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Abstract 
Often there is a need to predict the probability that an individual with specific characteristics (risk factors) will suffer 
from a certain disease or a health condition. Sometimes the real interest is in providing the aggregate predicted risk 
estimates at the population level or at the level of a subpopulation (e.g., males aged 65+). A related problem is 
prediction of such a probability for an individual who does not belong to the surveyed population. While the estimation 
of these probabilities follows from fitting an appropriate model to the available data, the design-based standard error 
estimation of so-obtained estimates is not obvious. We are proposing a bootstrap method for estimation of the standard 
errors of predicted individual and aggregate risks. The method is illustrated using data from the Canadian Community 
Health Survey. 
 
Key Words: Logistic model, prediction models, standard error, validation sample, survey bootstrap, design-based 
variance 
 
 

1. Introduction 
 

The fitting of statistical models to predict risks of having or developing a disease or a health condition usually has two 
objectives: (i) Predict an individual’s risk of disease during a specified time range given his specific risk factors. (ii) 
Predict the population average risk of disease during a specified time range assuming a certain risk-factor distribution 
in the population. The former is known as a conditional prediction, the conditioning being on the given set of risk -
factor values, while the latter is known as a marginal prediction, with the ‘marginalization’ over the assumed risk-factor 
distribution in the population.  
 
Prediction models are frequently used by medical researchers to predict individual risks. Some good examples are the 
Framingham Risk Models developed to predict the risk of cardio-vascular diseases (for a recent reference see 
D’Agostino RB, et al., 2008).  Some of these models are based on samples taken from the general population using 
complex sample designs. 
 
There are several sources of uncertainty when predicting risks: the incomplete knowledge of the determinants and risk 
factors of health that govern the prevalence or incidence of diseases over time, the inherent stochastic nature of events 
and their order, a sample-based inference about the model and population, the presence of measurement errors, etc.  
 
Logistic models as well as survival models are typically used to estimate the risks of having or developing a disease for 
the members of the population by individual demographic, lifestyle and risk profiles. The models are developed using 
the observed association of these profiles with disease occurrence in survey data, possibly linked to administrative 
health databases. A good example is the study on diabetes mellitus prediction based on the Ontario portion of the 
Canadian National Population Health Survey conducted by Statistics Canada, which was linked to the Ontario Diabetes 
Database, a population-based registry (Rosella, Manuel, Burchill, Stukel, 2008).  These models are then used to predict 
individual and population average risks. 
 
Our objective in this paper is to estimate the variability of the prediction, either conditional or marginal, generated by 
randomness of the sample used for estimation of the prediction model, that is, to estimate , where  is 
the estimated predicted value, and the expectation is taken over the sampling-induced randomness.  
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The validation of a model, as well as the estimation of the prediction error, have to account for the complexity of the 
survey design.  In this paper we are interested just in the latter; that is, we assume that the model validation was done 
properly, and that the model is acceptable for making predictions.  
 
We propose the estimation of the standard errors for predicted risks by the survey bootstrap method (Rao, Wu, Yue, 
1992). If the model estimated from one sample is to be used for estimating risks with another sample, it is assumed that 
bootstrap weights are available for both the sample used for fitting the prediction model (a training sample) and for the 
sample from which we predict the population average risks. 
 
The paper is organized as follows. In the next section we briefly review the logistic model that is frequently used to 
predict the risks of developing a disease.  Section 3 deals with the estimation of the standard error of the prediction by 
the survey bootstrap method. In Section 4 we address the situation where the model is developed using one sample but 
the prediction is based on another sample. We illustrate the method in Section 5 using data from the Canadian 
Community Health Survey (CCHS). Section 6 contains an overall summary. Throughout the paper, the “probability” of 
having or developing a disease and the “risk” will be used interchangeably. 
 
 

2. Prediction of Having or Developing a Disease 
 

Let us assume that the probability of having or developing a disease is modeled as a function (non-linear) of given x 
and β , and that it varies from individual to individual, where, for individual i: 
 

( ) ( )ββ ,,1 iii xpxy Prob == . 
 
Here β and  represent vectors of unknown model parameters and values of risk factors for individual i, respectively.  
In the case of the logistic regression model, this probability is given by 
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The predicted probability for a person with the health and lifestyle profile including the risk factors denoted by  is  0x
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where  is the vector of  regression coefficients estimated from a sample representing the  population to which the 
person belongs.  In this way we obtain the conditional prediction of the probability for the person with the profile . 

The variability of the individual prediction is determined only by the variability of . Note that  is usually 
referred to as the estimated risk score or prognostic index for this person. 
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The average (marginal) probability for the population is predicted by the weighted mean of the individual (conditional) 
predictions: 

( ) ( )ββ ˆˆˆˆ *
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si
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where ( ) ( )ββ ˆ,ˆˆ ii xpp = , and the weights  ∑=
∈sj

jii www*  are the survey weights for sample s scaled to sum up to 1.  

The variability of ( )β̂p̂  is determined by the sample design and resulting survey weights and by the variability of . β̂
 

The total count of individuals having or developing the disease for the population can be predicted as ( )Np ˆˆˆ β  where 

( )β̂p̂  is given by (3) and  represents the predicted size of the population. N̂
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If the marginal probability is being predicted just for a subpopulation of the population covered by the survey, s in (3) 
denotes the sample that falls in that subpopulation, rather than the full sample.  
 
 

3. Estimation of Variance of Predictions by Bootstrapping 
 
Estimating the variability of predictions is very important where acting upon the predictions may have medical or 
financial consequences.  Estimated standard errors (which are the square root of the estimated variances) are usually 
used to obtain confidence intervals for the predictions.  
 
In this section we assume that the prediction model is correctly specified. Also, we assume that the sample data are 
obtained by a complex (multi-stage) sample design, and that the parameters of the model are estimated properly 
accounting for the sample design, i.e., that suitable survey weighted estimates of these parameters are obtained. 
 
Further, we assume that the bootstrapping of primary sampling units (PSU’s) with replacement (see Rao-Wu (1988), as 
specified in Rao, Wu, Yue (1992)), is an appropriate method for design-based variance estimation, and that a large 
number, say B, of sets of bootstrap weights, ( )b

iw  , b=1,2,…,B, is available. 
 

3.1 Bootstrap Variance Estimation for the Estimated  Coefficients β

Let  be a full-sample estimate of the coefficient (vector) β̂ β  in the model discussed in Section 2. Let be the 
estimate of 

)(ˆ bβ
β obtained when using the bth set of bootstrap weights (b=1,2,…, B). 

 

The bootstrap estimate of the variance-covariance matrix of  is  β̂
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Binder, Kovacevic and Roberts (2005) studied the performance of several different bootstrap estimators for variance 
estimation of by means of a simulation study and found generally good performance of the above estimator regarding 

the bias and the efficiency. The variance of the individual risk score, , can be estimated as 

β̂

βη ˆˆ 00 x′=

( ) ( ) 000
ˆˆˆˆ xVxV βη ′=  where ( )β̂V̂  is the bootstrap estimate defined above.  

 
3.2 Bootstrap Variance Estimation for the Conditional (Individual) Prediction  
First we assume that the person for whom the probability of “the event” is predicted belongs to the population 
represented by the sample used to fit the model. The predicted probability is estimated by (2). Using the B sets of 
bootstrap weights it is also possible to calculate bootstrap replicates of the predicted probability for this individual:  
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The bootstrap variance estimate of ( )β̂ˆ 0p  is  
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Estimator (4) captures the variability of the conditional prediction that is generated by the variability of the estimated 
. The statistical properties of this estimator are yet to be investigated.  β

 
 

3.3 Confidence Limits for the Conditional Predicted Probability  
Although  is approximately normally distributed, it is not advisable to assume a normal distribution for the predicted 

probability (which is a non-linear function of ), and thus, it is not recommended  to use a symmetric normal 

approximation of the prediction limits, 

β̂

β̂

( ) ( )( )ββ α
ˆˆˆˆˆ 02/0 pVzp m .  Also, for small probabilities this interval may have a 

negative lower bound. Instead, it is better to use an approximation based on a transformation of the normal prediction 
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limits for the risk score η̂  which is linear in , and thus closer to normality than β̂ ( )β̂ˆ 0p .  A confidence interval 
obtained by this approach is  
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It is asymmetric and usually longer than the normal approximation, and is expected to have better coverage properties 
under the assumed risk model. For a discussion on transformation of confidence intervals for the proportions see Rust 
and Rao (1996). 
 
Alternatively, if a sufficiently large number of bootstrap weights is available, one can use the bootstrap prediction 
limits obtained as percentiles of the distribution of bootstrap replicates of the predicted individual probabilities 

( )( )bp (
0

ˆˆ β , . Such an interval takes the form: Bb ,...,1= [ ] [ ]{ })2/1)(1(2/)1( , αα −++ BB pp , with the limits representing the 

( )[ 21 ]α+B -th and the ( )([ 211 )]α−+B -th ordered values of B replicate values ( )( )bp (
0

ˆˆ β  i.e., the bootstrap 
percentiles (Shao and Tu, 1995).  
 
3.4 Bootstrap Variance Estimation for the Marginal (Population Average) Prediction  
The population average probability of “the event” is predicted by (3), i.e., by the weighted mean of the predicted 
individual probabilities: 

( ) ( )∑=
∈si

ii pwp ββ ˆˆˆˆ *  .      (5) 

 
Here, the sampling variability enters the estimating equation in two different ways - both through the estimation of the 
beta parameters and also through the prediction of the average (marginal) probability as a survey-weighted mean of 
predicted individual probabilities.  The survey bootstrap method will take into account both of these variabilities. Thus 
the bootstrap variance estimate for the marginal (population average) prediction is given by   
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bb βpwβp )(*)( ˆˆˆˆ  is obtained using the b-th set of bootstrap weights. 

 
Confidence limits for the population average probability can be the normal approximation prediction limits 

( ) ( )( )ββ α
ˆˆˆˆˆ 2/ pVzp m if ( )β̂p̂  can be assumed to be approximately normally distributed.  Otherwise, it would be 

advisable to find a transformation of ( )β̂p̂  that could be assumed to be normal.  
 

Note that if β  is assumed to be known constant, an estimate of the variance of   reduces to )ˆ(ˆ βp
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Such an assumption is sometimes made when estimating the variance of a complex statistic dependant on an unknown 
parameter assumed to be nuisance. The difference between (6) and (7) can be interpreted as the portion of the variance 
of the marginal prediction attributive to the variability of   .β̂
 
 

4. Predicting the Population Average Risk From a Different Sample 
 
Suppose that we would like to apply the model estimated from one sample (a “training sample” ) to individuals from 
another independent sample, ,  in order to estimate the population average risk of having or developing the disease.   

ts

vs
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Two situations where this might be done are the following: 
 
(i) The sample is taken from the same population as  and is being used for validation of the prediction model.  

For the rest of this section we will call  the validation sample. 
vs ts

vs
(ii) The prediction model estimated from  is applied to a sample taken from another population, where it is 

assumed that there is no difference in the populations from which these samples were taken.  For example, a 
model is estimated from a sample from one province (or state) and then applied to a sample from another 
province where it is assumed that the relation between risk factors and the development of the disease is the 
same in both provinces, i.e.,  the same underlying prediction model is assumed to hold in both.  

ts vs

 
The two samples are not necessarily obtained using the same sample design. We also assume that there are B sets of 
bootstrap replicate weights available for the  sample and D sets of replicate weights for the  sample.   ts vs
 
From the training sample, ,  and its bootstrap replicates, we obtain , as well as .  Subscript t 
refers to the “training sample” and it means that the weights from the training sample were used.   

ts tβ̂ Bbβ b
t ,,,ˆ )( K1=

 
Using  and  together with the observed risk factors  from validation sample , we obtain individual 

predictions and their bootstrap replicates for  
tβ̂

)(ˆ b
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A prediction of the average probability for the population represented by the validation sample  is then obtained as a 
mean of the individual predictions,  

vs
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,  are the survey weights of the validation  sample  scaled to sum to 1, and D bootstrap 

replicates of the average risk prediction are 
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The variance of , assuming that samples  and  are independent is given by: )ˆ(ˆ tv βp vs ts

( )( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑=

∈∈ vv si
ttiviv

si
ttivivtv ββpwEVββpwVEβpV ˆˆˆˆˆˆˆˆ ,

*
,,

*
, 2121  .                          (9) 

 
The  and  in (9) are estimated using the training sample and its bootstrap replicates, while  and  are 

estimated from the  sample and its bootstrap replicates.   
1E 1V 2E 2V
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,2  accounts for the sampling 

variability of the predicted mean assuming that is fixed (non-random). This variance can be estimated by the 
bootstrap variance estimator  

tβ̂
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The expectation  in (9) is over the sampling distribution of and can be estimated by the distribution of the 
bootstrap replicates of the predicted probabilities, i.e., the expectation  can be estimated by a mean over the 
bootstrap replicates of the predicted probabilities. Thus,   is estimated by 
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Alternatively,  in (9) can be estimated by  (10), i.e., by  itself. 21VE 2V̂
 
In the second term on the rhs of (9) the expectation  is taken over the sampling distribution of the population-

average probability assuming that  is fixed (non-random). Expectation  can be estimated by the mean of the 

bootstrap replicates of the population average probability
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Alternatively,  can be estimated by the population average probability itself:  2E
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The variance , taken over the distribution of predicted individual probabilities, is estimated  using the distribution of 

the bootstrap replicates of the predicted probabilities. Thus the variance  is estimated by the following 

bootstrap variance when  is given by (12): 
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Finally, the variance of the population average probability (8) is approximated by the sum of the estimated components, 
and takes the following forms 
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5.  Illustration 

 
Note that this example is made to illustrate only the methods presented in this paper and should not be interpreted in a 
subject-matter context. 
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We use data from the Canadian Community Health Survey (CCHS) Cycle 3.1 to illustrate the method for variance 
estimation of the predicted probabilities of having or developing a disease. Only the sample from the province of 
Ontario (37,430 respondents) was used to estimate the prediction model, i.e., to estimate the beta parameters. The 
dependent variable in the model is the binary variable indicating whether the respondent has coronary heart disease 
(CHD). The independent variables (risk factors) considered in the model are represented by five binary variables:  Sex 
(SEX), being a former daily smoker (DAILY SMK), having more than high school education (HIGH SCH+), having 
diabetes (DIABETES), and having high blood pressure (HIGH BP); and by two continuous variables: AGE (in years) 
and body mass index (self reported) (BMI). Note that we also used AGE2 in the model. It was marginally significant. 
Table 1 contains estimates of the beta parameters and their standard errors obtained from 500 bootstrap replicates. All 
the variables were significant at the 5% level. The estimates in Table 1 were produced using SUDAAN.   
 

Table 1. Estimated Parameters of the Prediction Model and Their Standard Errors 
 
 Estimated Standard Risk factors 

 
Estimates 
β̂  Errors 

Intercept 
SEX                    (F) 
DAILY SMK     (NO) 
HIGH SCH +     (NO) 
DIABETES        (NO) 

 
 

HIGH BP           (NO) 
BMI 
AGE 

-6.5181 
-0.3588 
-0.2841 
 0.2205 
-0.7335 
-0.6987 
 0.0154 
 0.1017 

0.5800 
0.0753 
0.0708 
0.0724 
0.0925 
0.0757 

 
 
 
 
 
 

0.0077 
0.0154 

 
 
 
We illustrate prediction of a probability of having CHD for a 54 year-old man who is not a current or former daily 
smoker, who has education higher than high school, who is diabetic, but does not have the high blood pressure, and 
whose BMI is equal to 22.5. First, the predicted risk score  is equal to -2.572 with its variance estimated as 0.289. 
The predicted probability of having CHD for this person is 0.071 with variance estimated by the bootstrap estimator (4) 
as 0.0007.  The confidence interval for this person’s probability based on transformed individual risk score limits is 
(0.0259, 0.1797).   

η̂

 

The predicted population average probability of having CHD in Ontario is ( )β̂p̂ =0.047.  
 
We apply the prediction model estimated using the sample (training sample) from Ontario to predict the population 
average risk of having CHD in Québec using the independent Québec portion (n=27,309) of the CCHS Cycle 3.1 
sample (validation sample).  The population average probability is predicted as 0.050.  
 
The components of the estimated variances of the predicted population average risks for both provinces are given in 
Table 2.  
 

Table 2. Prediction of Population Average Risk for Ontario and Québec Based On The Ontario (Training) 
Sample: 

 Ontario (n=37,310) Québec (n=27,309) 
Average risk  )ˆ(ˆ βp 0.047 0.050 

Variance estimates                (6) and (16) 
       Components: 
           Estimate  of       (11) 21VE
           Estimate of        (14) 21EV

0.022 x 10-4 

 

 

0.029 x 10-4 

 

0.002 x 10-4 

0.027 x 10-4

Alternate variance estimate  (17) 
         Components: 
             Estimates of     (7) and (10) 21VE
             Estimate of      (15) 21EV

 

 

0.001 x 10-4

 

0.028 x 10-4 

 

0.002 x 10-4 

0.026 x 10-4

95% confidence interval (0.0441, 0.0500) (0.0467, 0.0533) 
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If we assume that is known, the larger component of the variance, , is set equal to zero and the variance of 
the average probability is seriously underestimated. 

β )ˆ(ˆ
21 EV

 
6. Conclusion 

 
When predicting the risk probabilities of having or developing a disease using a model estimated from the sample, the 
sampling variability has to be accounted for. In this paper we presented a variance estimation approach using the 
survey bootstrap method (Rao, Wu, Yue, 1992) which is the method of choice for many of Statistics Canada’s analytic 
surveys. The method itself relies on the availability of a large number of sets of properly obtained bootstrap survey 
weights. These weights are available for many of Statistics Canada’s analytic surveys such as the CCHS whose data 
were used for the illustration. 
 
The illustration (Table 2) shows also that the sampling variability in the estimates of the beta coefficients is the major 
component of the variance of the average probability prediction and should not be neglected, as is sometimes done 
when the estimated coefficients in the prediction model are treated as constants. 
 
Note that there are other ways to compute the variances of the statistics explored in this paper, most notably the Taylor 
linearization method.  However, currently, only the resampling methods incorporate the most of survey information 
(non-response adjustments, post-stratification, etc.) into the variance estimation. On the other hand, the properties of 
the bootstrap variance estimators in the context of prediction of probabilities need to be more thoroughly investigated 
theoretically and by means of empirical studies     
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