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Variance of Sample Variance

Eungchun Cho* Moon Jung Chot

Abstract
The variance of variance of finite samples taken from a finite population with replacement is expressed in terms of the sample
size and the second and fourth order moments of population.
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1. Introduction

We give a formula of the variance of with-replacement sample variance in terms of the sample size and the second
and fourth moments of the population about the mean. The derivation of the formula does not require working
with the more elaborate “polykay” approach of Tucky [3] [4] [5] [6]. Formula for the variance of the variance of
without-replacement samples from a finite population given in Cho et al. [1] is quoted for comparison at the end of
this paper.

2. Main Theorem

Let A be a finite set {a1,...,an} and s a sample of n elements {z1,...,z,} taken from A with replacement. n is
not bounded by the population size N, though often in practice n << N. The sample s is viewed as a realization
of independent identically distributed random variables X, ..., X,, on A. Following notation will be used.

X = E?:l X 2 — Z?:l (XZ - X) o= D i) G

n n—1 ’ N
N k N 3
[—— Ei:l (ai —p) 'ul _ Zi:l a;*
N ok N

Theorem 1 Let S be the variance of of with-replacement samples of size n from a set A of real numbers a1, az, ... ,an.

The variance of S>

Var (§?) =

<u4 - Z:i’uzz’) (1)

(a = p2”) + O (n7?) (2)

SI— 3|+

Proof. Let Z; = X; —pfor i = 1,2,...n so that E(Z;) = 0. Since Var (5?) = E (5*) — p2?, we derive an
expression of F(S*) in terms of n and the moments. We can write

n n 2
nY i Z? - (Xim1 Zi)

= n (n—1)

and by squaring

n® (N0, Z%)" —2n (N0, 2°) (08, 2)° + (2, Z)°

st =
n?(n—1)°
B(s) n2E(Xr, Z2)° —2nE ((22;‘(1 fizz@?l Z:) ) + B, Z)
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Since Z1,...,Z, are independent, we have
E(Z;Z;) = 0, E(Z? Z;) =0, E(Z?Z; Zy) =0
E (ZzQ Zj2) = /,L22, E (Zt4) = U4, for distinct ’L.,j, k.

Routine algebraic simplification with the expected values given above yields

E (Z Zi2> = nug+n (n—1)pu? (3)
E (Z Zi2> <Z Zi> = npg+n (n—1)u? (4)

E(ZZ,) = nug+3n (n—1)p? (5)

Substitution of (3), (4) and (5) into the expansion of E (S*) and simplification give

and

Var (52) = E (54) — 1122
(n—1) pg + (n2 —2n+3)u22

_ 2
B n (n—1) H2
1 ( n—3 2)
= — |\ — 125]
n n—1
_ 1 2 2 2

To obtain an expression of the formula of Var(S?) in terms of p and the moments u}, 4 and ) about zero, we
substitute

i 2

py = phy—p
pa =y — dpps + 67 ph — 3pt
into (1) and get
1 4 n—3
Vv 52 — -, = Pt Y a2
ar (S%) o Ha = s n(n_l),“Q +

4n(?nn_—1?;) ,uZ,u'Z . 2n(?nn_—1?;) 'u4 (7)

3. Comparison with Without-replacement Samples

Here we compare (1) with the variance of variance of without-replacement samples given in [1]. Let Vary, (52)
denote the variance of variance of without-replacement samples of size n from A. The following is a simplified
(improved) version from [1].

Varwo (52) = C1 U4 +c3 MQZ (8)

where

N(N—-n)(Nn—N-n-1)
nn—1)(N-3)(N-2)(N-1)

N (N —-n) (N*n—3n—3N?+6N —3)

cg = — b} (9)
n(n—1)(N—1)> (N —2) (N —3)

C1
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We note
1 n—3
- 2y _ o+ 2
1\}1—>Héo Varwe (S ) T oon fa n (n—1) H2
= Var (52)

as expected. The difference of Vary, (S?) and Var (S?) is of order 1/N, that is, |Vary, (S?) —Var (S?) |is O(N ™)
In most practical situations where n = ¢N® for some ¢ > 0 and 0 < a < 1, |Vary, (S?) — Var (S?) | is O(n~=)
For example, if n = VN, then the difference of Var,, (S?) and Var (S?) is O(n~2). As we did for Var(S?), we
represent Vary, (S?) in terms of the moments ) and ) about zero by substitution of (7) into (8).

Varw, (8) = ey ply+ o sty + cs piy® + cay Py + cs i’ (10)
where ¢; and c¢3 are as before (9) and

N(N—-n)(Nn—N-n-1)

“ T T DV - - - D)
c _ 4N2(N—n)(2Nn—3N_3n+3)
4 n(n—1)(N -1)>(N -2) (N - 3)
cs _2N2(N—n)(2Nn—3N_3n+3)

n(n—1)(N—=1)*(N —2)(N —3)

Here again, each ¢; converges to the corresponding coefficient in (7).

. . 4(2n — 3)
lim ¢ = —— lim ¢ = ———=
N0 n NS00 n(n —1)
lim o = _.2m=3
Nooo © T nm—1)
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