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Abstract
This paper compares two methods of calculating estimated theoretical variances for nonresponse adjusted estimates of survey
totals. Both methods employ a possibly misspecified parametric model for the nonresponse probabilities. The first method is
based on a formula of Särndal and Lündstrom (2005) available when joint survey inclusion probabilities are known and when
response probabilities are modelled in terms of survey variables through a calibration model. The second method is based on
balanced repeated replicates (BRR). Both methods are compared with the correct design-based variance in a superpopulation
framework with independent random response indicators. Numerical calculations and confirmatory simulation results are
given for a split-PSU design, with simple random sampling within half-PSU’s and with ratio estimators in adjustment cells
used to adjust survey weights for nonresponse. The accuracy of variance estimators is exhibited in relation to the balance
across half-PSU’s of the intersections of true and working adjustment cell frequencies in the population.
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This report is released to inform interested parties of ongoing research and to encourage discussion. Any views expressed on
statistical methodological issues are those of the authors and not necessarily those of the U.S. Census Bureau.

1. Introduction & Notation

Consider a sample survey with a frame U from which a probability sample S is drawn according to a plan with
known single and joint inclusion probabilities πi, πij , for i, j ∈ U . Assume that the total Y = ty =

∑
i∈U yi

of a scalar attribute is of primary interest, and that (yi, xi, i ∈ S) is observable, i.e., the sample data includes
the auxiliary p-dimensional vector xi. This design-based setting corresponds to the InfoS sampling framework of
Särndal and Lündstrom (2005), where auxiliary sample data are available but not population-level data.

Assume also that each sampled individual in the survey decides independently whether or not to respond (the
‘quasi-randomization’ model as in Oh and Scheuren 1983.). Denote by ri for all i ∈ U the indicator which is 1
if the i’th individual would have responded if sampled, and assume that these random variables are independent of
each other and of the sample selection mechanism. The observable data are now taken to be (yi ri, ri, xi, i ∈ S).
The probabilities with which individual units respond

P (ri = 1) = Eri ≡ 1/φi

must be estimated in order to adjust weights for nonresponse, and this is typically done either by ratio-adjustment
and raking (Oh and Scheuren 1983) or by using a working generalized-linear parametric model

φi = g(λ′xi) , i ∈ U , g known

where λ is a p-vector parameter to be estimated from sample data as the solution λ̂ to an estimating equation∑
i∈S

(1/πi) xi (ri g(λ′ xi) − 1) = 0

after which the total Y is estimated through the nonresponse-adjusted weighted total

Ŷg =
∑
i∈S

(yi/πi) ri g(λ̂′ xi)

The most important example of a working nonresponse model and its predictors is

φi ≡ (Eri)−1 = g(λ′xi) = 1 + λ′ xi , xi = (I[i∈C1], I[i∈C2], . . . , I[i∈CM ]) ∈ {0, 1}M (1)
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where the cells C1, . . . , CM partition the frame population U . For simplicity, we restrict attention throughout
this paper to the ratio-adjustment calibration model (1) and its resulting weight-adjusted estimator of the total Y ,

Ŷ =
∑
i∈S

yi

πi
ri (1 + λ̂′xi) =

M∑
m=1

ĉm

∑
i∈S∩Cm

yi

πi
ri , ĉm =

∑
a∈S∩Cm

(1/πa)
/ ∑

a∈S∩Cm

ra/πa (2)

where the calibrated adjustment factors estimators ĉm = 1 + λ̂′xi are determined by (2) for i ∈ Cm, 1 ≤ m ≤ M .
From now on, we indicate the cell-index m for i ∈ U by m(i), that is, i ∈ Cm if and only if m = m(i).

This paper is about the estimation of variance of the weight-adjusted total estimator Ŷ , in settings where the
parametric working model is possibly incorrect. One source of variance formulas is Taylor linearization involving
weight-adjusted inclusion probabilities, as given by Särndal and Lündstrom (2005) and extended in Section 2 below.
Apart from these, the most important technique of variance estimation in general use is the class of Balanced
Repeated Replicate (BRR) methods (Wolter 1985, Brick, Morganstein and Valliant 2004). These are methods which
rely on split-sample symmetries in the sample design to produce unbiased or nearly unbiased variance estimates
depending only on single inclusion probabilities and a finite set of multiplicative replicate factors (Kish and Frankel
1970, Fay 1984, 1989). In the simplest case, the survey can be idealized to have PSU’s indexed by k = 1, . . . ,K,
which are split into balanced halves UkH indexed by H = 1, 2, so that the samples (yi, xi, i ∈ S(k, H)) drawn
from the two halves can be regarded as approximately independent and identically distributed. (This discussion
is more generally applicable to the case where PSU’s are sampled through a more complicated structure involving
strata within which PSU’s are nested.) Assume in what follows that the sample inclusion probabilities πi for i in
PSU k and half-PSU H have the form πi = π∗k πi|k = πi|k/wk not depending on H.

The BRR methods we consider are defined (Fay 1984, 1989) in terms of multiplicative weight factors (fi,t,

i ∈ S, t = 1, . . . , R) which satisfy R−1
∑R

t=1 fi,t = 1 together with certain orthogonality relations. (In practice,
the average-replicate equality and the orthogonality hold only approximately, because the numbers of replicates are
reduced below the numbers of PSU’s to reduce computation times and storage.) The replicated estimators are

Ŷ (t) ≡
∑
i∈S

ĉ
(t)
m(i)

yi

πi
ri fi,t =

M∑
m=1

ĉ(t)
m

∑
i∈S∩Cm

yi

πi
ri fi,t , ĉ(t)

m =

∑
a∈S∩Cm

fa,t/πa∑
a∈S∩Cm

fi,t ra/πa
(3)

and there is a quadratic form Q({yi}i∈S) in the sampled attributes (Fay 1984) such that the variance of the estimator
Ŷ given in (2) can be estimated, when the number R of replicates is taken large enough, by

V̂BRR(Ŷ ) =
4
R

R∑
t=1

(Ŷ (t) − Ŷ )2 = Q({yi}i∈S) (4)

The quadratic form Q varies – and must be justified as an unbiased or nearly unbiased estimator – with the
application, as does the required number of replicates which is usually a small multiple of the number of PSU’s. But
in the balanced half-sample setting described above, it is shown by Slud and Thibaudeau (2008) that the top-order
term of this estimator V̂BRR(Ŷ ) is given in large data-samples by the quadratic form

K∑
k=1

( ∑
i∈S(k,1)

1
πi

(β̂′xi + ri(1 + λ̂′xi) êi) −
∑

i∈S(k,2)

1
πi

(β̂′xi + ri(1 + λ̂′xi) êi)
)2

(5)

where β̂, êi are as in formulas (7) and (8) below.

This paper is organized as follows. In the next Section, we provide theoretical formulas and estimators for
variances of survey estimators weight-adjusted for nonresponse using adjustment cells, in terms of the actual and
estimated response probabilities. Section 3 introduces a general framework within which to study the large-sample
behavior of variance formulas and BRR variance estimators under cell-based adjustments even when the working cells
may not be the correct ones. Section 4 gives numerical comparisons under various realistic scenarios and simulations
which confirm the theoretical formulas. In Section 5 we provide a Summary and Discussion of results.

2. Linearization-Based Variance Formulas

We begin with linearization-based formulas and estimators for variance of the calibration survey estimator (2) based
on the assumed-known joint inclusion probabilities πij . The special form of inclusion probabilities assumed above
is maintained here, reflecting sampling that is independent across PSU’s. The assumptions needed to prove the
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formulas (cf. Slud and Thibaudeau 2008, Appendix) can take many forms, related to the design consistency of
survey-weighted estimators (Särndal et al. 1992). For example, the formulas are valid as n, N both get large, if for
some constant α > 0 not depending on n, N

max
i

φi ≤ α−1 , min
i

πi/ max
i

πi ≥ α , (
∑

i

|yi|3)2/3/(
∑

i

y2
i ) ≤ α−1 , N−1

∑
i∈U

(yi − ty/N)2 ≥ α (6)

Because calibration and regression are closely related, we follow Särndal and Lündstrom (2005) in introducing
regression coefficients, estimators and residuals. Define M -vectors β0, β̂ through their m’th components

β0
m =

∑
i∈Cm

(yi/φi)
/ ∑

i∈Cm

(1/φi) , β̂m =
∑

i∈S∩Cm

(yi ri/πi)
/ ∑

i∈S∩Cm

(ri/πi) (7)

as m ranges from 1, . . . ,M , and define corresponding residuals for all i ∈ Cm by

e0
i = yi − β0

m , êi = yi − β̂m , ei = yi −
∑

j∈Cm

yj/|Cm| (8)

The notation A ≈ B for (random) expressions A, B indicates that A − B is of smaller order than A in
probability as N and n become large. (That is, A ≈ B means that (A−B)/|A| tends to 0 in probability.)

Proposition 1 (Särndal and Lündstrom 2005) Under the assumptions listed above, the idealized estimator ob-
tained by replacing ĉm(i) in formula (2) for Ŷ with φi has variance

≈
∑

i,j∈U

( πij

πi πj
− 1

)
yi yj +

∑
i∈U

(φi − 1) (e2
i /πi) (9)

The Proposition suggests, following Särndal and Lündstrom (2005), the simplified variance estimator

V̂SL(Ŷ ) =
∑

i,j∈S

( πij

πi πj
− 1

) yi yj

πij
+

M∑
m=1

(ĉm − 1)
∑

i∈S∩Cm

(êi/πi)2 (10)

This ‘estimator’ would be applicable only if yi for all i ∈ S were observable. Since only the attribute values yi

for i ∈ S and ri = 1 are observable, the usable form of this estimator is:∑
i,j∈S

( πij

πi πj
− 1

) ri rj yi yj

πij
ĉm(i) (I[i=j] + I[i 6=j]ĉm(j)) +

∑
i∈S

(ĉm(i) − 1) ĉm(i) ri (êi/πi)2 (11)

Särndal and Lündstrom (2005) propose an estimator like (11) for Var(Ŷ ). A more detailed expression for Var(Ŷ )
derived by Taylor linearization shows how the validity of the approximation by (11) depends on the correctness of
the working model φi = 1 + x′iλ0, where λ0 is the large-sample limit of λ̂, with m’th component given by

(λ0)m ≡ cm − 1 =
∑

i∈Cm

(1− φ−1
i )

/ ∑
i∈Cm

φ−1
i (12)

Proposition 2 (Slud and Thibaudeau 2008) Under the same set of assumptions as in Prop. 1,

Var(Ŷ ) ≈
∑

i,j∈U

( πij

πi πj
− 1

) {
(x′iβ

0 +
e0
i

φi
cm(i)) (x′jβ

0 +
e0
j

φj
cm(j))

}
+

∑
i∈U

(cm(i) e0
i )

2

πi φi
(1− φ−1

i ) (13)

Formula (13) is definitely more complex than (9). Yet, if (Eri)−1 = φi = 1 + λ′0xi for all i, then there is
considerable cancellation, and the approximate variances of Ŷ , (9) and (13), are the same if the residuals ei

appearing in (9) and e0
i coincide, which happens if the yi attributes are iid , independent of the calibration

variables xi, with mean µ and variance σ2 .

The variance expression in Prop. 2 is theoretical, and contains the unknowns φi, which can be estimated in
practice only if there is a valid parametric model φi = g(xi, γ) as assumed in Kim and Kim (2007). Validation
of such a model is generally not possible without additional followup on nonresponders. Nevertheless, if a more
detailed logistic-regression or adjustment-cell model were fitted to provide a more refined estimation of response
probabilities, then this formula based on modelled and estimated values φ̂i = g(xi, γ̂), with γ̂ derived from a
sample-based estimating equation, could be used to assess the quality of the approximation Var(Ŷ ) ≈ Var(ŶG)
proposed by Särndal and Lündstrom (2005). An estimator based on this idea is∑

i∈S

ri

π2
i

ĉ2
m(i) ê2

i (1− φ̂−1
i ) +

∑
i,j∈S

( πij

πi πj
−1

) ri rj

πij
φ̂i (I[i=j] + I[i 6=j]φ̂j) (β̂m(i) +

êi

φ̂i

ĉm(i)) (β̂m(j) +
êj

φ̂j

ĉm(j)) (14)
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3. Large Sample Properties of Variance Estimators

We next consider the large-sample behavior of the survey estimator Ŷ and its associated variance estimators under
a broad but not fully general range of assumptions incorporating misspecification of the adjustment model.

(C.0) Sampling within each half-PSU Uk,H is simple random sampling of nkH units out of NkH . For simplicity,
let f ≡ nkH/NkH be the same for all k, H, and f be small, so that factors 1− f can be replaced by 1.

(C.1) There is a partition of U into cells B1, B2, . . . , BL such that the true response probabilities Eri = φ−1
i

are piecewise constant on each Bl, i.e.

φ−1
i = P (ri = 1) ≡ ρl whenever i ∈ Bl, 1 ≤ i ≤ N, 1 ≤ l ≤ L

For each i ∈ U , denote by l = l(i) the unique index l = 1, . . . , L for which i ∈ Bl.

(C.2) As n, N →∞, the numbers L and M of cells and the number K of PSU’s are fixed, and the sizes of the true
cells Bl and working cells Cm and their intersections relative to the frame population have limits for all
1 ≤ l ≤ L, 1 ≤ m ≤ M, 1 ≤ k ≤ K, H = 1, 2,

lim
n,N→∞

N−1
∑
i∈U

I[i∈Uk,H∩Bl∩Cm] ≡ ν(l,m, k,H)

Our method of studying the large-sample limit limit of variance estimators is to express limiting variances in
terms of the joint discrete mass function ν(l, m, k,H) of the random indices l,m, k,H. For example, under
Assumptions (C.1)-(C.2), the limits cm(i) = 1 + λ′0xi of the ratio-adjustment factors ĉm(i) ≡ 1 + λ̂′xi are

cm = lim
N→∞

∑
i∈Cm∩S 1/πi∑
i∈Cm∩S ri/πi

=

∑
i∈Cm∩U 1∑

i∈Cm∩U φ−1
i

=

∑
k,H,l ν(l,m, k,H)∑

k,H,l ρl ν(l,m, k,H)
(15)

a formula with the nice conceptual interpretation cm = 1/Eν(ρl |m).

For simplicity in developing formulas for large-sample limits of variance estimators, we next restrict the way in
which attributes can vary within PSU’s and cells by assuming as N →∞ :

(C.3) The attributes yi for i ∈ U behave as independent random variables with uniformly bounded third absolute
moments, and with variances σ2 and means µk depending only on the PSU k to which i belongs.

(C.4) The replicates fit = 1 + 0.5 (−1)H akt for i ∈ UkH satisfy for all working-cell indices m,

N−1
∑

i∈Cm

(1− φ−1
i ) (fit − 1) → 0 and N−1

∑
i∈Cm

φ−1
i (fit − 1) → 0 as N →∞

Remark 1 Assumption (C.4) holds quite generally but does depend on the precise mechanism used to split PSU’s
and attach Hadamard-matrix columns {akt}R

t=1 to them. If splitting were done by attaching to each individual i
within stratum k an independent binary label H = 1, 2 (with equal probabilities), so that the sequence of terms (−1)H

in the definition of fit form a sequence of iid random signs, then (C.4) holds by the Law of Large Numbers.

Large-sample formulas for estimators of variance of Ŷ simplify interestingly in two special cases. The first
requires that the proportional decomposition of cells and strata is the same in the two half-strata indexed by H :

(Case A) For all k, l,m, ν(l,m, k, 1) = ν(l, m, k, 2).

Since approximate conditional independence under ν of the true-cell index l from the half-PSU indices (k,H)
given the working adjustment-cell index m turns out to explain much of the remarkably good expected behavior
of the BRR variance estimators under misspecified cell-based weighting adjustments for nonresponse, we define:

(Case B) For all k, l,m,H, ν(l,m, k,H)/
∑

l′ ν(l′,m, k,H) does not depend on (k,H).
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3.1 Limiting Variance Formulas based on (9) and (13)

For any attribute zi, denote respectively by z̄kH and s2
kH,z the within-UkH population mean and variance

z̄kH = (NkH)−1
∑

i∈UkH

zi , s2
kH,z = (NkH − 1)−1

∑
i∈UkH

(zi − z̄kH)2

Also recall that in (C.0), the sizes NkH are all large enough that NkH/(NkH − 1) ≈ 1.

Under assumptions (C.0)-(C.3), the limiting forms of regression coefficients β̂ and residuals êi are

β0
m = P- lim

N
β̂m =

∑
k,H,l

ν(l,m, k,H) ρl µk

/ ∑
k,H,l

ν(l, m, k,H) ρl (16)

e0
i = yi − P- lim

N
β̂′xi = yi − β0

m(i) (17)

and it is shown in Slud and Thibaudeau (2008, Appendix) also that

(f/N) V (Ŷ ) ≈ σ2
∑

l,m,k,H

cm ν(l,m, k,H) +
∑

l,m,k,H

ν(l,m, k,H)
[
(µk−β0

m)2 ρl(1−ρl) c2
m + (β0

m+(µk−β0
m)ρl cm)2

]

−
∑
k,H

ν(k, H)
{∑

l,m

(β0
m + (µk − β0

m)ρlcm) ν(l, m|k,H)
}2

(18)

and that the limit of the Särndal and Lündstrom (2005) variance (9), with 1− f replaced by 1, is

VSL(Ŷ ) ≈ (N/f)
∑

l,m,k,H

[
σ2 cm + (cm − 1) (µk − βm)2

]
ν(l,m, k,H) (19)

3.2 Formulas for Expectation of BRR Variance Estimators

To study the average of Vbrr(Ŷ ), we start from the asymptotically equivalent form (5) displayed above. This
approximation is very good in practice, as is documented via simulation by Slud and Thibaudeau (2008), with error
at most one or two percent, when K is large and R is at least K/4.

Slud and Thibaudeau (2008, Prop. 4) find a rather complicated but explicit large-sample limit for the expression

(f/N) E(Vbrr) − (fN) V∗ (20)

where
V∗ ≡

∑
k

( ∑
l,m

(β0
m + ρlcm(µk − β0

m))(ν(l,m, k, 1)− ν(l,m, k, 2))
)2

(21)

In special cases (A) and (B), the complicated general limiting form for (20) of the Vbrr formula is simpler and
interpretable. Numerical comparisons of this formula with (9) and (13) will be given in Section 4.

3.3 Simplifications under Cases (A)–(B)

Conditions (C.0)-(C.4), which led to the expected Vbrr(Ŷ ) formula Slud and Thibaudeau (2008, Prop. 4), do
allow the adjustment cells to be misspecified. In our notation, this is reflected by the products ρl cm being different
from 1 when the random index-quadruple (l,m, k,H) has probability mass function ν. The other mechanism
which affects differences (f/N) (E(Vbrr)−V (Ŷ )) or (f/N) (E(Vbrr)− V̂ (Ŷ )) is imbalances violating Case (A).
The main result of this paper is that a combination of both effects can result in meaningfully large discrepancies
E(Vbrr)−V (Ŷ )). The following theoretical results, proved in Slud and Thibaudeau (2008), go far toward explaining
why both mechanisms must be operating in order for large discrepancies to arise.

Under Case (A), it is easy to check that the quantity V∗ in (21) is identically 0, and the limiting form of the
expected BRR variance is given in the large-superpopulation limit by

lim (f/N)E(Vbrr) = lim (f/N) V (Ŷ ) = (18)

but these limits are not generally exactly equal to (19).
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Case (B) says that in the large-superpopulation limit, under the joint distribution ν(l,m, k,H), the index l
is conditionally independent of (k,H) given m. It follows that β0

m = βm, and in the limit,

lim (f/N) V (Ŷ ) = lim (f/N) VSL(Ŷ ) = (19)

while

lim
{

(f/N) E(Vbrr) − (fN) V∗

}
=

∑
l,m,k,H

(
σ2cm+(cm−1)(µk−β0

m)2
)

ν(l,m, k,H) +
∑

l,m,k,H

(cm−1)(µk−β0
m)2 ·

·
{

(ν(k, 1)− ν(k, 2))2 ν(l,m, k,H) + (ν(l,m, k, 1)− ν(l,m, k, 2)) (ν(k, 1)− ν(k, 2))
}

4. Numerical Comparisons

We consider now a brief numerical study in the setting of (C.0)-(C.4) comparing the large-sample theoretical
formulas (19) for VSL(Ŷ ), (18) for the true variance V (Ŷ ), and the limiting expected BRR variance formula of
Prop. 4 of Slud and Thibaudeau (2008). Our objective is to understand the likely magnitudes of relative bias of
V̂brr for V (Ŷ ) in terms of qualitative restrictions on the array ν(l, m, k,H) of limiting large-sample proportions
of the population concentrated in UkH ∩Bl ∩ Cm.

We illustrate several numerical examples with ν(l,m, k,H) arrays initially defined to satisfy (A) and nearly
satisfying (B) and then violating (A) more and more strongly.

In the first set of examples, we fix the following parameters:

σ2 = 0.2 , L = M = 10 , N = 106 , f = 0.004 , {ρl}10l=1 = 0.6 + (0, . . . , 9) · 0.4/9

so that the average response rate is always 0.8. For an integer q = 4 or 16,

K = 5q , {µk}5k=1 = q concatenated copies of (1.5, 1.75, 2, 2.25, 2.5)

so that µ̄ is close to 2, and the attributes yi have coefficient of variation roughly 0.25. The expansion factors q,
when applied to the arrays ν(l,m, k,H) defined in the next paragraph, determine that the number of indices k is
inflated by the factor q, with each of the sub-arrays { ν(l,m, k,H)}l,m,H copied q times and pasted together to
form a new L×M × (5q)× 2 array.

Each of the ν arrays we used was generated along to the following scheme. The ‘true’ cells Bl were defined
to have equal size, here ν(l, ·, ·, ·) =

∑
k,m,H ν(l,m, k,H) = 1/L = 0.1 for each l = 1, . . . , 10. Then the

bivariate confusion matrix ν(l,m, ·, ·) =
∑

k,H ν(l,m, k,H) was specified so that the conditional entries ν(m|l) ≡
ν(l,m, ·, ·)/ν(l, ·, ·, ·) were proportional to exp(−c la · |l−m|), where c is a constant and a was 1, 0.5, or 0. Next,
the ν conditional distribution of k given (l,m) was specified to depend only on k, l proportionally to exp(β k l)
where the constant β was taken as either .01 or .03. Note that in this formulation, k and m are taken conditionally
independent given m. To complete the specification, ν(H|l,m, k) ≡ ν(l,m, k,H)/(ν(l,m, k, 1) + ν(l, m, k, 2)) is
defined as 0.5 wherever we wanted to maintain perfect balance as in Case (B), and otherwise as a single array
(generated once only for each example ν) of independent identically distributed variates uk,l,m ∼ Uniform( 1

2 (1−
ω), 1

2 (1 + ω)), where ω ∈ (0, 0.5) is an input parameter, used below to quantify imbalance.

Four different arrays generated in this way can be described in terms of two summary statistics:

SDcond = average over (k, H) of SD(ν(l|m, k,H)) (which measures violation of Case (B))

missp = Misspecification (
∑

l,m ν∗(l,m) (ρl cm − 1)2)1/2 (measuring misspecification of cells)

The value SDcond was defined for each array as the average over (l, m) of the standard deviations for fixed (l, m)
of the vectorized array of numbers {ν(H|l, m, k)}k,H , and would be 0 under Case (B). The quantity missp
depends only on the joint distribution of (l,m) under ν, and therefore is unaffected by ω and the size factor q
used to vary the number of PSU’s K = 5q. For the four example ν arrays used in constructing Table 1 below,
the resulting values of missp are as follows:

Example ν array 1 2 3 4
missp value 0.159 0.116 0.121 0.069
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Table 1 displays a series of comparative values calculated and simulated for the large-sample variances of the
survey estimator Ŷ . Columns 1–4 of the Table specify an example, i.e., the specific ν(l,m, k,H) array used before
multiplicative perturbation by Unif[1−ω, 1+ω] variates, as described above. The column entries q denote in each
row the multiple of 5 used to define the number K of PSU’s in the example. The SDcond column is the computed
descriptive statistic SDcond for the Example in each row. Columns 5–7 of the Table are the variances multiplied
by f/N , respectively E(Vbrr(Ŷ ) as given in Prop. 4 of Slud and Thibaudeau (2008) and VSL given in (11) and
V (Ŷ ) given in (18). Unlike columns 5–7, which are the result of theoretical calculation, the final columns of the
Table are compiled from the results of a simulation study conducted under the survey design. The stratified survey
of sample-size n = 4000 specified in each row of the Table was simulated independendently 1000 times. Then
columns 8–10 of Table 1 contain respectively the empirical average over the simulation-iterations of formula (18), the
empirical standard deviation of the estimator V̂SL(Ŷ ) given in formula (10), and the empirical standard deviation
of the BRR variance estimator (4).

For the most part, the BRR formula variances (column 5) in Table 1 are seen to be close to the true ones (column
7), especially in examples with ω = 0, because we have formulated as a base case for each ν array example a
setting where Case (A) holds precisely and (B) holds approximately. (The quantities SDcond have intentionally
been allowed to remain rather small.) However, as ω increases and exact half-PSU balance is violated, it is not
hard to generate examples showing extremely large bias for the BRR variance estimators. In fact, a well-designed
survey should not show anything like as much half-PSU imbalance as is embodied (through ω = 0.1) in randomly
selecting a probability in the range 0.45–0.55 as a PSU-splitting fraction. When ω < 0.05, it is quite hard to
generate examples with numbers of strata and cells like those here in which the bias between BRR and V (Ŷ ) is
more than a few percent.

The main tendency of these numerical comparisons has been to point out

• that the expected BRR variance is extremely close to the VSL and V (Ŷ ) variances in almost all practical
cases under Case (B), and

• when there is even the slightest violation of Case (B), then the differences between EVbrr and V (Ŷ )
can become interestingly large (in a way which depends on the adjustment cell misspecifications and PSU
differences in cell proportions), with the former generally larger.

The simulation gives us three specific conclusions. First, the close agreement between the columns 7 and 8 of
Table 1 corroborates the theortical approximation (18) to V (Ŷ ), and the empirical average of (4) agreed similarly
with the theoretical formula. Second, the approximation of (4) by (5) was seen to be extremely close (within 1%
almost without exception). Finally, we can see from the final two columns of the Table that the variance of the BRR
variance estimator can be quite high compared to other estimators of good quality, like V̂SL.

5. Summary & Discussion

This paper has studied the bias of Replication-based variance estimators only in the simplest possible setting: that
of a survey in which PSU’s (whether sampled or self-representing) are split in order to generate a system of replicate
weight factors (as in Fay 1984) 1± (0.5) which are constant on each half-PSU. In that setting, we have introduced
a pseudo-randomization model for nonresponse and have elaborated a set of superpopulation model assumptions
under which

(1) survey attributes behave like independent variates, identical except that means may differ across PSU’s;

(2) nonresponse probabilities are constant within a fixed finite set of response cells, and the proportion
of the frame population within true cell l, working adjustment cell m, PSU k and half-PSU index H has
a superpopulation limit; and

(3) SRS sampling is done within PSU’s.

Of these Assumptions, (1) is not realistic but rather represents a useful extreme where there are no relationships
between attributes, nonresponse, and the demographic covariates defining adjustment cells, to lead to bias in the
survey-weighted attribute totals. The restrictions (2) and (3) are made purely for reasons of theoretical tractability,
and could easily be generalized. Our results show in this setting:

(a) Even when the adjustment cells are misspecified, the BRR variance estimators are generally unbiased when
the PSU by response and adjustment cells are split evenly, in a probabilistic or superpopulation sense.
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Table 1: Variances multiplied by f/N for Ŷ in examples of survey designs. Columns 5–7 are theoretical calculated
values given by formulas described in the text, while columns 8–10 report related simulation results.

Calculated Simulated
ν Array q ω SDcond EVbrr VSL V (Ŷ ) V Y VB.sd VB.sd

1 4 0 .0028 1125 1125 1130 1119 346 55
16 0 .0008 1125 1125 1130 1124 192 61
4 .1 .0032 1256 1125 1130 1116 390 56

16 .1 .0008 1158 1125 1130 1128 183 60
2 4 0 .0026 1146 1146 1160 1144 374 56

16 0 .0007 1147 1146 1159 1152 182 62
4 .1 .0030 1374 1146 1160 1151 414 57

16 .1 .0008 1204 1146 1160 1146 203 60
3 4 0 .0063 1141 1140 1183 1144 373 59

16 0 .0017 1141 1140 1183 1146 187 61
4 .1 .0064 1445 1140 1183 1144 484 60

16 .1 .0017 1217 1140 1183 1139 209 63
4 4 0 .0063 1157 1157 1174 1148 381 60

16 0 .0017 1157 1157 1174 1165 187 62
4 .1 .0065 1844 1157 1174 1155 608 59

16 .1 .0017 1329 1157 1174 1154 238 63

(b) When imbalances appear in the way the PSU’s and true and working response cells are split, biases in the
BRR variance estimators can be large, usually in the direction of inflating the variance.

(c) To an extent which must be clarified in further research, the BRR variance estimators do not converge in the
large-sample superpopulation limit to the constant values of the true variances, but rather have asymptotic
distributions showing residual variability that can be large when the adjustment cells are misspecified.

There are a few lessons to draw from the paper. When the mechanism of splitting into half-PSU’s cuts evenly
across response cells, as is likely to be true by the alternate-indexing of systematic samples used in the Survey
of Income and Program Participation (SIPP), then BRR provides reliably unbiased estimators, and this research
supports the use of such estimators. Second, there is some need for empirical research on whether split-PSU
imbalances that might cause BRR variance estimation biases really do arise in practice. Finally, it should not
be at all difficult to devise random mechanisms of splitting PSU’s which lead to negligible imbalances, in which
case the BRR estimators remain very attractive for their simplicity of interpretation in public-use files, the ease of
programming to make use of them, etc. A fair coin-toss allocation to H within PSU is one way to accomplish this,
but a better way would be to do some sort of balanced block randomization within covariate-defined cells. The
allocation of sampled units to H=1,2 could also be done after sampling, taking some demographics into account for
the responders.
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