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Abstract 
This paper discusses issues with the estimation of temporal change in the presence of measurement error – a 
problem commonly referred to as “regression toward the mean”. We propose the SIMEX method as a technique for 
dealing with measurement error in this case and present the results of applying the method in a simulation study.  
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1. Introduction 
 
Most longitudinal studies have the estimation of gross change as one of their objectives, i.e., change over time at the 
individual level. However, such analyses can be problematic if the measurement of the variable of interest is 
unreliable. The effect of random additive measurement error in the predictor variable in a simple linear regression 
model has been well documented (see, for example, Fuller, 1987). The ordinary least squares estimate of the slope 
coefficient is attenuated toward zero by the ratio of the variance of the true value of the predictor to the variance of 
the observed value (i.e., the true value plus measurement error). This ratio, r , is known as the “reliability” of the 
observed variable. However, when multiple predictor variables are measured imprecisely, the error structure is 
complex; also in non-regression settings, the effects of measurement error are often not easy to determine. Analysts 
sometimes fail to recognize that the “results” of their study may simply be due to one or more statistical effects, in 
particular to the statistical regression artifact (Campbell and Kenny, 1999). 
 
The motivation for our work comes from the field of education, where there is often great interest in estimating 
change in student academic performance over time. In particular, there may be interest in studying students at one 
end of the distribution of academic performance; those most in need of improvement or those with very high test 
scores. For a variety of reasons, test scores are an imperfect measure of student ability. As a result, such scores are 
expected to regress toward the mean when any two time periods are compared.  
 
Suppose, for example, that we want to estimate the percentage of students from the top test quartile at one grade 
who are still in the top test quartile based on their test score at a later grade. A naïve survey-weighted estimate, 
based only on the observed proportion of students from the top test quartile who remain there, is likely to under-
estimate the true percentage based on actual ability. If we also wish to compare the percentages of persistent high-
performance for students in two groups (e.g., low vs. high income, whites vs. other racial/ethnic backgrounds), 
inference is further complicated to the extent that regression toward the mean affects the groups differently. 
 
One way to mitigate the effects of measurement error in measures of academic performance is to analyze change 
using the average of two or more test scores for the same student, e.g., math and reading. Since the amount of 
measurement error in the average of the two test scores is smaller than that in either of the individual scores, this 
approach is helpful but does not eliminate the problem altogether. In addition, the availability of more than one test 
score is not guaranteed in any given study. Other suggestions for how to account for imperfect measures include 
shrinking time 1 scores toward a group mean. However, particularly in analyses involving group comparisons, the 
choice of the group to which a particular student truly belongs then comes into question.  
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2. The SIMEX Method 
 
Cook and Stefanski (1995) have proposed the simulation extrapolation (SIMEX) method for dealing with 
measurement error in regression analyses. The method assumes that the measurement error variance is either known 
or can be estimated from other available data. It consists of four main steps: 

 
1. In the first step, a known amount of measurement error is added to each observation, iX , in the data set. 

This is accomplished by choosing 0λ >  and letting 
 

( ) ieii ZXW σλλ +=  
 

where 2σe  is the measurement error variance associated with the observed data, and the iZ  have a standard 
Normal distribution, are mutually independent, and are independent of the observed data. The amount of 
measurement error associated with the augmented data points, )(λWi , is 22 )1( eσλ+ . Keeping λ  fixed, this 
process is then repeated a number of times to create, say, B  simulated data sets having the same known 
amount of measurement error. 

 
2. In the second step of the SIMEX method, an estimate of the parameter of interest, θ , is computed from 

each of the data sets generated in step one. Then, ( )λθ̂  is computed as the average of the estimates across 
the B  simulated data sets having the same amount of measurement error. 

 
3. Step three of the SIMEX method consists of repeating the first two steps for different values of λ , 

corresponding to different known amounts of additional measurement error. Then a trend is established 
between the amount of measurement error and the parameter estimate, ( )λθ̂ . 

 
4. In the final step of the SIMEX method, the trend established in step three is extrapolated back to 1−=λ  to 

find the estimate of the parameter of interest that would correspond to the situation where the data contain 
no measurement error. That is, )1(ˆˆ −= θθSIMEX  is an estimate of the true parameter. Typically, )(ˆ λθ  is 
well approximated by a quadratic, however other functional forms may also work. We comment further on 
this aspect of the method in the next section. 

 
An attractive feature of the SIMEX method is that it can be easily extended beyond the classic additive model to 
measurement error problems that are far more general. However, the ease with which estimates can be obtained is 
somewhat offset by their complexity, which has implications for the computation of standard errors. The bootstrap 
variance estimator is a natural choice but is computationally intensive. Under suitable assumptions, an estimating 
equation approach can be used. Alternatively, the variance of SIMEXθ̂  itself can be estimated using the SIMEX 
method. Using this approach, the variance is decomposed into a component due to sampling variability and a 
component due to measurement error variability, and the following quantity is modeled and then extrapolated to 

1−=λ  to produce )ˆ(var SIMEXSIMEX θ : 
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The reader is referred to Carroll et al. (1995) for a more detailed discussion of variance estimation methods. 
 
To the best of our knowledge, use of the SIMEX method for survey estimates of change over time has not 
previously been proposed. However, it is an intuitively appealing solution to problems such as our motivating 
example, since an estimate of the reliability of educational test scores (and therefore their associated measurement 
error) is generally known. In the next section, we explore via simulation the use of the SIMEX method to estimate 
the percentage of students from the top test quartile at one grade who remain there at a later grade.  
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3. Simulation Study 

 
First, a population of size 100,000 was generated. From this, 1,000 simple random samples were selected. Three 
different sample sizes were investigated: 200, 1,000, and 10,000. True test scores at time 1 and time 2 were 
generated from a standard Normal distribution, such that the correlation between the true scores over time was .ρ  
Letting tiU  denote the true score for unit i  at time t , observed test scores were generated as etiti σUX += , where 

2
eσ  represents the measurement error variance. 

 
The population quantity of interest was assumed to be 
 

( )1 at time quartile  topin  |2 at time quartile  topin 12 UUPθ =  
 
Under simple random sampling, the naïve estimate ofθ , NAIVEθ̂ , is 
 

( ) values1  timeof quartile  topin  for which sample innumber  
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To compute the SIMEX estimate of θ  we applied the method described in Section 2, except that in step one, the 
measurement error was added to the observed test scores at both time 1 and time 2. That is, for each unit in the 
sample, 0>λ , and 100,,1K=b , we computed 
 

( ) ibeiib ZσλXλW 111 +=  
 

( ) ibeiib ZσλXλW 222 +=  
   
where the tibZ  have a standard Normal distribution, are mutually independent, and are independent of the observed 
data. 
 
We then computed 
 

( ) values1  timeof quartile  topin  for which sample innumber 
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for λ  = 0.4, 0.8, 1.2, 1.6, and 2. In the extrapolation step, we tried fitting )(ˆ λθ  using linear, quadratic, spline, and 
exponential functions of λ . 
 
The simulation was repeated using three different values for the correlation in the true scores over time: ,5.0=ρ  
0.7, and 0.9; and three different assumptions for the amount of measurement error in the observed scores: 

,09.02 =eσ  0.16, and 0.25, corresponding to reliability ratios of 0.92, 0.86, and 0.80, respectively. These reliabilities 
seem sensible based on national psychometric reports (NCES, 1995 and 2002). 
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4. Results 

 
A nice feature of the SIMEX method is that it provides a visual tool for demonstrating the effects of measurement 
error. Consider, for example, the following illustration based on one of the simulated sets of conditions. 

 

( )λθ̂  
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Figure 1: Illustration of the SIMEX method 
 
The solid circle in Figure 1 corresponding to 0=λ  represents the naïve estimate ofθ , whereas the open circle 
corresponding to 1−=λ  represents the SIMEX estimate. It would appear that the naïve method underestimates the 
true parameter of interest, an idea which is reinforced by the observation that the estimates get smaller as the data 
upon which they are based contain increasing amounts of measurement error. 
 
We evaluated the performance of the SIMEX method in terms of the bias and mean square error (MSE) of the point 
estimate. Table 1 shows the percentage relative bias and MSE of the naïve and SIMEX estimators for the three 
different sample sizes and levels of reliability, when the correlation in the true scores over time is 0.9. Table 2 shows 
the corresponding statistics for the different degrees of correlation over time when the reliability of the observed 
scores is 0.8. The summary statistics reported for the SIMEX estimator are based on quadratic extrapolation.  
 
It is apparent that the bias in the point estimate of θ  was substantially smaller with the SIMEX method than the 
naïve method for all the scenarios considered in the simulation. However, when both the correlation over time and 
the amount of measurement error were high, some bias remained even with the SIMEX method. The relative bias 
was largely unaffected by the sample size. As expected, for each simulated scenario, the MSE of both the naïve and 
SIMEX estimators became smaller as the sample size increased. The SIMEX estimator appeared to benefit much 
more from increased sample size in this respect than did the naive estimator. We speculate that this is because the 
decrease in the variance of the naïve estimator with larger n  was not sufficient to offset the large relative bias in the 
point estimate. Using MSE as the overall measure of performance, the SIMEX method performed better than the 
naïve method for larger sample sizes, and for smaller sample sizes when the correlation in the true scores over time 
was high and the reliability was not high (i.e., the amount of measurement error in the observed data was not small). 

 
As illustrated in Figure 2, the choice of functional form in the extrapolation step did influence the results, in 
particular the variance of the SIMEX estimator. The grey vertical dashed line represents the true value of θ . For this 
particular application, fitting a cubic to ( )λθ̂  tended to produce the largest variance but smallest bias, and the 
exponential function produced the smallest variance but largest bias, among the SIMEX estimators. Overall, the 
quadratic function seemed the best choice in terms of minimizing MSE.  
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Figure 2: Density of the naïve and SIMEX estimators for 000,10=n , 9.0=ρ , and 8.0=r . 
 
We also experimented with the range of additional measurement error, but discovered that MSE statistics were 
larger for ( ]1 ,0∈λ  than for ( ]2 ,0∈λ . Our experience based on the simulation study is that using a small number of 
points in the extrapolation step may be adequate, particularly when sample sizes are large. We used five values of λ  
to reduce computing time. The number of simulations used in step one of the SIMEX method was varied between 

100=B  and 200, but the choice had little effect on the results. 
 

5. Discussion and Further Research 
 
We are encouraged by the results of the simulation study into the use of the SIMEX method for estimating change 
over time and see several directions for future research. Here we assumed that the survey data came from a simple 
random sample, whereas a more realistic approach would be to study the performance of the SIMEX method 
assuming a complex sample design. Thinking back to our motivating example, we are also interested in using the 
method to estimate group effects, for example by comparing the percentage of students who maintain top academic 
quartile performance over time for different income groups. Finally, we hope to explore the use of the SIMEX 
method for estimating temporal change in variables with non-Normal distributions.  
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Table 1: Simulation results for 9.0=ρ  using quadratic extrapolation 

8.0=r  86.0=r  92.0=r  
Estimator 

RB % MSE  
(x 10-2) RB % MSE 

(x 10-2) RB % MSE 
(x 10-2) 

Naïve, n = 200 -20.2 2.72 -14.8 1.57 -9.4 0.76 

Naïve, n = 1000 -20.2 2.49 -14.9 1.36 -9.4 0.58 

Naïve, n = 10000 -20.3 2.45 -14.9 1.32 -9.5 0.55 

SIMEX, n = 200 -6.9 1.57 -3.4 1.17 -1.0 0.83 

SIMEX, n = 1000 -6.6 0.52 -3.5 0.27 -1.1 0.18 

SIMEX, n = 10000 -6.8 0.29 -3.4 0.09 -1.3 0.03 

 
 

Table 2: Simulation results for 8.0=r  using quadratic extrapolation 

5.0=ρ  7.0=ρ  9.0=ρ  
Estimator 

RB % MSE 
(x 10-2) RB % MSE 

(x 10-2) RB % MSE 
(x 10-2) 

Naïve, n = 200 -10.9 0.58 -14.8 1.08 -20.2 2.72 

Naïve, n = 1000 -10.6 0.32 -14.5 0.81 -20.2 2.49 

Naïve, n = 10000 -10.6 0.26 -14.3 0.73 -20.3 2.45 

SIMEX, n = 200 -2.3 1.22 -3.8 1.28 -6.9 1.57 

SIMEX, n = 1000 -2.0 0.24 -3.5 0.23 -6.6 0.52 

SIMEX, n = 10000 -2.1 0.03 -3.0 0.06 -6.8 0.29 
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