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1.  Introduction 
 
Surveys often employ weight adjustment procedures to compensate for unit non-response.  Such procedures are 
designed to reduce the bias of the survey estimate constructed from respondent data (Little and Rubin, 2002).  
Additionally, often survey methodologists frame unit non-response as a random second-phase sample of 
respondents from the originally sampled units.  Given either a uniform  (missing- completely-at random 
(MCAR)) response mechanism or a missing-at-random (MAR) response mechanism in each weighting class h, 
then the second phase sample comprises a Bernoulli sample with a random sample of respondents -- each with 
response probability ph -- from the first-phase sampled units in each weighting class (Sarndal, C., Swensson, B., 
and Wretman, J., 1992, pp. 62-65 and Kott, 1994).   
 
In this note, we consider a commonly-used adjustment-to-sample model described in Kalton and Flores-
Cervantes (2003): the unit non-response weighting adjustment factor for a weighting cell is calculated as the 
sample-weighted number of sampled units in the weighting cell divided by the sample-weighted number of 
responding units in the weighting cell, i.e., the  “quasi-randomization” estimator (Oh and Scheuren, 1983).  This 
adjustment is valid under a MAR or covariate-dependent response model.  If the weighting cells correspond to 
sampling strata, then this is equivalent to weighting by the unweighted inverse response rate, as recommended by 
Little and Vartivarian  (2005).   
 
In practice, weighting cells are designed to contain at least an expected minimum number of respondents, 
where this minimum is required to be greater than or equal to one.  When this condition is not satisfied, then 
weighting cells are collapsed according to predetermined criteria, usually determined by a response propensity 
model or cell mean model.  Ideally, the probability of response should differ by weighting cell as should the cell 
mean for key data items.  Under these conditions, collapsing weighting cells induces an additional bias in the 
survey estimates.  Again, this additional estimation bias is reduced by judiciously grouping weighting cells with 
either similar response propensities or similar cell means (e.g., collapsed strata).   Hereafter, we refer to cell 
collapsing rules based on a specified minimum number of respondents as the counts only collapsing criteria. 
 
In addition to defining a minimum number of weighting cell respondents, surveys often place a “cut-off” on the 
weight adjustment factor, i.e., collapse weighting cells if the adjustment factor is “too large” (Lohr, p. 267).  This 
cut-off is designed to reduce the estimated variance at the risk of increasing the bias of the estimator.  Such 
collapsing cut-off criteria are combined with minimum cell count criteria and are hereafter referred to in this 
paper as the counts plus factor collapsing criteria.  To reduce estimated variances, some surveys further place a 
“cap” on the size of the collapsed adjustment factors, accepting the increase in estimation bias in favor of the 
reduced variance component.  We do not consider an estimation procedure that places size restrictions on final 
estimated response adjustment factors. 
 
This note addresses the question of appropriate replicate variance estimation procedures when using 
weighting to account for unit non-response.  Under the counts only and counts plus factor collapsing criteria, 
we consider 
• Using the full sample cell weighting cells in each replicate (full sample cells); or 
• Determining the cell collapsing pattern individually for each replicate (replicate cells) 
via a simulation study modeled along the lines of a typical business survey.  We compare the variance estimation 
effects of replicating the weighting cell collapsing procedure in terms of relative bias of the variance estimates 
                                                 
1 This paper is released to inform interested parties of research and to encourage discussion.  The views 
expressed are those of the authors and not necessarily those of the Census Bureau. 

  

Section on Survey Research Methods – JSM 2008

1980



and the relative stability of the variance estimates, testing the sensitivity of our results to response model-
assumptions by employing a variety of uniform and MAR response propensity models in our simulation study.   
 
For operational reasons, any replication procedure should perform cell collapsing when the number of 
respondents in a replicate weighting cell is zero. If not, the replicate estimates are biased.  This requirement often 
motivates fully replicating the weighting cells when using the counts only collapsing criterion. 
 
Our research utilizes a delete-a-group jackknife (DAGJ) variance estimator found in Wolter (1985). This is a 
variation of the estimator presented in Kott (2001).  This variance estimator has excellent statistical properties in 
terms of consistency (for estimates of totals) while allowing sufficient “dropped sample” in each replicate for 
observation (c.f., the stratified jackknife).  We discuss this variation in detail in Section 2.1, along with our 
justification for employing it in this research. 
 
This paper explores the cell collapsing effects on DAGJ variance estimates via a simulation study, considering 
one non-response weight adjustment procedure.  Our simulation study is modeled along a typical business survey 
but is representative of no particular program.  The primary goal of this study was to explore empirically results 
that we obtained theoretically. Using Taylor linearization approximations, it can be shown that the DAGJ 
replicates are model-unbiased estimates of the full sample total when the full sample weighting cells and 
replicate weighting cells are the same, assuming a MAR response mechanism with the weighting cells 
corresponding to sampling strata and a counts only criterion is used.  Under the same conditions, it can be 
further demonstrated that the DAGJ replicate estimates are biased when the replicate weighting cells differ from 
the full sample weighting cells (i.e., when replicate weighting cells are collapsed whereas corresponding full 
sample weighting cells are not).  This collapsing bias is referenced in Rao and Shao (1999) in the context of 
modified half-sample and balanced repeated replication.  When replicate weighting cells each have respondents, 
and they do not correspond to the full sample weighting cells, the resultant replicate variance estimates tend to 
be overestimates.  However, when the replicates have zero respondent cells, it can be demonstrated that 
replicating the weighting collapsing procedure yields less-biased variance estimates under conditions that are 
often met by business surveys.  To save space, all proofs have been omitted, but are available upon request to 
authors. 
 

2.  Methodology 
 
2.1  Adjustment-to-Sample Estimation Procedures for Unit Non-response 
For a particular weighting cell h, let nh be the number of sampled cases, and rh be the number of respondents.  If 
y is observed for all rh observations and a highly correlated covariate value x is known for all nh observations 

then the non-response adjusted total Yh is estimated by .ˆ
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If a weighting cell u contains fewer than the pre-specified count threshold or the factor fu is larger than the pre-
specified factor threshold, then the weighting cell u is combined with (predetermined) weighting cell v.  In this 

case, the adjustment factor applied to all respondent units in weighting cells u and v is 

∑

∑
+

=

+

==
vu

vu

rr

i
i

nn

i
i

uv

w

w
f

1

1 . 

 
2.2  Delete-a-group Jackknife (DAGJ) Variance Estimator 
To perform delete-a-group jackknife (DAGJ) variance estimation, the non-certainty portion of the parent sample 
is systematically divided in K random groups.  The kth delete-a-group-jackknife replicate estimate is obtained by 
summing the weighted data from all but the kth random group after increasing the design weights by a factor that 
accounts for the random group that was dropped, then adding the survey total from the certainty portion of the 

sample to each replicate.  In the simulation study described below, each DAGJ replicate is given by )(̂kY
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Employing K/(K-1) yields unconditionally unbiased replicate estimates as described in Wolter (1985, p. 155 and 
183).  Kott (2001) recommends using n/(n – nk) or (for stratified samples) nh / (nh - nhk), where nh represent the 
number of sampled units in stratum h and nhk represents the number of sampled units in stratum h and random 
group k, which yields conditionally unbiased replicate estimates (conditional on the realized sample). 
 
Wolter (1982, p.31) provides guidelines for dividing the parent sample of either a two-stage or two-phase 
sample into random groups for variance estimation, advocating allocation of entire first stage units (not 
allocation of ultimate sampling units or respondents) to random groups.  The simulation applications described 
below follow these guidelines, i.e., sampled units are assigned to random groups. 
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represents the full-sample estimate.  The applications discussed below use a stratified simple random sample 
selected without replacement and have negligible sampling fractions in all strata.  Furthermore in our 
applications, each stratum contains at least K units, so that each stratum is represented in each random group.  
This avoids the variance estimation bias issue discussed in Kott (2001). 

0̂Y

 
For our simulation study, we employ the simple DAGJ replicate estimation method (replicate factors of K/(K-1)) 
instead of the strata-specific factors recommended in Kott (2001).  This was not our original intent because Kott 
(2001) provides compelling evidence for his proposed adjustment under the model assumption that yh ~μh, σh

2. 
In fact, our theoretical derivations considered both forms of DAGJ replicate estimators.  In developing our 
theory, a distinct advantage of Kott’s method for DAGJ replicate factors over our simple factors is that fewer 
approximation assumptions are required when no cell collapsing is performed.  However, derivations with the 
strata-specific replicate factors are more difficult to interpret when replicate cell collapsing is required.  
 
This aside, in our simulation study we obtained nearly unbiased DAGJ variance estimates of the population total 
under 100% response using fifteen random groups and our simple DAGJ variance estimator.  We were unable to 
achieve this in our simulation with the strata-specific replicate factors, regardless of the number of random 
groups (we attempted 10, 14, 15, and 16 random groups).   This could be an artifact of our simulation study, for 
which we generated a finite population with fixed characteristics (yi), then stratified this population for 
sampling.  This simulated population does not meet the criteria required in Kott (2001) for nearly model-
unbiased variance estimation, which requires a separate model for the characteristics within each stratum. 
 
Weighting cells in the replicates could have fewer respondents than in the full sample. Thus, certain weighting 
cells might need to be collapsed for a given replicate whereas they are uncollapsed for the full sample. On the 
other hand, cells that are collapsed in the full sample will be collapsed in the replicates as well.  This situation 
can occur more frequently with a replication method such as the DAGJ (as opposed to the stratified jackknife) if 
the number of sampled units in each full sample weighting cell is fairly small. 
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3.  Simulation Study 
 
3.1.  Design 
To conduct our Monte Carlo simulation study, we generated a finite population of bivariate lognormal data for 
15,000 establishments:  variable Y is both the stratification variable and characteristic of interest variable (an 
“ideal” stratification scenario); and Z is a highly correlated variable used for forming weight adjustment cells.  
We stratified this population using the Dalenius-Hodges cum-root-f rule (Cochran, 1977, p. 129) into six non-
certainty strata, then independently selected 1,000 stratified SRS-WOR samples of size n = 300 using the 
Neyman allocation with strata allocations as follows:  n1 = 37, n2 = 44, n3 = 43, n4 = 45, n5 = 46, and n6 = 85.  
 
In each sample, we systematically assigned sample units to fifteen random groups. Unit non-response was 
randomly induced as a Bernouilli trial within sample, so that the same unit could have different response status in 
different samples.  We consider two different response mechanisms. Initially, we considered a uniform response 
mechanism also known as the MCAR mechanism.  In this setup, let Y be the variable of interest and M be the 
missing data indicator with M=1 if the value of Y is missing and 0 otherwise. Under the MCAR mechanism, 
P(M|Y)=P(M) for all Y.  Since MCAR mechanism is often not applicable to business surveys, we then employ a 
more realistic MAR response mechanism. The general setup for the MAR response mechanism is that 
P(M|Y)=P(M|Yobserved) for all Y.  However, we use a covariate-dependent MAR response mechanism in our 
simulations where given Z, a completely known covariate, P(M|Y, Z)=P(M|Z) so that the missing indicator M is 
conditionally independent of Y given Z.  For both the uniform response and MAR scenarios, we consider two 
different sets of nonresponse weighting cells:  one where the unit non-response adjustment is performed within 
strata; the other where we employ ten disjoint weighting cells, determined by percentiles of Z in the population. 
 
3.2.  Evaluation Criteria 
Let Y be the true population total of our variable of interest, and let 

sŶ  = estimate of the population total from sample s (where s indexes the sample) assuming 100% response. 
 
Assuming some unit non-response, let 
 

isŶ  = non-response adjusted estimate of the population total from sample where i =0 when the full sample 
weighting cells are used from the replicates in sample s and is r otherwise. 
 
We estimate the survey error of the two adjusted sample estimates in terms of empirical mean squared error 
(MSE).   With complete (100%) response, the empirical MSE of the survey estimate is given by: 
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The respective empirical MSE of  and are given by sY1̂ sY2̂
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2,ˆ1 )  where j = 1 when the collapsing criteria is counts only and j = 2 when the 

collapsing criteria is counts plus factor.  
 
Note that we do not attempt to compare the MSEs between estimates obtained from using the two procedures. 
These estimation properties are greatly affected by factors such the underlying distribution of the data, the 
survey design, and the response mechanism.  Consequently, it would be unwise to make a general comparative 
statement about the estimation properties from either procedure from this particular simulation study.  
 
For the three sample-based estimates above, we can calculate the following DAGJ variance estimates: 
 

)ˆ(ˆ
ss YVv =  is the variance estimate from sample s assuming 100% response. 

),ˆ(ˆ
jsiijs YVv = where i and  j are as defined above. 
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We use the following measures to evaluate the statistical properties of the variance estimators for procedure i (i 
= counts only or counts plus factor) 

Relative bias = ( ) 1ˆ
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With an “ideal” variance estimator, the relative bias will be near zero as will the relative stability.  The relative 
bias and relative stability of our  (100% response) DAGJ variance estimates for Y constructed from our 1,000 
samples were -0.02 and 0.11 respectively. We rely primarily on relative bias as our measurement of accuracy.  
We expect the stability to worsen by developing replicate-specific weighting cells, since this adds variability to 
the replicate estimates.  Initially, we examined confidence interval coverage rates as well.  However, the analysis 
of coverage rates is complicated since both the survey estimates and variance estimates are biased, and we were 
not confident that the coverage effects seen in our study would be applicable to other data sets.  The coverage 
results are, however, available upon request from the authors. 

sv

 
3.3  Results 
We present our simulation study results below.  In each scenario, we used a data-based decision rule to develop 
collapsing criteria, i.e., we determined cut-off values that would force the replicate-based weighting cells to 
differ occasionally from corresponding full-sample weighting cells.  In doing this, we did not simulate any 
conditions of zero-response in any replicate-based weighting cell.  This latter condition is not intrinsically 
interesting, since there is very little choice in replication cells.  
    
In Tables Two and Four, the weighting cells are identical to the strata, and the thresholds for collapsing depends 
on data with the minimum number of respondents in a weighting cell being 33 (count) and the maximum 
allowable factor level being 1.4 (factor).  In Tables Three and Five, the ten weighting cells are not identical to 
strata, and the thresholds for collapsing depended on data with the minimum number of respondents in a 
weighting cell being 14 (count) and the maximum allowable factor level being 1.75 (factor).   These thresholds 
were chosen to guarantee some collapsing. 
 
3.3.1  Uniform Response Mechanism 
Table Two presents our simulation results when weighting cells correspond to strata.   
 
Table Two:  Variance Estimation Measures (in Percentages) Given a Uniform Response Mechanism Where 
Weighting Cells Correspond to Strata 

Weighting Cell 
Response Propensity Collapsing Criteria Replication 

Weighting Cells Relative Bias Relative 
Stability 

100 n/a Full Sample -2 11 
Full Sample -21 23 Count Replicated -21 23 
Full Sample -21 23 90 

Count Plus Factor Replicated -21 23 
Full Sample -22 24 Count Replicated 386 387 
Full Sample -22 24 80 

Count Plus Factor Replicated 386 387 
Full Sample 59 61 Count Replicated 59 61 
Full Sample 36 43 70 

Count Plus Factor Replicated 36 43 
For two of the three response propensities (90 and 70), there is no evidence of improvement in relative bias or 
relative stability using the replicate-based weighting cells instead of the full sample weighting cells within the 
same collapsing criteria.   
 
The results for the 80-percent response propensity are less encouraging, demonstrating very large increases in 
relative bias when using the replicate-based weighting cells.  The explanation for this follows from the earlier 
discussion.  In these two sets of simulations, the replicate-weighting cells are collapsed more frequently than the 
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full sample weighting cells in a high proportion of our samples, leading to overestimation of MSE with the 
replicate-based weighting cells.  This additional collapsing bias in the replicate estimates is not present when 
using the full sample weighting cells to construct adjusted replicate estimates.  We did not see a similar pattern 
with the 70 percent propensity because there was so much collapsing in the full sample.  Table Three presents 
our simulation results when the weighting cells do not correspond to strata.   
 
Table Three:  Variance Estimation Measures (In Percentages) Given a Uniform Response Mechanism Where 
Weighting Cells Do Not Correspond to Strata  

Weighting Cell 
Response Propensity 

Collapsing 
Criteria 

Replication 
Weighting Cells Relative Bias Relative Bias 

100 n/a Full Sample -2 11 
Full Sample -28.0 34.7 Count Replicated -28.0 34.7 
Full Sample -28.0 34.7 90 Count Plus 

Factor Replicated -28.0 34.7 
Full Sample 50.6 67.2 Count Replicated 50.6 67.2 
Full Sample 50.6 67.2 80 Count Plus 

Factor Replicated 50.6 67.2 
Full Sample 12.3 37.4 Count Replicated 12.3 37.4 
Full Sample 11.9 37.6 70 Count Plus 

Factor Replicated 101.4 883.0 
 

With the higher response propensities (90 and 80), there is no evidence of improvement in relative bias or 
relative stability for full sample based versus replicate-based weighting cells within the same collapsing criteria.  
This pattern changes slightly for counts plus factor collapsing criteria, when again we see increases in relative 
bias and stability by using replicate-based weighting cells. 
 
In many of the scenarios presented above, we obtain identical results for bias and stability respectively either for 
counts only or counts plus factor collapsing patterns. One explanation is that the counts only collapsing pattern 
completely dominated the factor-based collapsing pattern, i.e., in most cases, the cells with replicate factors that 
exceed the threshold also have replicate counts that are lower than the threshold.  This is a fairly typical scenario:  
minimum respondent thresholds are generally chosen to support the sample design and to prevent variance spikes 
caused by overly large adjustment factors. 
 
3.3.2 Missing-at-Random (MAR) Response Mechanism 
A uniform response mechanism is a bit unrealistic for many business surveys.  Often, the sampled units from 
larger size strata have higher response rates or are targeted for intensive analyst follow-up, and the response 
propensity tends to decrease proportionally to unit size.    Table Four presents simulation results for two different 
missing-at-random (MAR) response mechanisms, where the response propensities increase as the unit size-
strata increases.  
 
Again, we see the pattern exhibited in Table Two for the 80% response propensity group, namely large increases 
in the relative bias of the replicate-based weighting cells over using the full sample weighting cells with either 
collapsing criteria.  We attribute the large difference in relative biases within collapsing criteria to the simulation 
study design.  This exaggerated effect occurs when the replicates do not have cells with zero respondents.  This 
can be explained by our theoretical results:  when there are no replicates with zero respondent cells, replicating 
the weighting collapsing pattern tends to increase the bias in the DAGJ variance estimates.  In our simulation 
study, there are no replicates with zero respondent cells, so we do not capture mitigating effects on the bias from 
replicating the weighting collapse pattern.  
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Table Four:  Variance Estimation Measures (in Percentages) Given a MAR Response Mechanism Where 
Weighting Cells Correspond to Strata 

Weighting Cell 
Response Propensity Collapsing Criteria Replication 

Weighting Cells Relative Bias Relative 
Stability 

100 n/a Full Sample -2 11 
Full Sample -33.5 34.2 Count Replicated 110.0 110.3 
Full Sample -33.5 34.2 60,60,70, 80,80,90 

Count Plus Factor Replicated 110.0 110.3 
Full Sample -22.7 26.8 Count Replicated 744.2 745.4 
Full Sample -22.7 26.8 60,65, 70,75,80, 90 

Count Plus Factor Replicated 744.2 745.4 
 
Finally, Table Five presents results for two different MAR response mechanisms, using ten weighting cells 
determined by an auxiliary variable that is highly correlated to the characteristic of interest.  This is the most 
general of the simulation scenarios presented, but it also makes the most use of the response model in the 
formation of the weighting cells. 
 
Table Five:  Variance Estimation Measures (In Percentages) Given a MAR Response Mechanism Where 
Weighting Cells Do Not Correspond to Strata  

Weighting Cell 
Response Propensity Collapsing Criteria Replication 

Weighting Cells Relative Bias Relative 
Stability 

100 n/a Full Sample -2 11 
Full Sample 26.2 51.1 Count Replicated 26.2 51.1 
Full Sample -26.9 39.2 

50,50, 60,60,70,70, 
80,80,90 90 Count Plus Factor Replicated 40.4 102.5 

Full Sample 12.3 37.4 Count Replicated 12.3 37.4 
Full Sample 11.9 37.6 

70,70, 70,70,80,80, 
80,80,90 90 Count Plus Factor Replicated 101.4 883.0 

 
Again with the counts only collapsing criteria, neither set of variance estimates (full sample versus replicated) 
appears to have an advantage over the other.  In contrast, incorporating the factor-thresholds into replicate 
weighting procedures appears to have detrimental effects on the replicate MSE with the counts plus factor 
collapsing criteria. 
 
 

4.  Conclusion 
 

There is a practical advantage to full replication when minimum weighting cells sizes are based on respondent 
counts: it eliminates any concerns about zero-respondent replicate weighting cells.  In our simulation, the 
replicate weighting cells always contain more than one respondent.  In the majority of our simulation scenarios, 
there is no difference in the relative bias of the variance estimate computed with original weighting cells or 
replicate-based weighting cells with the counts only collapsing criteria.  Moreover, in the case where a replicate 
weighting cell is empty, there are theoretical advantages to replicating the weighing cells (at least with our 
considered variance estimator).  However, it should be noted that when there are differences between 
corresponding variance estimates, the relative biases of the fully replicated variances are substantially larger than 
their counterparts constructed from the full sample weighting cells. 
 
In contrast, there are no genuine theoretical or practical advantages of incorporating factor-thresholds into 
replicate cell collapsing criteria.  Moreover, many of our simulation results provide some evidence of detrimental 
effects on MSE estimates when using replicate-based weighting cells with the counts plus factor collapsing 
criteria. Thus, we recommend excluding factor thresholds when developing replicate weighting-cells from any 
replicate variance procedure.  This recommendation is consistent with the current practice for most surveys. 
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The decision whether to use the full-sample weighting cells or the replicate-based weighting cells when using 
respondent counts to determine collapsing is less straightforward.  We derive a series of theoretical results using 
the delete-a-group jackknife variance estimator.   Our theoretical analysis provided supporting justification for 
using the same replicate-weighting cells as the full sample cells when there are no replicates with zero 
respondent cells.  The choice to develop replicate-based weighting cells is often governed by operational 
considerations.  Under certain conditions often met by business surveys, there are statistical arguments for 
choosing this approach as well for this version of the replicate estimator. As an alternative to applying one of 
these two approaches uniformly, one might consider a hybrid approach:  use the full-sample weighting cells in 
each replicate except for when the weighting cell in a replicate has zero respondents. In such cases, we could 
apply the replicate-based weighting cells approach. 
 
Replicate variance estimates that employ the full sample weighting cells essentially condition on the full-sample 
collapsing pattern.  If the collapsing criteria are counts only based, using the full sample cells in replication will 
not fully capture the variability component from the unit non-response.  Factor based collapsing criteria are 
used to reduce the variance of the estimate, and the collapsing factor thresholds should be set that do not overly 
affect the bias.  In our simulation, the replicate variances that use the full sample weighting cells and the counts 
plus factor collapsing criteria appear to be very close to their respective MSEs, thus capturing the variance 
reduction (from adding the factor). 
 

Ultimately, it seems preferable for a one-stage sample survey to sidestep the entire question by using a different 
variance estimator that is supported by the survey design, such as modified half-sample replication or the 
stratified jackknife (where one unit is dropped in each replicate).  With both of these methods, the replicates 
weighting cell respondent counts are the same (or approximately the same) as the full sample weighting cell 
respondent counts. Future research will focus on cell collapsing effects in multi-stage designs, using these other 
variance estimators. 
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