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Abstract 
Inverse regression, or statistical calibration, uses the estimated relationship between a response Y and a covariate x to 

infer the values of unknown x’s from their observed Y’s. Typically x is univariate but Y may be multivariate. A brief 

review of the basic theory will be given, followed by consideration of the problems involved in extending these 

approaches to longitudinal data, i.e. where the training data consists of groups of observations on distinct individuals. A 

Bayesian analysis using MCMC is shown to give a flexible framework for solving these problems. An example 

concerning the age determination of tern chicks from their wingspan and weight measurements will be used for 

illustration. 
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1.  A Brief Review 

 
Inverse regression, or statistical calibration, arises in a variety of contexts, most notably in laboratory analyses where 

known amounts or concentrations x of a target chemical are treated to produce responses Y; the resulting pairs (x, Y) are 

used as training data to establish a calibration curve. Further samples with unknown concentrations can then be treated 

in the same way and their responses used to infer the unknown concentrations, along with their precision. If the training 

data comprise repeated measures on distinct groups or individuals with significantly different characteristics, then the 

methodology must be adapted to account for this structure. One place where this occurs is in ecological settings where 

body measurements are used to determine the age of an animal, based on repeated measures on a sample of animals of 

the same species. Such a situation was encountered by Keedwell (2002), who hoped to use measurements on black-

fronted tern chicks in New Zealand to estimate the age of chicks in an ongoing conservation effort. 

 

We begin with a brief review of the methods used when the training data are assumed to be independent. Many 

different approaches have been proposed in the literature, governed in part by the response Y is univariate or 

multivariate, and whether the relationship is linear or nonlinear. For a more thorough review, see Osborne (1991) and 

the references contained therein. 

 

1.1 Univariate 
Figure 1 plots the age (days) and wing length (mm) of an individual tern chick measured over a number of days. The 

growth can be seen to be approximately linear over this range. A linear model α β ε= + +Y x  has been fitted to the 

data, assuming i.i.d. errors. The fitted line and 95% prediction limits are shown on the graph. Given another wing 

length measurement 0 90=Y mm, the classical estimator 

0 0
ˆˆˆ ( ) /x Y α β= − , 

found by inverting the estimated regression line, gives the x-value of the point on the calibration curve at which y is 
0Y . 

The prediction limits may be similarly inverted to give an exact confidence interval for the true value 0x . To see that 

this is also the maximum likelihood estimator, we can consider adding the point 0 0( , )x Y  to the training data and 

refitting the model: the error sum of squares is clearly minimized when 
0 0( , )x Y  is on the line fitted to the training data 

alone since this line minimizes the sum over the training data and the new point will contribute zero. Note too that the 

addition of the new point does not change the estimated calibration curve (in contrast to multivariate calibration 

considered in section 1.2.).  
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Figure 1: The classical estimator X0 and a confidence interval (Xl, XU) given response Y0 are obtained by inverting the 

regression line and prediction interval fitted to the training data. 

 

Unfortunately the classical estimator has infinite variance, so some prefer an alternative estimator 
0
�x  derived from 

regressing x on Y.  This alternative may not be very sensible, however, when the relationship is nonlinear. Other 

alternatives include Bayesian approaches and nonparametric local smoothing. 

 

1.2 Multivariate 
We focus here on situations where the dimension q of the response Y is greater than the dimension p of the covariate x. 

In some cases q is much greater than p, as in mass spectrometry where Y is a spectrum. In our tern chick example we 

have measurements of wing span (mm) and weight (g), so q = 2. A major consequence of having q > p is that we 

cannot now, in general, find an x0 for which the fitted 
0Ŷ  from the calibration model is equal to the observed Y0. The 

situation is illustrated in Figure 2. Appropriate functions are fitted to each component of Y using the training data, in a 

multivariate framework to allow for correlation between the error terms in the component models. We can then plot the 

fitted curve traced out in R
q
 as x varies. The predicted value of x0 given a new response Y0 should correspond to a point 

on the fitted curve that is in some sense as close as possible to Y0. The metric for this distance should take into account 

the correlation between the component errors, as estimated by the model. This gives essentially the estimator proposed 

by Brown (1982) for the linear and Clarke (1992) the nonlinear case. It can be represented graphically by adding an 

ellipse based on the estimated error covariance. 
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Figure 2: Fitted model for wing length and weight of a tern chick from training data, with new point Y0 = (90, 75) 

added. The fitted curve is drawn for a range of age values that are shown along the curve. 
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Brown and Sundberg (1989) point out that there may be useful information in the distance of the new point from the 

fitted line: if this distance is unusually large, it suggests that the new point does not come from the same population as 

the training data. They also propose an alternative, maximum likelihood, approach. Note that we can obtain the 

maximum likelihood estimator by adding the new point 
0 0( , )x Y  to the training data and refitting the model for a range 

of values of x0, then using the resulting profile likelihood to obtain a point estimate and confidence limits – this is a 

very general approach that can be used in a wide variety of calibration settings. Note too that because Y0 is not on the 

fitted curve, the addition of the new point will change the parameter estimates of the calibration model, so that the 

classical estimator given by Brown (1982) is not now the same as the maximum likelihood estimator. 

 

 
 

2. Longitudinal 

 

2.1 Univariate Longitudinal 
We now suppose that the training data consist of repeated measures on I individuals: (xij, Yij), for j = 1,...,ni, i = 1,...I , 

and that the parameters describing the relationship between Y and x vary significantly between individuals. An example 

is shown in Figure 3, which plots data on a number of different tern chicks. The calibration model estimated from the 

training data now consists of a family of growth curve 
i i

Y xα β= +  in conjunction with a model to describe how the 

random vector ( , )i iα β ′  varies between individuals; a common approach would be to assume that they are normally 

distributed with, say, mean ( , )α β ′  and precision matrix Γ. 

 

Given a single measurement Y0 on a new individual, there are various ways in which a predicted value and confidence 

interval for x0 could be derived. Following the approach of the classical estimator, we could derive a point estimate and 

confidence interval by considering the mean and variance of 

0 0 0 0 0 0 0 0 0 0 0 0
ˆ ˆˆ ˆ( ) ( ) ( )Y x Y x x x x xα β α β α β α β α β α β− − = − − + + − − − + − −  

where ˆˆ( , )α β ′  is the estimate from the training data and 
0 0( , )α β ′  is the parameter vector for the new individual. This 

suggests a point estimate of 
0 0

ˆˆˆ ( ) /x Y α β= − . The confidence interval needs a Satterthwaite approximation to the 

degrees of freedom of the estimated variance of the above expression. See Wood et al. (1981). 

 

We again have the simple option of adding the new point to the training data and fitting the model for a range of values 

of x0 to derive the profile likelihood function. The maximizing x0 is then the MLE, and an approximate confidence 

interval can be found by using a chi-squared approximation for the profile likelihood ratio statistic. 
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Figure 3: Longitudinal data on wing length for a sample of tern chicks.  Data for the same chick are joined with lines. 

A population average curve (solid line) has been estimated from the training data and added to the plot, and a 

horizontal line at 90mm representing the wing length of a new individual of unknown age. 
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Figure 4: Graphical model for Tern wing length data. See Gilks et al. (1995). 

 

A third alternative is to use a Bayesian framework and Markov chain Monte Carlo (MCMC) estimation. Uninformative 

priors can be specified for the model parameters α, β, Γ and σε, and the unknown age x0 estimated simply by making it a 

stochastic node in the MCMC program. This method produces an approximation to the exact posterior distribution of x0 

given the data. 
 

All three of the above approaches can be adapted to the situation where repeated measures are available on the new 

individual, and to nonlinear specification of the model relating Y to x. The availability of repeated measures can 

potentially lead to much better inference, as there should now be information available on the growth parameters of the 

new individual. That this does not happen to any significant extent in the tern wing span example can be explained by 

reference to Figure 3: the slope parameters βi vary little between birds, with most of the variability in the population 

coming from the intercepts αi. Figure 3 shows that the age of a new chick cannot be determined accurately from its 

wing length alone. We now consider the utility of adding other body measurements. 

 

2.1 Multivariate Longitudinal 
As in the non-hierarchical case of section 1.2, we cannot now choose x0 so as to place the data for a new individual on 

the population growth curve. This suggests that there is now information, even from a single observed Y0, about the 

growth parameters of the new individual. To examine this issue we first consider a linear example in which the 

population model parameters are assumed known. Suppose 

0 0 0( , )Y N X β∼ Ω   where  
0 ( , )Nβ β∼ Γ  

where, for example with q = 2,  

0

0

0

1 0 0

0 0 1

x
X

x

 
=  
 

  and  1 1 2 2( , , , )β α β α β ′=  

and let 

0 0 0 0 0
ˆ ( )t t

X X X Yβ −= Ω Ω   and  
0 0 0

t
X XΞ = Ω . 

 

If we regard x0 and β0 as fixed but unknown parameters, then a little algebra gives 
1

0 0 0 0 0 0 0 0 0 0 0 0

1 1

0 0 0 0 0 0 0 0 0

ˆ ˆ ˆ ˆ2 log ( , ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ[ ( ) ( )] ( )[ ( ) ( )]

t t

t

L X K Y X Y Xβ β β β β β β

β β β β β β

−

− −

− = + − Ω − + − Ξ Ξ + Γ Γ −

+ − Ξ + Γ Ξ + Γ Ξ + Γ − Ξ + Γ Ξ + Γ
 (1) 

where K is a constant. For any fixed value of x0 the likelihood will be maximized by setting 
1

0 0 0 0
ˆ( ) ( )β β β−= Ξ + Γ Ξ + Γ  (2) 
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Figure 5: Simulated bilinear hierarchical model with parameters as shown. The covariance matrices shown, Σ and Φ, 

are the inverses of the precision matrices Γ and Ω. The solid black line shows the population response path with x 

values alongside. The solid green line is the simulated response path for a new individual, the plotted point a simulated 

response Y0 for this individual at x0 = 4, and the red broken line the estimated response path for this individual. 

 

 

and 
0 0 0

ˆ 0Y X β− =  so the profile likelihood for x0, to within a constant, is 
1

0 0 0 0
ˆ ˆ2 log ( ) ( ) ( ) ( )

t

P oL X β β β β−− = − Ξ Ξ + Γ Γ − . 

Alternatively we can regard β0 as a random effect and integrate it out of (1) to give the marginal likelihood for x0 

02 log ( ) 2 log ( ) logM o P oL X L X− = − + Ξ + Γ . 

The point estimates and confidence intervals derived from these two expressions tend to be very similar in practice. 

 

Figure 5 illustrates this situation for a bilinear hierarchical model, i.e. for which q = 2 and both components of Y are 

linearly related to x. The population response curve is a straight line in R
2
 traced out by varying the value of x. 

Individual response paths cluster around this population curve. Given a response Y0 for a new individual, an estimate of  

x0 can be obtained by maximizing the profile or marginal likelihood as given above. The estimated response path for 

the new individual, derived from (2), is an average of the population response path and the path implied by β̂  that 

passes through the observed Y0; this average is weighted according to the precisions Γ and Ω in the two levels of the 

hierarchical model. Thus the information about β0 derivable from the response Y0 will depend on the relative sizes of 

the two components of variability. 

 

In practice the population model parameters will not be known and will have to be estimated from the training data. An 

analytical analysis now becomes intractable even for the linear case. Fitting the population model to the training data is 

not straightforward; standard software has routines for fitting univariate linear and nonlinear multilevel models, and 

these can be adapted to fit multivariate versions by introducing indictors for the different components of the response, 

although there is insufficient flexibility in specifying the full covariance structure. See the discussion by Davidian and 

Giltinan (1995).  

 

The Bayesian analysis of the previous section is however easily extendible to the multivariate case, even when there are 

nonlinear component models. It can even cope with additional complexities such as a mixture population model, as in 

the case of the terns where some chicks were identified visually as “slow-growing”. Figure 6 shows some examples of 

posterior distributions from the tern chick data. Age determination can be seen to be considerable more precise, to 

within one day, when using both the wing length and weight measurements. 
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Figure 6: Posterior distributions for age (xU) and group membership (GU = 1 “normal” or 2 “slow”) of two tern chicks 

with known wing length and weight.. 
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