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Abstract 
We propose an extension to bootstrap methods for evaluating regression models estimated with data from surveys with 
complex design. Such methods involve selection of replicate samples formed from simple random samples of sampled 
clusters within strata. Selection is carried out with replacement, so that about one third of clusters are typically left out 
of a given replicate sample. Our evaluation method exploits the excluded clusters, using them as cross-validation 
samples for assessment of a model’s prediction error, and at the same time using the bootstrap samples to estimate the 
variance of regression coefficients.  We also consider the use of a sample of the replicates as a cross-validation sample. 
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1. Introduction 

 
As is well known, regression residuals will give an overly optimistic view of the predictive value of an equation (Efron, 
1986).  It is also known that model-specification searches that consist simply of eliminating all of the “non-significant” 
terms from a trial specification can result in a selected equation with inferior predictive value (Hastie, Tibshirani and 
Friedman, 2001).  Simply retaining all terms that have an intuitive appeal (whether “significant” or not) can also result 
in an equation with inferior predictive value.   
 
Cross-validation methods attempt to directly facilitate the search for specifications that will produce accurate 
predictions.  In this paper, we extend the scope of cross-validation methods to data from surveys with complex design. 
The paper is in two parts. Following the introduction, Section 2 outlines design-based properties of the bootstrap/cross-
validation and establishes the validity of methods utilizing replicate samples when those methods depend only on first 
and second moments. Section 3 illustrates our method with a comparative assessment of selected models of health 
dynamics using Statistics Canada’s longitudinal National Population Health Survey (1992-2004).  Section 4 provides 
concluding comments. 
 
 

2. Cross-validation applied to survey samples 
 
The term ‘cross-validation’ generally refers to techniques that directly assess prediction error of a fitted equation by 
splitting the available sample and using one part to fit the equation (model construction) and reserving the other part for 
an assessment of predictions (model validation) (Picard and Cook, 1984).  Model selection by cross-validation consists 
of proposing and fitting alternative models, assessing the out-of-sample prediction error of each, and choosing the one 
with the smallest prediction error. 
 
In practice, some care needs to be exercised in applying the cross-validation method.  This is because the size of the 
sample used in model construction will affect the bias in predictions in one way and affect the variance of prediction 
error assessments in the opposite direction.  The larger the model-construction sample, the smaller the bias in 
predictions; but, the smaller the model-validation sample, the larger the variance of the assessment.  Both Shao (1993) 
and Efron and Tibshirani (1997) have considered improvements on ‘naïve’ cross-validation, most of which have some 
of the features of the bootstrap. 
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A typical ‘K-fold cross-validation’ for samples assumed to have been generated directly from a model is obtained by 
partitioning the original sample into K subsamples, retaining one of the subsamples for validating the estimated model.  
The remaining K−1 subsamples are used as model-construction or training data.  Normally the training and validation 
steps occur K times with each of the K subsamples making a contribution to the validation average.  In a ‘Leave-one-
out cross-validation’ only a single observation from the original sample is used to validate the model, and the 
remaining observations are the training data. This is repeated such that each observation in the sample is used once as 
the validation data.  The usual assumption made for the validation sets are that they are independent from the training 
sets.   
 
With complex survey data, however, without making strong assumptions about the non-informativeness of the sample 
design, the observations are not independent, so it would seem that cross-validation techniques that have been 
developed for non-survey data cannot be applied in a complex survey setting.  However, an interesting property of the 
Rao-Wu-Yue bootstrap (see Rao et al, 1992) is that the bootstrap replicates can be uncorrelated.  Samples that are 
uncorrelated can be used for cross-validation purposes when the methods depend on only the first and second moments.   
 
2.1 Cross-validation using Rao-Wu-Yue Bootstrap Replicates 
The Rao-Wu-Yue bootstrap (RWYB) is now used by many survey producers, including Statistics Canada, as a useful 
way to obtain design-based variance estimates for a large number of descriptive statistics that estimate finite population 
quantities.  To obtain the RWYB, for a multi-stage survey, where it can be assumed that the primary sampling units 
(psu’s) are selected with replacement, at least approximately, the survey producer selects bootstrap replicates by 
selecting within each of the H strata a sample of hm  psu’s with replacement from the hn  psu’s in the original sample.  

Letting )(b
hijz  be an indicator variable taking the value one when the ith psu of the hth stratum is selected on the jth draw 

for the bth replicate, we define 
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to be the bth bootstrap replicate estimating the finite population mean Y .  When 1 hh nm , this simplifies to 
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If we produce estimates given by  

YYU bb ˆˆˆ )()(  , 
 
it turns out that under the design-based randomization, these replicates have means equal to zero, and that they are 
uncorrelated – details are available from the authors.  Under a model-design based randomization framework, these 
replicates also have means equal to zero and are uncorrelated – see Binder and Roberts (2006) for details of the model-
design-based randomization framework.  Therefore, many methods in the standard literature for cross-validation are 
applicable to bootstrap replicates when the methods depend on only the first and second moments.  A key to this 
technique is to define replicate estimates that have mean zero. 
 
2.2 An Alternative Cross-validation Method Based on Unsampled PSU’s 
In each bootstrap replicate, there will be some psu’s that are not included in the replicate sample.  This is similar to the 
.632+ bootstrap used in non-survey settings.  We consider the properties of estimates based on these unsampled psu’s.   
 
We let 
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where )(~ b
hiz  is the indicator variable for whether the ith psu in the hth stratum is not in the bth bootstrap replicate.  In 

this case, )(~ b
hY  is design-unbiased for hŶ  - details are available from the authors.  We refer to the first factor on the 

right hand side of the above expression as the adjustment factor for the full sample weights.  Properties of this new 
cross-validation sample need to be studied; however, based on the example given below, the use of such samples for 
cross-validation purposes appears to hold much promise.  The advantage of this method is that larger samples can be 
used as training sets.  This concern in the non-survey setting is one that led to the  ‘Leave-one-out cross-validation’ 
rather than the ‘K-fold cross-validation’, where a single subsample used for one validation step can be quite small – the 
sample size being only (1/K) of the original sample size (hence K is often limited to 5 or 10). 
 
 

3.  Illustrating Cross-validation Techniques 
 
In order to illustrate our techniques, we present details of an analysis of longitudinal health data drawn from Statistics 
Canada’s National Population Health Survey (NPHS) (Statistics Canada, 1999).  The NPHS is a panel survey of self-
reported health based on interviews conducted biannually over more than a decade.  The initial sample comprised over 
17,000 respondents, with more than 11,000 providing a full response in all of the six cycles available to us.  NPHS data 
files are disseminated with 500 sets of bootstrap weights (Yeo, et.al., 1999).   
 
Our analysis focuses on the health dynamics of individuals as measured by the Health Utility Index or HUI (Feeny, 
et.al., 2002: see also www.healthutilities.com/HUI.htm). The HUI provides a description of an individual's overall 
functional health using eight attributes: vision, hearing, speech, mobility, dexterity, cognition, emotion, and pain.  
Based on a standard set of questions, the HUI provides a summary health score between -.360 and 1.000. For instance, 
an individual who is nearsighted, yet fully healthy on the other seven attributes, receives a score of 0.973. On that scale, 
the most preferred health level (perfect health) is rated 1.000 and death is rated 0.000, while negative scores reflect 
health states considered worse than death. 
 
Health dynamics can be complex: periods of stability might be followed by abrupt temporary changes in state (e.g., 
accidents) or by spells of gradual change.  In this illustration, we will be concerned only with the conditions under 
which a change may or may not occur and do not consider the subsequent magnitudes of change.  A key scientific 
question is whether accounting for observations from earlier time periods would reveal persistence or 
momentum/inertial effects on health change.  
 
The analysis was conducted in two phases.  The first phase focused on model selection by inclusion or exclusion of 
subsets of candidate predictors.  Here, cross-validation serves as a means of ranking models in order of their predictive 
accuracy.  The second phase focused on non-linearities in the association between predictors.   In this case, cross-
validation facilitates comparison of non-nested models that differ in the form of non-linear associations.  
 
3.1 Population Health by Age Group 

 
 
Figure 1: Empirical HUI Distribution Functions by Age Group: 10-year groups ordered youngest (black)-to-oldest 
(light grey) – based on six cycles of NPHS data. 
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The health of a majority of children, as assessed by the HUI, is characterized by perfect or near perfect health.  At 
succeeding ages, the proportion at or near perfect health declines and the range of HUI over which the remainder of the 
population is distributed increases.  These basic facts can be seen in the empirical distributions functions in Figure 1 
which display empirical cumulative probability curves versus corresponding HUI values for each of ten 10-year age 
groups.  In this chart, HUI appears to provide a plausible description of the affect of aging on population health. 
 
3.2 Modeling Health Change of Individuals 
We were interested in modelling whether or not the HUI changes in a two-year period.  If HUIi, t is referred to as 
‘Current Health’, a change was observed for individual i if   
 

titi HUIHUI ,2,  . 

 
Our model of health change was expressed as a logistic regression: 

 

     1
,,2,

ˆexp1 
  tititi XHUI HUIpr  

 
The original NPHS household sample that was in-scope for longitudinal follow-up comprised about 17,000 
respondents.  We divided the sample into overlapping sets of responses from each combination of three consecutive 
cycles.  Including attrition, there were under 50,000 such sets of triplets.  Reasoning that the transition from perfect to 
less-than-perfect health would require a special model on its own, we chose to exclude observations for response sets in 
which HUIi, t equaled 1.0.  Similarly, working from the assumption that the health dynamics of men and women might 
differ in special ways, we chose to focus here exclusively on men (in anticipation of observing more changes occurring 
earlier in life).  These two additional selections reduced our working sample to just over 14,000 sets of three 
consecutive cycles. 
 
The matrix of candidate predictors (Xi, t) included terms representing  Immigrant Status,  Presence of a Spouse, and  
Broad Education Attainment; as well as (natural) cubic spline basis functions (Hastie et.al., 2001) representing non-
linear effects of Age at period t, Current Health, HUIi, t, and Lagged Health (given by HUIi, t-2). The cubic splines 
involve two regression parameters each, and each pair of basis functions require that three knot locations be specified.   
 
In Phase 1 of our analysis, spline knot locations for the age variable were chosen to broadly group responses into 
younger, mid and older age groups: positioning knots at ages 25, 50, and 75.  For the HUI variables, the two upper knot 
locations (0.9 and 0.5) were those that have been used in the past to represent dividing lines between good/fair heath 
and fair/poor health, respectively.  The third HUI knot was set at 0.0, the dividing line between worse than dead and 
better than dead. 
 
3.3 Regression Estimates and Prediction Error 
Our logistic regression equations were estimated using the SAS GENMOD procedure.  Given that our data contained as 
many as four observations on each respondent, we chose to estimate an odds ratio, assumed to be constant over time,  
to account for the association between observations from the same respondent and adopted the Alternating Logistic 
Regressions variant of GEE estimation (Carey, et.al., 1993).  However, since we had no intention of using the resulting 
estimates of coefficient standard errors, GEE estimation was not critical. 
 
The cross-validation set-up employed here uses the 500 sets of bootstrap weights that are disseminated with NPHS 
data.  Each model to be estimated and evaluated makes use of one set of bootstrap weights at a time.  Our first step is 
estimation of a logistic regression using those responses with non-zero bootstrap weights.  Our second step uses the 
estimated equation and responses from unsampled PSUs to perform an out-of-sample assessment of prediction error 
(for cross-validation purposes, the weights used were the full sample weights multiplied by the adjustment factor 
described in section 2.2). 
 
We have used two measures of predictive accuracy: Deviance and mean-squared error (MSE).  These two measures are 
defined in terms of the survey weights W, the binary dependent variable Y, and the probability p(Xiθ) which is 
predicted on the basis of covariate information X and estimates of the parameters θ.  The terms Y**, X**, and W** are 
based on the cross-validation replicate sample.  Θ* identifies a parameter estimate based on the b-th bootstrap replicate 
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sample.  The subscript t denoting time period and the subscript b denoting the bootstrap replicate have been suppressed 
for simplicity. 
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Efron (1978) demonstrates that both of these are appropriate measures of the distance of observations from predictions.  
In addition, he shows that Deviance and MSE will be roughly proportional (Deviance ≈ 6 MSE).  Thus, MSE, being the 
simpler measure, is likely sufficient for our purposes.  However, Deviance provides a useful conceptual link to 
likelihood methods. 
 
Another link to more conventional methods is provided by Akaike’s Information Criterion (AIC), which has the 
following definition: 
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where the first term is twice the negative weighted (pseudo) log-likelihood and the second term is a penalty varying 
with the number of parameters in the model.  (Note that AIC is estimated using the full sample without bootstrapping 
or cross-validation.)  Efron (1986) shows that, for logistic regression, the AIC penalty term will approximate the 
negative bias in the full-sample estimate of Deviance.  Thus, expressed as error per observation, values of AIC and 
cross-validated Deviance should be of similar magnitude.  
   
3.4   Phase 1 Results: Preliminary Model Selection 
Using the candidate predictors identified in section 3.2, 33 models were estimated (using the full-sample and each of 
the 500 bootstrap replicate samples).  These 33 models correspond to most of the interesting sub-sets of the candidate 
predictors.  Figure 2 displays for each of the models the AIC, and the average value of each of the cross-validated 
Deviance and MSE statistics over the 500 replicates.   These models are ordered in decreasing order of the AIC.   
 
The out-of-sample criteria (Deviance and MSE) are in close agreement with the preference ordering of models 
provided by AIC.  In only five cases, would re-ordering by cross-validated Deviance result in an exchange of positions 
between adjacent models.  A corresponding re-ordering of seven neighbours would result if re-ordering were based on 
cross-validated MSE.  Thus, the criteria appear to be largely mutually consistent. 
 

Phase 1 Cross-Validation of 33 Selected Models:
Akaike's Information Criterion, Deviance, & MSE
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Figure 2: Phase 1 Cross-Validation – 33 models ordered by decreasing AIC  
 
There is only one point where a marked reduction in prediction error is evident.  The large jump seen in the chart 
distinguishes models that do not contain ‘Current Health’ terms (to the left of the jump) from models that contain 
‘Current Health’ terms (to the right of the jump).  Evidently, ‘Current Health’ terms are crucial to a good model. 
 
Differences among succeeding models – all containing ‘Current Health’ – appear small.  The reduction in MSE 
obtained by adding ‘Current Health’ is an order of magnitude greater than the incremental reduction in MSE provided 
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by the over-all best fitting model.  Given the relatively small improvement in predictive power, it is appropriate to 
question whether the best fitting model has been established on a robust basis. 
 
3.5 Confirming Phase 1 Model Selection 
Another common model selection strategy is Backward Elimination.  Here we estimated the model parameters using 
the full sample, and we estimated the standard errors from the first 250 bootstrap samples.  At each stage of the 
elimination we dropped the least significant estimated regression coefficient, and we continued until of all remaining 
terms had a p-value less than 0.06.  This resulted in eliminating the Lagged Health terms and the Immigrant indicator - 
all of the remaining terms were judged significant. 
 
To confirm the Backward Elimination results, the joint significance of the three terms that had been eliminated was 
assessed.  An independent bootstrap estimate of the covariance matrix of the terms in the full model was obtained using 
the second 250 bootstrap samples.  A Wald test was performed on the two Lagged Health spline coefficients and on the 
Immigrant/Non-Immigration Indicator (Figure 3).  Again, the three terms appeared jointly ‘insignificant’. 
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Figure 3:  Model Selection by Backward Elimination 
 
We see, therefore, that Cross-validation and Backward Elimination identify the same ‘best’ model among those 
examined in Phase 1: among the 33 models considered, the best predictions were obtained when the two Lagged Health 
terms and the Immigrant/Non-Immigration Indicator were dropped, while Age, Current Health, Spouse and Education 
terms were retained. 
 
3.6   Phase 2 Results: Additional Variables and Empirical Placement of Spline Knots 
The presence or absence of the Lagged Health terms in the preferred equation specification has scientific significance.  
The elimination of Lagged Health from the preferred model implies little or no inertia in the process of health change.  
Our concern that the role of Lagged Health had not been adequately assessed led to the 2nd Phase of the analysis.  
 
Exploratory work involving graphical displays of residuals led to the observation that those who had been in perfect 
health in the previous period (HUIi,t-2 equal to 1.0) seemed to have, all else being equal, markedly different chances of 
HUI change than others (recall that no men in this sample are ‘currently’ in perfect health).   Correspondingly, an 
indicator of perfect lagged health was added to the set of candidate predictors. 
 
There were, additionally, concerns about the specification of immigrant effects, because immigrants are generally 
selected for good health at the time of immigration.  These concerns were addressed by adding age-at-immigration 
terms in the form of 2-parameter splines. 
 
As a final step, Phase 2 provided an opportunity to explore alternative knot placements and hence a more flexible non-
linear response specification (recall that knot placements used in Phase 1 were taken as given and were identified by an 
appeal to intuition). 
 
In Figure 4 we display results for eight models: two Phase 1 models (i.e., that including one Current Health term only 
and  the best among Phase 1 models which included only Age, Current Health, Spouse and Education terms), and six 
Phase 2 models which include various combinations involving extended immigrant (I+) and Lagged Health (L+) 
specifications.  Estimation of each Phase 2 model also involved a random search for improved knot placements.  (The 
random search was performed with an ad hoc SAS macro that randomly perturbed knot locations followed by repeated 
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calls to PROC GENMOD.)  The first two points on the x-axis give the results for the two Phase 1 models; the 
remaining six points are for the Phase 2 model sorted in decreasing order of the AIC (Current-Health-only with 
improved knot placement being the one with highest AIC of the Phase 2 models). 
 
  

Phase 2 Cross-Validation of 8 Selected Models:
Akaike's Information Criterion, Deviance, & MSE
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Figure 4:  Phase 2 Cross-Validation – Two Phase 1 models compared with eight Phase 2 models  
 
The best fitting Phase 2 model based on the AIC criterion contains all terms; Immigrant and Lagged Health terms 
included; however, the best fitting Phase 2 model based on both the MSE and Deviance criteria still excludes 
Immigrant terms, but not Lagged Health terms.  The addition of new variables and the search for more appropriate knot 
locations led to definite, but modest improvements in the accuracy of the best model.    Prediction error is still not that 
much smaller than a model with Current Health only and with knot placement based on intuition.   
 
When we compared the functional form of predictions produced in Phase 1 and the best of the Phase 2 models, marked 
differences were revealed.  Figure 5 shows the estimated contribution of Current and Lagged Health to the odds-ratio 
for change in health, based on the full Phase 1 model and on the best of the Phase 2 models. 
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Figure 5:  Comparing Phase 1 and 2 Fitted Values 
 
The Phase 2 knot placement search has uncovered dramatically greater curvature in the fitted odds ratios by HUI 
(current and lagged) than were found in the corresponding model from Phase 1. Rather than being insignificant, Lagged 
Health plays a key role in accurately representing the health dynamics of men in less than perfect (current) health.  
Further digging showed that the high degree of non-linearity represented in the Lagged Health terms may result from 
two different types of health dynamics being confounded in this model.  One type is characterized by progressive 
change in health status with moderate inertia and the other type is characterized by onset-recovery sequences that apply 
only to those at or near perfect health.  The latter could arise from accidental injuries that lead to a complete recovery; a 
phenomenon that was demonstrated by the observation that about 40% of those with perfect health at t-2 had perfect 
health at t+2 regardless of what their health status was at t. 
 
We had assumed that transitions directly from perfect health were special.  It also appears are transitions from recently 
perfect health are special.  Perhaps separate models would be more appropriate in order to differentiate transitions odds 
for those with perfect lagged health from those with less than perfect lagged health.  And so, we should probably 
conclude that our model is still inadequate and that no single model is likely to be able to encompass both types of 
health dynamic simultaneously. 
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4.  Conclusions 
 
Our illustration of bootstrap/cross-validation methods represents an exploratory approach to data analysis.  This is an 
approach that can be highly effective in uncovering inadvertent effects of simplistic modeling; but that, without care, 
also runs a high risk of over-fitting and over-optimistic evaluation.  Moreover, the greater the extent of interaction with 
the data during the model selection phase of analysis, the less valid conventional (unconditional) significance tests will 
be. Cross-validation is a useful tool in the assessment of alternative exploratory models and deserves wider use by the 
analytical community.  In our illustration of the techniques, cross-validation made a deep exploration of a key scientific 
question involving the dynamics of health relatively easy, where conventional approaches would have required 
technical virtuosity and/or greater expenditure of time and effort. 
 
We have demonstrated that cross-validation techniques may be put in a design-based setting.  In that setting, we can 
expect, using cross-validatory techniques, to identify preferred models that are similar, but not necessarily identical, to 
those that might be identified using conventional inferential procedures.   
 
Given the increasing availability of sets of bootstrap weights to aid users accounting for complex survey designs; we 
would encourage further research into use of combined bootstrap/cross-validation techniques.  In our view, a promising 
direction  for further research may be the use of some bootstrap replicate samples for Training (trial model estimation) 
with simultaneous use of the unsampled PSU’s used for Validation (model selection), while reserving some bootstrap 
replicate samples for Testing (final model assessment).  
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