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Abstract 
Many small domain estimates require a precise, direct estimate of the within domain variability as one component.  
However, due to small sample size, the precision of within small domain direct variance estimates of census coverage 
is questionable.  In this paper, Markov chain Monte Carlo (MCMC) techniques are applied to develop a model-based 
estimate of the within domain variability as part of the estimation process.  For this particular application, variability 
within state is modeled via a random effects model where the census block is the replicate.  Ultimately, this block-level 
model is applied to evaluate synthetic error of the small domain1. 
 
 

1.  Background 
 
The Accuracy and Coverage Evaluation survey (A.C.E.) used two samples to evaluate coverage for Census 2000, the 
population sample (P sample) and the enumeration sample (E sample).  The P sample used capture/recapture 
methodology to estimate completeness of the census.  The P sample consisted of people rostered from a sample of 
housing units in a specific location (independent of the census) from a sample of census block clusters (from now on 
referred to as blocks).  It was populated based on the results from a person interview, independent from the census 
enumerations in the sample blocks. 
 
The E sample estimated the rate of census erroneous enumerations that should not have been included in the census in 
the sample block cluster or one ring of surrounding blocks.  The E sample consisted of census enumerations.  It was 
identified in the same set of census blocks selected for the P sample.  E-sample enumerations who matched to P-sample 
people were counted as correct enumerations.  Nonmatched E-sample enumerations underwent a follow up interview to 
determine whether they were correct enumerations for the specific location.     
 
The A.C.E. divided the population into 416 post-strata where smaller groupings were combined or collapsed to produce 
more stable estimates.  A post-stratum was a group of people sharing demographic and geographic characteristics that 
were assumed to have similar probabilities of inclusion in the census (U.S. Census Bureau, 2004).  A post-stratum, 
defined at the national level, was the same for both the P and E samples.  Within a single post-stratum k, the dual 
system estimate (DSE) was defined as: 
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CE E
DSE census DDRATE

M P
= × ×  (1) 

where: 
:kcensus  Census count within post-stratum k  

:kDDRATE  Ratio of data defined census records2 to all census records within post-stratum k.   

                                                 
1 This report is released to inform interested parties of ongoing research and to encourage discussion of work in 
progress.  The views expressed on statistical, methodological, technical, or operational issues are those of the author 
and not necessarily those of the U.S. Census Bureau.  The author would like to thank Don Malec for his continued 
guidance on this project. 
2 In 2000, the census required two characteristics for a record to be data defined.  Relationship, sex, race, Hispanic 
origin, and either age or year of birth counted as characteristics.  A valid name also counted as one characteristic.  To 
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:kCE  Weighted estimate of correct census enumerations in post-stratum k 

:kE  Weighted estimate of census data defined enumerations in post-stratum k  

:kM  Weighted estimate of matches in post-stratum k 

:kP  Weighted estimate of P-sample records in post-stratum k 
 
The model development described in this paper focuses on the third term for (1), the ratio of the correct enumeration 
(CE) rate ( ) and match rate (CEp Mp ).  The CE rate quantifies the ratio between total E-sample enumerations and a 
smaller subset of correct E-sample enumerations.  The match rate quantifies the ratio between total P-sample people 
and a smaller subset of P-sample people who matched to a census enumeration.  This ratio drives the calculation of (1), 
and the resulting coverage correction factors (CCF),  

,

,

CE k

k k

M k

p
CCF DDRATE

p
= × . 

 
In 2000, census coverage measurement used synthetic techniques to form DSEs for smaller domains.  To do this, a 
census count for the geographic domain of interest g  for each post-stratum k  was multiplied by the corresponding 
national-level CCF for that post-stratum.  Then, to come up with the DSE for the geographic domain of interest, all the 
post-strata were summed together: 

[ ],
all 

g g k
k

DSE census CCF= ×∑ k  (2)    

If the geographic domain of interest is sufficiently large, then synthetic estimates can constitute suitable coverage 
estimates.  However, as the size of the domain of interest decreases, then the synthetic bias increases.  
 
From the model-based approach used here, CE rate and match rate estimates at the block level can be made.  The 
model-based rates can be used for computation of new CCFs and DSEs at the block level.  Although it is possible to 
model data defined rates as well, that work has been excluded from this model.  To come up with estimates for the 
geographic domain of interest, a calculation similar to (2) is made.  However, we now sum across all blocks and post-
strata to yield the small domain estimate as shown here:   

, , , ,
all all 

g g b k g b k
b k

DSE census CCF= ×∑∑                  

 
Traditionally, variance estimates have been computed on large domains where sufficient data was present to calculate a 
design-based variance of the respective rates.  As noted in Malec and Maples (2005), the traditional use of design-based 
within small domain variance estimates for local coverage has been problematic because there is not a large enough 
sample.  To account for local variation, they develop a model that includes a random effect by local census office 
(LCO).  In their paper, they demonstrate that the synthetic model for coverage does not capture local variation.  They 
suggest development of methods to adequately account for the uncertainty of variability within small domains.     
 
The eventual goal of this model is to assess synthetic error of coverage estimates.  To do this, we develop a model for 
within small domain variance estimation using a random effect at the block level.  For this work, the model was applied 
to selected states by only including each A.C.E. sample block with between 3 and 79 housing units3. 
 

                                                                                                                                                                  
be considered valid by the census, a name had to have at least three characters in the first and last name together.  A 
census record had to be data defined to be eligible for A.C.E. processing. 
3 For A.C.E. sampling, block clusters were classified into four mutually exclusive sampling strata: (a) block clusters 
with 0 to 2 housing units, (b) block clusters with 3 to 79 housing units, (c) block clusters with 80 or more housing units, 
and (d) block clusters on American Indian Reservations with three or more housing units.  We applied the model only 
to stratum (b) because strata (a) and (c) are subsampled.  Accounting for subsampling in the model would add further 
complexity that we wanted to avoid during initial research.     

Section on Survey Research Methods – JSM 2008

2018



2. Methodology 
 
Keller (2007) includes a random effect at the block level to model correct enumeration rate variability within a small 
domain (a state-level domain in this case).  This paper extends that work, adding in modeling of match rate variability 
and a parameter that correlates the two rates.  For consistency in notation, this paper refers primarily to Keller (2007).  
References to the 2007 work are more frequent in the model development and model checking sections.     
 
2.1 Data Development 
In the 2007 paper, we document how the number of correctly enumerated person records and total person records were 
tabulated for each block in the A.C.E. sample with between 3 and 79 housing units.  For this paper, a similar process 
was followed to create totals for the number of matched person records and total person records at the block-level in the 
P sample. 
 
2.2 Model Development 
Also, in the 2007 work, we derive how the final likelihood (a block-specific binomial distribution) was computed for 
the E sample,  ( )( ), ,

b S

L bμ α ε
∈

∏
where: 

( )

: Intercept term

 : Ownership effect

: Block effectb

μ

α

ε

 

 
In that paper, we further argue the need for an augmented likelihood model based on an assumption that the block 

effects are normally distributed, ( )( ) ( )2

2

1
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In this paper, we incorporate the CE and match rates together as a pair of block-specific binomial distributions.  We 
now assume that the block effects have a bivariate normal distribution and a new augmented likelihood model is 
formed4: 

( )( ) ( )
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⎝ ⎠⎝ ⎠
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where  refers in general to parameters associated with correct enumeration or match rates. ∗
 
2.3 Model Specifics 
Similar to 2007, this analysis used the Metropolis-Hastings algorithm within the Gibbs sampler.  It used the Gibbs 
sampler to draw a single parameter from a conditional distribution given all other parameters.  However, since the 
target distribution was unknown, the Metropolis-Hastings algorithm was used to accept and reject candidates.     
 
For each iteration t ,  parameters were processed, where B  was the number of random block effects in the 
model.  The remaining seven parameters corresponded to the intercept 

2B + 7
( ),CE Mμ μ , ownership effect ( ) , the 

variance between the block effects (
,CE Mα α

)2 2,CE Mσ σ , and a parameter indicating the correlation between correct enumeration 

and match rates ( )ρ .  In our model, we use a non-informative, half-Cauchy prior for *σ  as documented in Gelman 
(2006).  The process cycled through each parameter conditional on the values of the other 2  parameters and the 
data by evaluating their Metropolis-Hastings ratios.  To properly check for convergence multiple sequences (chains) 
were run.  With respect to following notation,  refers to a chain.   

6

                                                

B +

z

 
4  A separate model, with distinct parameters for each state-domain has been made.  The state-domain notation, 
however, has been dropped for ease of reading.  
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The 2007 paper documents how we sampled our candidate values and processed the Metropolis-Hastings ratios for the 
block effects, intercept, ownership effect, and variance between the block effects.  Since that is unchanged, we omit 
those explanations from this paper.  Below, we document the Metropolis-Hastings ratio for the correlation between 
correct enumeration and match rates. 
 
2.4 Correlation of Correct Enumeration and Match Rates 
A scaled beta distribution was used as the proposal distribution since the correlation was between –1 and 1.  For the 
correlation, we sampled the candidate value by drawing from a beta distribution,  
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Based on a uniform prior for ρ , its conditional posterior density is: 
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The Metropolis-Hastings ratio with respect to the correlation included the proposal function as well as the posterior 
densities.   
 
2.5 Convergence Analysis 
As is done in the 2007 paper, this analysis employed the Gelman and Rubin Method (Gelman, Carlin, Stern, and Rubin, 
2000) as its convergence diagnostic.  To monitor convergence, we calculated a potential scale reduction factor defined 
in Gelman et al (2000) for every parameter.  For this analysis, the parameter vector subject to convergence monitoring 
was comprised of the random block effects of each block, the intercept terms, the ownership terms, the variance 
between the block effect terms, and the term for the correlation between correct enumeration and match rates.   
 
To begin, starting values for each parameter were chosen as initial values.  For those initial values, dispersed 
starting points were used.  This was done to determine if problems existed with the model’s convergence and to ensure 
that the parameter space was thoroughly searched to uncover possible modes.  To complete inference, the potential 
scale reduction factor was calculated at intervals of 100 iterations.  As recommended by Gelman et al. (2000), when all 
parameters had a potential scale reduction factor close to 1, the MCMC method was thought to have converged at that 
iteration, t

10z =

τ= .     
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2.6 Inference and Model Checking 
Similar to 2007, after we determined τ , we used the parameter values to calculate modeled correct enumeration and 
match rates for owners and renters for every iteration between 1τ +  and 2τ  for each block within each chain.  These 
rates were used as draws from the joint posterior distribution. 
 
In the 2007 paper, we applied posterior predictive checking described in Gelman et al. (2000).  We used posterior 
predictive checking to create new E-sample data from the model.  We wanted to check if the new samples were 
consistent with the observed data for the E sample.  For this work, because we model correct enumeration and match 
rates, we implement posterior predictive checking on the ratio between the correct enumeration rate and match rate 
(from now on, this will be referred to as the CEM ratio) in an identical manner.   
 
To complete posterior predictive checking, we began by creating new E and P samples using binomial trials.  Then, we 
compared coverage intervals for simple means and standard error estimates of the CEM ratios from the new samples to 
corresponding statistics from the observed sample.  The construction of coverage intervals is more thoroughly 
described in Keller (2007).  Tables 1.A and 1.B compare the model-based mean and standard error coverage intervals 
to the mean and standard error from the observed sample.  Recall that, within each state, only a subset of blocks was 
taken to model CEM ratio variability.  Since model results may not be illustrative of the whole state, we refer to them 
as state-domains in the following tables.     
         
Table 1.A – Correct Enumeration/Match (CEM) Ratio Coverage Intervals 
State-Domain 1* 2* 3* 4* 5* 6* 7* 8* 
Observed Value 1.0921 1.1483 1.1247 1.0772 1.0703 1.0527 1.0851 1.1131 
Coverage Interval 
Lower Bound 1.0804 1.1147 1.0983 1.0600 1.0555 1.0395 1.0726 1.0979 

Coverage Interval 
Upper Bound 1.1062 1.1831 1.1487 1.0982 1.0851 1.0657 1.0969 1.1341 

* - coverage interval covers the observed sample value 
 
Table 1.B – Standard Error of Correct Enumeration/Match (CEM) Ratio Coverage Intervals 
State-Domain 1* 2* 3* 4* 5* 6* 7* 8* 
Observed Value 0.0123 0.0232 0.0387 0.0137 0.0170 0.0134 0.0129 0.0245 
Coverage Interval 
Lower Bound 0.0106 0.0188 0.0327 0.0118 0.0151 0.0110 0.0116 0.0217 

Coverage Interval 
Upper Bound 0.0141 0.0341 0.0444 0.0189 0.0195 0.0158 0.0149 0.0274 

* - coverage interval covers the observed sample value 
 
Table 1.A indicates that the model-based coverage intervals for the CEM ratio cover the observed CEM ratio.  Table 
1.B shows that the model-based coverage intervals for the standard error of CEM ratio cover the observed standard 
error of the CEM ratio.  Because of this result, we see that our model is able to regenerate the data for the E and P 
samples and adequately account for block-to-block variation without resorting to design-based methods.  Note that the 
observed values in the table are only from block clusters with 3 to 79 housing units.  To follow, we apply the model to 
form small domain estimates. 
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3. Results 
 
3.1 Small Domain Estimation 
After posterior predictive checking provided promising results that MCMC techniques could be used to model CEM 
ratios, small domain estimates were generated.  To accomplish this, we partitioned the block-level data into two sets.  
Blocks in sample composed the first set of block-level data.  With these blocks, using the parameters from the 
simulations, we calculated a CE and match rate for every iteration for each sampled block within each chain.  Note that 
a different calculation exists within each block for owners and renters.  Because of how we have defined the model, we 
drop the alpha term when calculating the rates for renters.  That is, 
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Blocks not in sample composed the second set of block-level data.  For this analysis, blocks not in sample are denoted 
with .  There are generally many more blocks not in sample than blocks in sample.  With these blocks, we have no 
random block effect from the simulations.  However, a posterior distribution related to the posterior distribution used in 
the simulations can be created.  To do this, we used a draw from a bivariate normal random variable with mean 

*b

μ
∗
, 

variance 2σ
∗

, and correlation ρ  to generate random block effects for non-sampled blocks.  That is, 
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From these random draws, we calculated a correct enumeration and match rate for every iteration for each non-sampled 
block.  That is, 
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Using the rates, we calculated dual system estimates for both the sampled and non-sampled blocks: 
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To get an overall estimate across all blocks, we summed up the sampled and non-sampled blocks to get a dual system 
estimate at each iteration and for each chain: 
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3.1.1 Assessing the Model 
Schindler (2003) documented results of synthetically-based A.C.E. Revision II (A.C.E. Rev II) estimates for states, 
counties, and places.  However, A.C.E. Rev II estimates were not tabulated by sampling stratum, which was how 
model-based results were generated.  As a result, we had no direct way to compare our model-based results to the 
synthetic results from 2000.  To circumvent this, we developed an ad-hoc means for comparing our small domain 
model-based estimates to documented results for A.C.E. Rev II.  We explain how we created confidence intervals from 
A.C.E. Rev II and the model below.   
 
Confidence Intervals from A.C.E. Rev II 
To derive a confidence interval from the published estimates, we followed a simple scheme.  Suppose state A has a 
census count of 1,000,000 and an A.C.E. Rev II population estimate of 1,010,000 with a standard error of 5,000.  To 
construct a 90 percent undercount confidence interval from A.C.E. Rev II data, we performed these computations: 
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Confidence Intervals from Model  
We undertook a similar process to calculate a confidence interval from our small domain model.  To save space, 
iterations between 1τ +  and 100τ +  were used to form the undercount confidence interval from the model instead of 
iterations between 1τ +  and 2τ .  To do this, we first calculated a mean and standard error for all dual system 
estimates.  That is,  
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Then, the model-based undercount confidence interval was computed as: 
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where  
:census Census count within the sampling stratum for state 

 
Again, it is important to note that confidence intervals from A.C.E. Rev II are based upon data from the entire state.  
Model-based confidence intervals are based on data only for people who lived in blocks with between 3 and 79 housing 
units.  For 2000, the amount of people who lived in blocks with between 3 and 79 housing units varied by state.  In 
some states, about one-half of the population lived in blocks with between 3 and 79 housing units.  In other states, 
about three-fourths of the population lived in these blocks.       
 
For Table 2, the two confidence intervals are compared.  Negative undercount values imply that census overcounted the 
population according to the model-based estimates.  Positive values imply that census undercounted the population 
according to the model-based estimates. 
 
Table 2 – Comparison of Undercount Confidence Intervals (All totals are percents) 

State Undercount Confidence Interval from 
A.C.E. Rev II Undercount Confidence Interval from Model 

1 [-0.12 , 0.66] [0.58 , 2.05] 
2 [0.98 , 2.08] [0.21 , 12.08] 
3 [-1.70 , -0.58] [-1.15 , 8.14] 
4 [-1.71 , -0.86] [-0.05,2.24] 
5 [-0.92 , 0.27] [-0.92,2.50] 
6 [-1.85 , -1.04] [-0.14 , 1.08] 
7 [-0.80 , -0.02] [0.43 , 2.78] 
8 [-0.81 , -0.07] [0.09 , 4.63] 
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Table 2 indicates two results for the model.  First, a wider spread exists within the undercount confidence intervals 
from the model than within the undercount confidence intervals from A.C.E. Rev II.  This result may account for block 
variability, however the smaller confidence intervals from ACE Rev II are likely due to the use of a larger sample size 
(the entire state versus only a state-domain for the model-based estimator).  It should also be noted that the undercount 
confidence intervals from A.C.E. Rev II primarily show variability due to sampling.  Therefore, the nonsampling errors 
that can have a major effect on small domain estimates are not reflected in the A.C.E. Rev II confidence intervals.  As a 
result, the A.C.E. Rev II confidence intervals may be larger than indicated.      
 
Second, the estimates of undercounts from the model are generally larger than estimates of undercounts from A.C.E. 
Rev II.  Although this difference may just be due to differences between the state-level and state-domain level 
undercount rate, it could also be due to the extra-heterogeneity captured in the correlated, CE/match random effects 
model.  In other words, by breaking out the estimates to the block level, it could be that we are eliminating some of the 
heterogeneity that is present when just post-strata are used and individual blocks are combined.  As a result, minimizing 
this heterogeneity bias causes an increase to the DSE estimates because the CE and match probabilities are positively 
correlated among blocks.  More analysis of the bias properties of the dual system estimator is needed to verify this 
conjecture. 
 

4. Conclusions and Future Work 
 
This work continues the study of applying MCMC methods to estimate variance of coverage estimates over smaller 
domains.   Ultimately, this approach could be extended to a state-level small domain estimation model, where state-
level random effects allow borrowing between states and block-level random effects account for the within state 
variability. 
 
The limitations of this model should be noted.  First, this model has been applied only to a subset of the 2000 A.C.E 
blocks sampled within each state.  It will need to be determined if the inclusion of small blocks with fewer than three 
households or large blocks with more than 79 households will necessitate a change to the model.  Second, the model 
has only one fixed effect, ownership.  Other variables will be incorporated to see how results change.  Additionally, a 
model for data defined rates will be constructed.  All of these additions will need to be incorporated to develop a better 
picture of the model’s applicability.   
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