
centering of the predictive mean neighborhood method— a compromise between the predictive mean matching 
method and the hot deck method. Centering of the random mechanism used for stochastic imputation implies that the 
second phase random selection of the imputed value for a first phase unit is unbiased given the first phase sample. It 
follows that one can also use other stochastic imputation methods as alternatives to weighted hot deck suggested in 
the Rao-Shao procedure as long as  the mean of the random distribution of imputed values matches with the mean 
under the imputation model. 

yt

 
5. Concluding Remarks 

 
The proposed two phase-stage hybrid design was developed to take best of both single phase two stage designs and 
two phase designs. It addresses the back-end need of a simple variance estimator for two phase designs by a simple 
modification of the design itself at the front-end. The proposed design assumes a general probability cluster sampling 
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at the first phase, and a general element level sampling at the second phase. However, the modification consists of 
pps selection of units in the second phase nested within first phase clusters where the size measures correspond to 
sample allocation rates of domains defined by stratification variables. Thus the target sample allocations for these 
domains are nearly achieved in expectation. Nevertheless, in comparison to existing methods which assume simple 
random sampling within strata at the second phase, and rely on approximations for validity of simplified variance 
estimator under the wrpsu-assumption, the two phase-stage design allows for implicit stratification with respect to all 
auxiliary variables collected at the first phase, and makes the validity of the simplified variance estimator exact. The 
proposed two phase-stage design does not, however, apply to the case when general  element level sampling is used 
at both phases.  In this case, it is not clear how a simplified variance estimator can be developed.  This problem 
should be investigated in future. Another interesting problem for future study is the application of the proposed two 
phase-stage design to analyse the precision of estimates obtained after adjusting for coverage bias when neighbor 
administered personal interview is used to create a complete and rich frame containing auxiliary variables for the 
second phase design. This method can be compared with the alternative based on single phase dual frame 
methodology in terms of point, variance, and interval estimates. 
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