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Abstract 

 
Sample size at each level is important to consider when estimating multilevel models. Although general sample size 
guidelines have been suggested, the nature of social science survey research (e.g., large number of level-2 units with 
few individuals per unit) often makes such recommendations difficult to follow. This Monte Carlo study focuses on 
the consequences of level-2 sparseness on the estimation of fixed and random effects coefficients in terms of model 
convergence and both point estimates and interval estimates as a function of the level-1 sample size, number of 
level-2 units, proportion of singletons (level-2 units with one observation), collinearity, intraclass correlation, and 
model complexity. SAS IML was used to simulate 1000 data sets across 5760 conditions. Results are presented in 
terms of statistical bias, confidence interval coverage, and rates of model non-convergence. 
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1. Sample Size and Multilevel Modeling  

 
Multilevel models are being increasingly used across the social sciences to analyze nested or hierarchically 
structured data. There are many types of multilevel models, which differ in terms of the number of levels (e.g., 2, 3), 
type of design (e.g., cross-sectional, longitudinal with repeated measures, cross-classified), scale of the outcome 
variable (e.g., continuous, categorical), and number of outcomes (e.g., univariate, multivariate).  These models have 
been used to address a variety of research questions involving model parameters that include fixed effects (e.g., 
average student socioeconomic status-mathematics achievement slope across schools), random level-1 coefficients 
(e.g., student socioeconomic status-mathematics achievement slope at a particular school), and variance-covariance 
components (e.g., amount of variation in the student socioeconomic status-mathematics achievement slope across 
schools).   
 
As the use of multilevel models (also known as hierarchical linear models and mixed models) has expanded into 
new areas, questions have emerged concerning how well these models work under various design conditions. One of 
these design conditions is the sample size at each level of the analysis. This issue is central in most quantitative 
studies but is more complex in multilevel models because of the multiple levels of analysis. Currently there are few 
sample size guidelines referenced in the literature.  One rule of thumb proposed for designs in which individuals are 
nested within groups calls for a minimum of 30 units at each level of the analysis.   This rule of thumb is commonly 
cited (see, for example, Hox, 1998; Maas & Hox, 2002; Maas & Hox, 2004) and was further developed by Hox 
(1998) who recommended a minimum of 20 observations (level-1) for 50 groups (level-2) when examining 
interactions across levels.   
 
Although many researchers attempt to adhere to these sample size guidelines, the nature of social determinants 
research often make these sample size recommendations difficult to achieve. More specifically, because many large-
scale social science surveys utilize complex sampling procedures (i.e., stratified and clustered sampling designs), 
individuals are often dispersed among a large number of level-2 units with few individuals per group (e.g., 
thousands of census tract defined neighborhoods with few individuals in each census tract). For example, although 
the sampling frame for the National Longitudinal Study of Adolescent Health (Add Health) was at the school-level, 
neighborhood-level Add Health data are often used to answer a variety of research questions (e.g., Bruce, 2004; 
Cubbin, Santelli, Brindis, & Braveman, 2005; Gordon-Larsen, Nelson, Page, & Popkin, 2006; Knoester & Haynie, 
2005; Regnerus, 2003; Wickrama & Bryant, 2003; Wickrama, Noh, & Bryant, 2005). However, the dispersion of 
adolescents across neighborhoods is less than ideal. The Wave 1 Add Health restricted use data provide observations 
on approximately 15,000 adolescents nested in approximately 2,600 neighborhoods, with almost 50% singleton 
neighborhoods (i.e., a neighborhood unit containing only one adolescent).  
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Given the potential problems of small sample sizes, several simulation studies have been designed to examine the 
effect of small sample sizes, at different levels of analysis, on various multilevel results (e.g., variance estimates, 
fixed effects estimates, standard errors, and convergence). In a simulation study examining the effects of data 
sparseness on variance estimates, Mok (1995) found that variance estimates were notably biased in balanced designs 
with as few as five level-2 units. Clarke and Wheaton (2007), in their Monte Carlo study focusing on a 2-level 
model, examined conditions in which the number of level-2 units ranged from 50 to 200 and the number of level-1 
units per level-2 unit ranged from 2 to 20.  They found positive bias in the intercept and slope variance estimates. 
They noted that “at least 10 observations per group for at least 100 groups” (p. 330) were needed for the estimated 
intercept variance to approach the true values; for the slope variance at least 20 observations per group for at least 
200 groups were needed for the estimated slope variance to approach the true values. In this same study, Clarke and 
Wheaton (2007) also examined bias in the intercept and slope variance estimates as a function of group size and the 
proportion of singleton groups in the two level models. When singleton groups are included in the multilevel 
models, bias in the variance estimates was more evident than with the data without any singleton groups.  
 
 Maas and Hox (2004, 2005), who examined conditions in which the number of level-2 units ranged from 30 to 100 
and the number of level-1 units per level-2 unit ranged from 5 to 50, found less bias in the variance estimates, but 
still reported substantial difficulty in making inferences about the variance components when the number of level-2 
units was only 30. Although there appear to be substantial problems in making variance inferences from small 
samples, results of the simulation studies regarding the fixed effects were more encouraging.  Studies consistently 
showed little to no bias in the estimates of the fixed effects (Clarke & Wheaton, 2007; Maas & Hox, 2004, 2005; 
Mok, 1995; Newsom & Nishishiba, 2002). However, although the findings related to fixed effects and small sample 
sizes are generally more encouraging, the majority of studies have only examined relatively simple models. For 
example, both Clarke and Wheaton’s (2007) and Mass and Hox’s (2004) findings are based on simple two-level 
hierarchical models with one continuous criterion variable, one predictor variable at each level, one cross-level 
interaction between the predictors at each level, and two random effects (intercept and level-1 predictor). Thus, the 
impact of level-2 sparseness with more complex, realistic models is currently not known. 
 

2. Purpose 
 
This study focuses on the consequences of level-2 sparseness on the estimation of fixed and random effects 
coefficients in terms of model convergence and both point estimates (statistical bias) and interval estimates 
(confidence interval accuracy and precision, and Type I error control and statistical power of tests associated with 
the fixed and random effects) as a function of the level-1 sample size, number of level-2 units, proportion of 
singletons, collinearity, intraclass correlation, and model complexity. By examining more complex multilevel 
models (i.e., two level models with various numbers of predictors and various levels of collinearity), this study adds 
information about the accuracy and precision of estimates and contributes to our understanding of the behavior of 
multilevel models under less than ideal conditions.  

 
3. Method 

 
For this Monte Carlo study the following design factors and conditions were examined: (a) level-1 sample sizes with 
conditions of small (average = 10, range 5-15) and large (average = 50, range 25-75), (b) level-2 sample sizes with 
conditions of 50, 100, 200, and 500, (c) proportion of singletons with conditions of 0, .10, .30, .50, and .70, (d) 
levels of collinearity (0 and .3), (e) level-2 error variance (.05, .10, .15, and .30), and (f) model complexity with 
conditions of 2, 3, and 5 level-1 predictors crossed with 1, 2, and 4 level-2 predictors for both main effect and 
interaction models. These factors in the Monte Carlo study were completely crossed, yielding 40 sample size 
conditions and 144 design factor conditions. 
 
Data were generated based on a two-level model in which observations were nested within groups.  At the first level, 
a continuous outcome was generated as a linear function of k predictors, where k = 2, 3, or 5.  
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The intercepts and slopes of the first level were simulated as a function of m predictors at the second level, where m 
= 1, 2, or 4. For the interaction models, models with two level-1 predictors included one cross-level interaction term, 
models with three level-1 predictors included two cross-level interaction terms, and models with five level-1 
predictors included three cross-level interaction terms. In each model, the intercept and one level-1 variable were 
generated to vary randomly. The level-1 errors were generated from a normal distribution with a variance of 1.0 
using the RANNOR random number generator in SAS version 9.1 (SAS, 2004).  The level-2 errors were also 
generated from a normal distribution, but with variance of .05, .10, .15, or .30 to produce different values of 
intraclass correlation. The data were simulated such that some predictors had no effect (for estimation of Type I 
error rate) and some predictors had non-null effects (for estimating statistical power).  
 
For each of the 5760 conditions (40 sample size combinations * 144 combinations of design factors), 1,000 data sets 
were simulated using SAS IML (SAS, 2004). The data simulation program was checked by examining the matrices 
produced at each stage of data generation. After each data set was generated, the simulated sample was analyzed 
using a 2-level multilevel model with maximum likelihood estimation via the MIXED procedure in SAS (SAS, 
2004). In all analyses the covariance matrix of the level-2 errors,Τ , was modeled to be unstructured, and the 
covariance matrix of the level-1 errors was modeled as I2σ=Σ . Four primary outcomes were examined in this 
Monte Carlo study: rate of model convergence, bias in the estimates of the fixed and random effects, confidence 
interval coverage for each effect, and average confidence interval width for each effect. In addition, Type I error 
rates and statistical power estimates are also reported. 
 

4. Results  
 
Model convergence was not a substantial problem with any of the conditions examined in this study. No 
convergence problems were evident in 98% of the conditions and the highest rate of nonconvergence in the 
remaining 2% of conditions was less than 1% of the simulated samples. 
 
Very low levels of statistical bias were evident for all parameter estimates. As an illustration of the small magnitude 
of bias, Figure 1 provides the distributions of bias in the estimation of random effects for the most extreme numbers 
of level-2 units in the simulations (N2 = 50 and N2 = 500). The proportion of singletons had no notable effect on the 
bias with large numbers of level-2 units, and had only a very small effect on bias with few level-2 units. 
 
Similar results are evident for the estimated Type I error rates for the tests of random effects (Figure 2). With large 
numbers of level-2 units (N2 = 500), the proportion of singletons had no effect on Type I error control. With few 
level-2 units (N2 = 50), the test became slightly conservative as the proportion of singletons increased. However, 
across all conditions the estimated Type I error rates were close to the nominal alpha level. 
 
Increasing proportions of singletons led to a slight reduction in statistical power for the test of random effects with 
small numbers of level-2 units, but had no effect on the power with larger numbers of units (Figure 3). As 
anticipated, the number of level-2 units was more influential on the power of this test (Figure 4). 
 
The proportion of singletons had no notable effect on the estimation of fixed effects for the level-1 predictors, but 
evidenced a clear impact on the interval estimation of the parameters for the level-2 predictors. Confidence interval 
coverage was evaluated by computing the proportion of conditions with estimated interval coverage that fell with 
Bradley’s (1978) “liberal” criterion for robustness (e.g., with a 95% confidence interval, the estimated coverage is 
greater than 92.5% and less than 97.5%).  
 
Figures 5 and 6 present the proportions of conditions that satisfied Bradley’s criterion for small and large numbers 
of level-2 units, respectively. With 500 level-2 units (Figure 6), the proportion of singletons had no impact on the 
confidence interval coverage and nearly all conditions met Bradley’s criterion. In contrast, with only 50 level-2 units 
(Figure 5), the proportion of conditions meeting Bradley’s criterion declined as the proportion of singletons 
increased.  With 70% singletons, the proportion of conditions with adequate confidence interval coverage was less 
than .20. Figures 7 and 8 present the corresponding mean estimated confidence interval coverage probabilities for 
small and large numbers of level-2 units, respectively. Consistent with the evaluation using Bradley’s robustness 
criterion, these figures illustrate the notable decline in confidence interval coverage for the parameters associated 
with the level-2 predictors with increasing proportions of singletons under conditions with few level-2 units (N2 = 
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50). Conversely, the proportion of singletons had no impact on the coverage probabilities for level-2 predictor 
parameters under conditions with large numbers of level-2 units (Figure 8). 
 
 
 

Figure 1: Estimated Bias in Random Effects by Proportion of Singletons for N2 = 50 and N2 = 500 

 
Figure 2:  Estimated Type I Error Rates for Tests of Random Effects by Proportion of Singletons for N2 = 50 and 
N2 = 500 

N2 = 50 N2 = 500 

N2 = 50 N2 = 500 
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Figure 3: Estimated Power of Test of Intercept Variance by Proportion of Singletons for N2 = 50 and N2 = 500 

 
Figure 4: Estimated Power and Type I Error Rates for Tests of Random Effects by Number of Level-2 Units 

N2 = 500 N2 = 50 

Power Type I Error Rate 
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Figure 5: Proportion of Conditions with Adequate CI Coverage Probabilities for Level-2 Predictors by Proportion 
of Singletons for N2 = 50 
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Figure 6: Proportion of Conditions with Adequate CI Coverage Probabilities for Level-2 Predictors by Proportion 
of Singletons for N2 = 500 
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Figure 7: Mean CI Coverage Probabilities for Level-2 Predictors by Proportion of Singletons for N2 = 50 
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Figure 8: Mean CI Coverage Probabilities for Level-2 Predictors by Proportion of Singletons for N2 = 500 
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5. Conclusions 

 
The results of this study are encouraging for researchers who analyze multilevel data with sparse structures. The 
proportion of singletons in the simulated samples had little impact on either the point or interval estimates of model 
parameters when large numbers of level-2 units were included. With smaller numbers of level-2 units, increasing the 
proportion of singletons led to a reduction in the accuracy of the confidence intervals for level-2 predictors but did 
not impact the accuracy of the estimates for level-1 predictors. Additional research is required to examine a broader 
array of data structures and to evaluate the impact of sparse structures for analyzing dichotomous outcomes using 
generalized multilevel models. 
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