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1. Introduction1 
 

We present hybrid estimators for population totals subject to transitions through time, along with a corresponding 
hybrid variance estimator. Table 1.1 classifies selected estimators according to their type of methodology (design 
based, model-based) and their fundamental perspective (frequentist, Bayesian). The estimator of population totals 
we are proposing is a hybrid estimator in the sense that it involves a component akin the Horvitz-Thompson 
estimator, a design-based estimator, and another component defined through Maximum Likelihood estimation. 
 
Table 1.2 classifies variance estimators along the same two axes. In the paper we also present a hybrid variance 
estimator. This variance estimator is a hybrid because it integrates balanced repeated replication (BRR), a frequentist 
procedure, and the Method of Laplace, a Bayesian procedure. 
 
Ultimately we will show that, although the method of Laplace originates in the Bayesian perspective, it has 
properties that allow using it in the frequentist perspective as well. Furthermore, it can be part of a diagnostic tool kit 
to validate models in model-based estimation. This is important, because as we will see, structurally model-based 
estimator are advantageous over estimator using models just to patch-up missing data, if the model is correct. 
  
According to our definition, hybrid estimators only involve methods which truly combine estimators at both end of 
one axis in table 1 or 2. These should be distinguished from “bridge” estimators. For example, multiple imputation 
(MI) was originally proposed by Rubin (1977, 1987 p. 116) as a randomization-valid, by extension design-based, 
method. But later, MI became popular as a model-based method. So MI is a bridge estimator. Tables 1.1 and 1.2 are 
by no mean exhaustive or definitive classifications. They are meant as a reference point to frame our research. 
 
In section 2 we describe the example we use in the paper to introduce our hybrid estimators: The Survey of Income 
and Program Participation. Section 3 introduces basic hybrid estimators in presence of missing data. Section 4 
recalls BRR, and expands our hybrid variance estimators involving the method of Laplace for variance estimation. 
Section 5 gives a frequentist validation of both our hybrid estimators in terms of their interpretations relative to 
population statistics. Section 6 concludes by giving an appreciation of the potential of the method of Laplace as a 
diagnostic tool. 
 
Table 1.1 – Selected Estimation Techniques 
        Perspective 
-------------------- 
Methodology  

Frequentist Bayesian 

Design-Based Horvitz-Thompson, WMLE Multiple-Imputation 
Model-Based GREG, MLE MLE, Multiple-Imputation 
 
Table 1.2 – Selected Variance Estimation Techniques 
        Perspective 
-------------------- 
Methodology 

Frequentist Bayesian 

Design-Based Expansion Estimator, BRR, 
Bootstrap, Jackknife 

Multiple Imputation 

Model-Based Linearization, BRR, 
Bootstrap, Jackknife 

Bootstrap, Multiple-Imputation, 
Method of Laplace 

 

                                                 
1 This report is released to inform interested parties of (ongoing) research and to encourage discussion (of work in 
progress).  Any views expressed on (statistical, methodological, technical, or operational) issues are those of the 
author(s) and not necessarily those of the U.S. Census Bureau 
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2. Example: The survey of Income and Program Participation 
 
For this expose we assume a nontrivial, but simple, structure to illustrate the problem of estimating population totals 
and their variances. We use the survey of income and program participation (SIPP), a longitudinal survey conducted 
by the U.S. Census Bureau, as background for our example. 
 
SIPP measures the economic well being of the U.S. general population in relation to participation to government 
social programs, such as unemployment compensations and several programs of economic assistance. Participants to 
the survey are asked to report on their status in relation to several programs for each month they are in the cohort. 
But participants are interviewed only every four months in “waves” installments. Missing data are endemic to SIPP. 
A frequent situation is that of an initial full response to the survey, at the first wave, but only fragmented responses 
at subsequent waves. 
 
Table 2.1 shows sample counts for the state of California for wave 1 and wave 2 of the 2004 “panel. It gives a cross-
classification of each screened respondent by the answers to two labor-force questions: “Were you looking for a job 
on the last month of wave 1 (2)?” and “Were you on layoff anytime during the last month of wave 1 (2)?” Tables 
2.2, 2.3, 2.4 give counts involving missing responses at wave 2. For simplicity of the expose, the cases involving 
missing response at wave 1 were discarded. But, in general, the techniques we present recuperate these cases. 
 

Table 2.1 – Classification for Units with Complete Wave 1 and Wave 2 Information 

Wave 2 

Not Looking for Work Looking for Work 

 

Not Layoff Layoff Not Layoff Layoff 

Not on 

layoff 

109 1 28 4  Not  

Looking 

On 

Layoff 

0 6 3 7 

Not  on 

Layoff 

37 2 36 3 

 

Wave 1 

Looking 

On 

Layoff 

7 10 3 14 

 

Table 2.2 – Classification for Units with Partial Wave 2 Information 

Wave 2  

Not Looking for Work Looking for Work 

Wave 1 Not Looking. Not Layoff 533 134 

Table 2.3 – Classification for Units with Partial Wave 2 Information (cont’d) 

Wave 2  

 Not on Layoff Layoff 

Wave 1 Not Looking Not Layoff 3 0 

 

Table 2.4 – Classification for units with No Wave 2 Information  

Wave 1 Not Looking Not on Layoff 121 
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3. Estimation of Population Totals 

 
For a given unit in the survey, let I, J represent respectively the responses to the “looking for work” and “on layoff” 
questions at wave 1, and let K, L represent  respectively the responses to the “looking for work” and “on layoff” 
questions at wave 2. Define 
 

          1 if  the correct answer is no
, , ,

2 if  the correct answer is yes
I J K L =

⎧
⎨
⎩

          ( 1 ) 

 
In general, we represent the Horvitz-Thompson weighted total estimator of the population total in “state” (I, J) at 
wave 1, and state (K, L) at wave 2 by 
 

( ), , ,W
i j k l s s

s S
T W I i J j K k L l

∈
= Ι = = = =∑           ( 2 ) 

 
Where sW  is the weight of unit s, indexed over the entire sample S. The “+” sign in lieu of the index indicates a 
marginal summation over that index. Because K or L can be missing,  the following partial totals are larger than 0. 
 

( ) ( )
( )

( ) ( )

( ) ( )

, , ; missing ; , , ; missing

, ; , missing

W W
i j k l s s i j k l s s

s S s S

W
i j k l s s

s S

T W I i J j K k L T W I i J j L l K

T W I i J j K L

∈ ∈

∈

= Ι = = = = Ι = = =∑ ∑

= Ι = =∑
       

                     ( 3 ) 
 
These partial sample totals will be integrated to estimators to predict population totals. 
 
3.1 The Horvitz Thompson Estimator when no Data Are Missing 
For purpose of illustration, the paper focuses on estimating the population total of the “on layoff” at wave 2. So this 
target population is defined by L = 2. When no data are missing, we represent the traditional Horvitz-Thompson 
weighted-total estimator for the size of the “on layoff” population by ˆ

+++2N , where  
 

( )2
ˆ 2W

+++2 s s
s S

N T W L+++
∈

= = Ι =∑          ( 4 ) 

 
3.2 A model for Transition Probabilities 
We posit a simple loglinear model to describe the transition process between waves. Let i j k lπ  be the inclusion 

probability for those units who answered (i, j) to questions (I, J), and who answered (k, l) to questions (K, L). So we 
have ( ) ( ){ }Pr , , , , , ,i j k l I J K L i j k lπ = = . Define the transition probability i j k lP  from wave 1 to wave 2 as 

follow: 
 

( ) ( ) ( ) ( )
2

, 1

Pr , , , , i j k l

i j mn
m n

i j k lP K L k l I J i j π

π
=

= =
⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭ ∑

          ( 5 ) 
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Where
2

1; , 1, 2
, 1

Pi j k l i j
k l

= =
=
∑  . So, (I, J), the answers to the wave 1 questions, conceptually play the role 

of post-stratifying variables. We define a loglinear model for the set of transition probabilities { }2
, , , 1i jk l i j k l

P
=

 

implicitly, by specifying a classic loglinear model on { }2
, , , 1i j k l i j k l

π
=

, the set of inclusion probabilities (Bishop 

Fienberg Holland p. 263). The model is a hierarchical log linear model with no interaction effects higher than 
second order. Additionally, some second order interaction effects are suppressed in order to impose a conditional 
independence structure between waves and questions. Specifically, the interaction between questions I and L, and 
the interaction between K and J are suppressed. This means that, given “layoff at wave1” and “looking for work at 
wave 2” is known, then “layoff at wave 2” and “looking for work at wave 1” are independent. Similarly, given 
“looking for work at wave 1” and “layoff at wave 2” is known, then “layoff at wave 1” and “looking for work at 
wave 2” are independent. This model was fitted to the data presented in tables 2.1 – 2.4 and exhibits a satisfactory 
fit. The suppressed 2nd order interactions turned out indeed not to be significant. 
 

Given this structure, the likelihood of { }2
, , , 1i j k l i j k l

π
=

 factors into two separate likelihoods for { }2
, , , 1i jk l i j k l

P
=

 and 

{ }2
,i j i j

π •• , respectively (Bishop Fienberg Holland p 263). The later is the set of joint marginal inclusion 

probabilities for I and J. Since the original model on the full inclusion probabilities had eight degrees of freedom 
and the joint inclusion probabilities have three degrees of freedom, that leaves five degrees of freedom for the 
conditional probability structure, which is ultimately the object of the modeling here. Pfefferman, Skinner and 
Humphreys (1998) propose more complex models for transition probabilities in the context of a study on 
measurement error. We will use this model to support the estimation of population totals: First we use the model 
only to “patch up” the missing data, assuming a missing at random mechanism. Second, we make a more structural 
use of the model by making it an integral part of the estimation process, rather than using it only as an auxiliary for 
adjusting for nonresponse. 
 
 
3.3 The Horvitz-Thompson Estimator Adjusted for Missing Data 
Recall, ˆ

++2N +  in (4) covers only units providing a value for L, “on layoff at wave2”. So ˆ
++2N +  skips several units 

because of missing data, as suggested by tables 2.2 – 2.4. To remedy this problem, we introduce an adjusted H-T 
estimator. The adjusted H-T estimator is the sum of the weighted totals for the observed cases of “on layoff” at wave 
2, and prorated components based on complete observations at wave 1 and partial observations at wave 2. The 
underlying assumption for the missing data mechanism is that of observations missing at random (MAR) between 
waves. We get: 
 

1112 1122
111( ) 112( ) 11( )( ) 1112 1122 22

1111 1112 1121 1122

ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ a W W W W

l l k l
P P

T T T P P T
P P P P

N ++++++ = + + + +
+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

    ( 6 ) 

 
3.5 The Forecast Estimator Adjusted for Missing Data 
We now present an estimator that uses the model in a much more structural manner than the estimator in (6). We 
define 
 

( )

( ) ( )
( ) ( )

1112 1122
111( ) 112( ) 11( )( ) 1112 1122

1111 1112 1121 1122

11 111( ) 112( ) 11( )( ) 1112 1122

1 2 1 212 1 222 21 2112 2122 2 2

2

ˆ ˆˆ̂ ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ

W W W
l l k l

W W W W
l l k l

W W W

a P P
N T T T P P

P P P P

T T T T P P

T P P T P P T

++

++ ++ ++

+++

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ + ⎜ ⎟ + +

⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

+ − − − +

+ + + + + ( )2 212 2 222
ˆ ˆP P+

       ( 7 ) 
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The first three terms on the RHS of (7) are the same nonresponse-adjustment terms as in (6). The last four terms 
replace the weighted sum 2

WT+++  in (6), which was based only on wave 2 information. Because (7) makes use of all 
the information, both from wave 1 and wave 2, we conjecture gains in efficiency, if the model is correct. 

 
 

4. Variance Estimation 
 
4.1 Balanced Repeated Replication 
Wolter (1985 p 110) describes variance estimation based on balanced half-sample, which is the basis for the 
balanced repeated replication (BRR) technique to estimate variance of linear estimator. Judkins (1990)  describes 
“Fay’s method,” for BRR, which makes use of all the observations in the sample to construct individual replicates. 
At first, we use Fay’s method to evaluate variances. In the SIPP example for the state of California there are 23 dual-
PSU strata defined for variance estimation. We use a Hadamard matrix of dimension 24 x 24, which leads to  the 
construction of 24  replicates in implementing BRR. 
 
Fay’s method based on the observations in tables 2.1-2.4. leads to the following estimates for the variances of 
ˆ a

++2+N  in (6) and ˆ̂ a
++2N +  in (7) : 

 
9 9ˆˆ ˆ ˆ ˆ3.76 10 ; 2.94 10BRR a BRR a

+++2 ++2V N V N +
⎡ ⎤⎡ ⎤ = × = ×⎣ ⎦ ⎢ ⎥⎣ ⎦

         ( 8 ) 

 

As expected, the variance of ˆ̂ a
+++2N  is substantially less than that of ˆ a

+++2N . We will attempt to validate our model, 

which is fundamental to the validity of ˆ̂ a
+++2N  itself, in later sections. 

 
4.2 Variance Estimation through Linearization 
ˆ̂ a

+++2N  in (7) can be linearized into the sum of a model-based component, generated by the MLE { }2

, , , 1k̂ l i j i j k l
P

=
, 

and a design-based component, generated by the H-T vector of weighted totals 

( )111( ) 112( ) 11( )( ) 11 12 21 22, , , , , ,
tW W W W W W W

l l k lT T T T T T T++ ++ ++ ++=T . In our situation, the two components of the linearization 

are uncorrelated. That is T does not convey any information on how wave 1 weighted totals are allocated between 
the “not on layoff” and “on layoff” subcategories at wave 2. Now consider the standard variance decomposition: 
 

ˆ ˆ ˆˆ ˆ ˆa a a
+++2 +++2 +++2V N E V N V E N⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

T T          (  9 ) 

 
Given the design-based and model-based components of the linearization are uncorrelated, the two terms on the 

RHS of (9) correspond precisely to the contribution to the total variance of ˆ̂ a
+++2N  of the model-based and design-

based components, in that order. 
 
4.3 The Method of Laplace for Posterior Variances: A Large Sample approximation 
We can use the method of Laplace to evaluate the contribution from the model-based component of a linearized 
estimator. In general, let ( )ˆ ;M λ T  be a sample statistic that is strictly a function of λ̂ , the MLE of λ , and of a 

vector of weighted totals T . For instance, later we will set ( ) ˆˆ ˆ; a
+++2M = Nλ T . With no loss of generality, we 

define ( )( )ˆ ;max arg L ,= ⎡ ⎤⎣ ⎦T X
λ

λ λ , where ( )( );L ,T Xλ  is the likelihood of λ , and X  augments  T  to 
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form the sufficient statistics ( ),T X  for { }2
, , , 1i jk l i j k l

P
=

  .Next, define 

( )( ) ( )( )ˆ ; ;max arg L , M cc = +⎡ ⎤⎣ ⎦T X T
λ

λ λ λ . We propose using the low-order version of the Laplace 

large-sample approximation proposed by Tierney, Kass, and Kadane (1989), to approximate the first term on the 
RHS of (9), in effect the “posterior variance”. We have 
 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ; ; ; ;limL
cc

E V M V M M Mc
→∞

⎡ ⎤⎡ ⎤ ⎡ ⎤ −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
= =T T T T T Tλ λ λ λ           ( 10 ) 

 
Applying (10) on the data in tables 2.1 – 2.4 we obtain 
 

9ˆ ˆˆ ˆ ˆ ˆ 2.22 10a L a
+++2 +++2E V N V N⎡ ⎤⎡ ⎤ ⎡ ⎤= = ×⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

T T                 ( 11 ) 

 

In the context of the frequentist linearization of  ˆ̂ a
+++2N , the interpretation for (11) is simply that of a large-sample 

approximation. The second variance term on the RHS of (9) corresponds to the contribution of the design-based 

component of the linearization to the total variance of ˆ̂ a
+++2N . We use Fay’s method to get a BRR estimate for this 

variance term by keeping { }k̂ l i jP  fixed in the formula in (7) throughout the replication of ˆ̂ a
+++2N . We write 

 
9ˆ ˆˆ ˆ ˆ ˆ .765 10BRR

+++2 +++2V E N V N⎡ ⎤⎡ ⎤ ⎡ ⎤= = ×⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
T T                ( 12 ) 

 

Recall the model-based and design-based components of the linearization for ˆ̂
+++2N  are uncorrelated. So 

substituting (11) and (12) in (9), we obtain a variance estimate for ˆ̂ a
+++2N  that involves both a strictly frequentist 

technique (BRR) and a nominally Bayesian technique (the method of Laplace). We write: 
 

9ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ 2.98 10LBRR L BRR
+++2 +++2 +++2V N V N V N⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T T          ( 13 ) 

 
The estimate in (13) obtained through our hybrid variance estimation procedure is close to that obtained strictly 
through BRR in (8). This suggests the large sample approximation is accurate here. This, in turn, lends some validity 
to the model itself. The next section attempts to further validate the model. 
 

5. Frequentist Validation 
 
The results in (8) suggest that the adjusted Horvitz-Thompson ˆ a

+++2N  in (6) has a substantially larger variance than 

the adjusted forecast estimator ˆ̂ a
+++2N  in (7). However, at this point it is unclear if ˆ̂ a

+++2N , which relies more 
heavily on the model, is subject to bias relative to our targeted population statistic, the number of  “on layoff” at 
wave 2. In addition, although BRR and the method of Laplace give estimates that are close in this case, we don’t 
know how this result could be generalized to the broader context of the full model. 
 
These basic issues can be investigated by exploring the properties of the components of a basis for the conditional 
probabilities { }k l i jP . The next section derives such a basis. 

 
5.1 A Basis for the Transition Probabilities 
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We set 
 

1111 1121 1 211
1 2 3

1111 1112 1121 1122 1 211 1 212

1111 2 111
4 5

1111 1121 2 111 2 121

; ;

;

P P P

P P P P P P

P P

P P P P

γ γ γ

γ γ

= = =
+ + +

= =
+ +

                     ( 14 ) 

 

Where 0 1; 1, , 5i iγ< < = K    Let ( )1 2 3 4 5, , , ,
t

γ γ γ γ γ=γ   Then the components of γ  forms a 

basis for the parameter space of the conditional probabilities { }i j k lP , in the sense that the i j k lP ’s are strict 

algebraic functions of γ . An algorithm for deriving { }i j k lP  in terms of γ , is presented in Thibaudeau (2003). The 

upshot is the basis in (19) provides us with tools to conduct model diagnoses. 
 
5.2 Model-Based Robustness 
Binder (1983) discusses weighted MLE’s (WMLE) in the context of frequentist validity of model-based estimation. 
WMLE’s are valid frequentist statistics in that they are consistent for the solution of the population likelihood 
equations. Pfeffermann (1993) proposes a test to assess equality in expected value between the MLE and the WMLE 
in our situation. The MLE and WMLE for the components of the basis γ  are given bellow.  Note the close 
proximity of the MLE îγ  to the WMLE iγ% , for i = 1, …, 5. The test of Pfefferman is not shown here, but is far from 
significant in this case. 
 

.97 .96 ; .92 .92 ; .36 .35

.79 .80 ; .56 .55
1 1 2 2 3 3

5 54 4

ˆ ˆ ˆ
ˆ ˆ

γ γ γ γ γ γ
γ γ γ γ

= = = = = =

= = = =

% % %

% %
               ( 15 ) 

 
What (15) suggests is the MLE and the WMLE are close in expectation. I.e. they are estimating approximately the 
same population statistic, namely the solution to the population likelihood equations. This gives a frequentist 

interpretation to the MLE γ̂ . In that sense, ˆ a
+++2N  and ˆ̂ a

+++2N  have meaningful interpretations in the frequentist 
perspective. 
 
5.3 Relative Precision of the MLE and WMLE 
Given approximate equality between the MLE and the WMLE in expectation, we need a rationale for using the 
MLE instead of the WMLE in the first place. The rationale lies in the relative precision of the two estimators. Full 
replication BRR estimates using Fay’s method for the variances of the MLE’s of the components of the basis γ  are 
given bellow, along with their counterparts for the WMLE. Based on these estimates, the MLE has a smaller 
variance for the first four components. The variance is essentially the same for the fifth component. 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 2 2

3 3 4 4

5 5

ˆ ˆ ˆ ˆˆ ˆ.00011 .00014 ; .00070 .00085

ˆ ˆ ˆ ˆˆ ˆ.0059 .0070 ; .00028 .00030

ˆ ˆˆ .0035 .0034

BRR BRR BRR BRR

BRR BRR BRR BRR

V V V V

V V V V

BRR BRRV V

γ γ γ γ

γ γ γ γ

γ γ

= = = =

= = = =

= =

% %

% %

%

   ( 16 ) 

 
5.4 The Method of Laplace vs. BRR 
(15) and (16) lend some support to using the MLE to construct a fairly efficient estimator which is approximately 
unbiased for estimating our population target, the number of “on layoff” at wave 2. But we do not yet have any 
evidence to support using the method of Laplace, whose validity is tied to that of the model.  We can use BRR as a 
relative gauge for the components of the basis γ  to evaluate the method of Laplace. We have: 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 2 2

3 3 4 4

5 5

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ.00011 .00010 ; .00070 .00068

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ.0059 .0074 ; .00028 .00020

ˆ ˆˆ ˆ.0035 .0026

BRR L BRR L

BRR L BRR L

BRR L

V V V V

V V V V

V V

γ γ γ γ

γ γ γ γ

γ γ

= = = =

= = = =

= =

          ( 17 ) 

 
The results in (17) suggest the method of Laplace and BRR are roughly equivalent for 1 2 3, ,γ γ γ , but some 

distortions are evident for 4 5,γ γ . However, the accuracy of BRR is hampered by the fact there are only 23 degrees 
of freedom underlying the replication. Furthermore, simulations we conducted independently suggest the variance of 
BRR itself is large in this type of situation. The current results are not incompatible with the hypothesis of a valid 
model and a valid use of the method of Laplace in this situation. 
 

6. Discussion 
 

Our research confirms that estimators build on a structural exploitation of the model, like ˆ̂ a
2+++N  in (7), can lead to 

substantially smaller variances, relative to estimators for which the model only serves to patch-up the missing data, 
like ˆ a

2+++N  in (6). Also, the method of Laplace can give reasonably accurate large-sample approximations for the 
variances of model-based components in hybrid estimators. In turn this can lead to simplified variance estimators for 
the hybrids if the variance of the design-based component is also simple to estimate. The key to this approach is the 
validity of the model. While it is impossible to completely validate a model, we present a technique to conduct 
diagnostic checks that could identify some misspecifications. The expansion of a loglinear basis in (14) allows for a 
systematic investigation of possible relative bias between the MLE and WMLE. Evident biases would be clear 
indications of model misspecification.  
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