Variance Estimation for Estimators of Between-Year Change in Totals from Two Stratified Bernoulli Samples

Kimberly Henry1, Valerie Testa1, and Richard Valliant2

1 Statistics of Income, P.O. Box 2608, Washington DC 20013-2608
2 University of Michigan, 1218 Lefrak Hall, College Park MD 20742

Abstract: This paper provides the theoretical framework for estimating the variance of the difference in two years’ totals estimated under the stratified Bernoulli sample design. We provide a design-unbiased estimator that takes into account two practical problems: a large overlap of units between two years’ samples and “stratum jumpers,” which are population and sample units that shift across strata from one year to another. Both problems affect estimating the covariance term in the variance of the difference. The estimator is applied to data from the Statistics of Income Division’s individual tax return sample. Naïve variance estimates using only the separate years’ variances are compared to show the effect of ignoring the estimated covariance.

Key Words: Horvitz-Thompson estimator, poststratification, survey sampling

1. Introduction and Universe of Tax Returns for Two Years

This paper contains the theoretical background necessary to produce variance estimates of year-to-year changes between totals estimated from the Statistics of Income (SOI) Division’s Individual Tax Return sample, a stratified Bernoulli sample. The underlying theory here is modified from the theory in Valliant and Casady (1998). Related work for similar sample designs can be found in Berger (2004), Nordberg (2000), and Wood (2008).

We consider two estimators of the finite population total: the Horvitz-Thompson (HT) and post-stratification (PS) estimators. SOI uses the PS estimator to estimate yearly totals, but both are considered here for comparison purposes. Suppose that the strata are ordered by increasing size of the sampling rate, i.e., the sampling rate for stratum 2 is greater than or equal to the rate for stratum 1, and so on. Both estimators are affected by the location of sample units within strata in both years, so we define the following:

- \(U_{h_1} \) = returns in stratum \(h_1 \) that file only at time \(t_1 \) (deaths after time \(t_1 \) and before time \(t_2 \))
- \(U_{h_2} \) = returns in stratum \(h_2 \) that file only at time \(t_2 \) (births after time \(t_1 \) and before time \(t_2 \))
- \(U_{h_1h_2} \) = returns in stratum \(h_1 \) at time \(t_1 \) and stratum \(h_2 \) at time \(t_2 \) that file returns at both times, for \(h_1 < h_2 \) (units that move to strata with a higher sampling rate in year 2), \(h_1 = h_2 \) (units that stay in the same strata), or \(h_1 > h_2 \) (units moving to strata with lower sampling rates in year 2).

Using this notation, the two universes can be partitioned into a 2-way grid based on stratum membership at times \(t_1 \) and \(t_2 \), shown in Table 1 on the following page. If the set of strata is the same in the two years, then \(H_1 = H_2 \) and returns on the diagonal of Table 1 remain in the same stratum between the two years, while the “stratum jumpers” (returns that shift to a different strata between the years) lie on the off-diagonal. For sample selection purposes, the stratum \(h_1 \) and \(h_2 \) universes at times \(t_1 \) and \(t_2 \) are the union of all units (here tax returns) down column \(h_2 \) and across row \(h_1 \) of Table 1, respectively:

\[
U_{h_1} = \bigcup_{h_2 = 0}^{H_2} U_{h_1h_2}, \quad U_{*h_2} = \bigcup_{h_1 = 0}^{H_1} U_{h_1h_2}.
\]

2. Sample Design

The stratified Bernoulli design is used by most of SOI’s cross-sectional studies. In each study’s frame population, every unit has a unique identifier - the Social Security Number (SSN) of the primary tax filer in the Individual study and the Employer Identification Number for Corporate and Tax Exempt organizations’ tax returns. Each return’s unique identifier is used to produce a permanent random number (PRN) between 0 and 1, denoted \(r_i \). For a given year, unit \(i \) is selected for a sample if \(r_i < \pi_h \),

\[
(2.1)
\]

where \(\pi_h \) is the pre-assigned sampling rate for stratum \(h \) that tax return \(i \) belongs to. Stratification for SOI’s Form 1040 sample used various criteria, including size of total gross positive/negative income indexed for inflation and an indicator of the return’s “usefulness” for tax policy modeling purposes, to create 208 strata (see Testa and Scali 2005 for details). Every week of the IRS processing year, all 1040, 1040A, and 1040EZ returns in the frame population were assigned to a stratum as...
the data were transcribed by IRS. Due to this weekly schedule of available frame data, SOI uses stratified Bernoulli sampling to select its samples. Similar procedures are used by other tax agencies (e.g., Revenue Canada, Cooney 2008).

Table 1: Partition of Universe at Two Times

<table>
<thead>
<tr>
<th>Time t_1 Stratum Membership</th>
<th>Time t_2 Stratum Membership</th>
<th>Stratum universe at time t_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (deaths in t_1)</td>
<td>0</td>
<td>U_{0,t_1}</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>U_{1,t_1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U_{H_1,t_1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{t_1} = \bigcup_{h=0} U_{h_1,t_1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{H_1,t_1} = \bigcup_{h=0} U_{h_1,t_1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U_{t_1} = \bigcup_{h=0} U_{h_1,t_1}$</td>
</tr>
</tbody>
</table>

SOI’s Individual sample consisted of two parts within each stratum. First, a 0.05 percent stratified Bernoulli sample of approximately 65,000 returns was selected, called the Continuous Work History Sample (CWHS, Weber 2004). A Bernoulli sample was also selected independently from each stratum, with rates ranging from 0.01 to 100 percent. The full sample thus consists of the CWHS plus all additional returns selected via the Bernoulli sample. For Tax Year 2005, the sampling rates were increased and ranged from 0.05 to 100 percent. Table 2 contains the sample and estimated population sizes (using the sample weights, both after the sample was selected and those numbers realized after SOI’s data capture and cleaning.

Table 2: Realized Sample Sizes and Estimated Population Sizes, Tax Years 2004 and 2005

<table>
<thead>
<tr>
<th></th>
<th>Tax Year 2004</th>
<th>Tax Year 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Sizes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originally selected</td>
<td>200,778</td>
<td>292,966</td>
</tr>
<tr>
<td>After data cleaning</td>
<td>200,295</td>
<td>292,837</td>
</tr>
<tr>
<td>Estimated Population Sizes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Originally selected</td>
<td>133,189,982</td>
<td>134,494,400</td>
</tr>
<tr>
<td>After data cleaning</td>
<td>132,226,042</td>
<td>134,372,678</td>
</tr>
</tbody>
</table>

Every year, using condition (2.1) for every tax return automatically accounts for births, deaths, and the stratum jumpers in the population as follows:

- **Births**: each birth is independently assigned a PRN; if (2.1) holds, then the unit is selected for the sample.
- **Deaths**: units are not present in the population file, so they are not in the sample.
- **Stratum jumpers**: if, from year t_1 to t_2, a return switches from stratum h_1 to stratum h_2, then the return is in the sample in both years if $\pi_{t_1} < \min(\pi_{h_1}, \pi_{h_2})$ (i.e., if the PRN is less than the rates for both strata).

There are four conditions related to whether or not a stratum jumper is selected for the t_2 sample, which are shown in Table 3. They depend on the size of the two years’ sampling fractions (relative to each other) and if the unit was in the year t_1 sample.

Table 3: Sample Inclusion of Stratum Jumpers in Year t_2

<table>
<thead>
<tr>
<th>Sampling rate relationship</th>
<th>Was unit i in the sample in year t_1?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_{h_1} \leq \pi_{h_2}$</td>
<td>Yes</td>
</tr>
<tr>
<td>$\pi_{h_1} > \pi_{h_2}$</td>
<td>Maybe</td>
</tr>
</tbody>
</table>

The Table 3 conditions are further explained, where h_1 denotes the year t_1 stratum and h_2 for year t_2. These probabilities are needed for subsequent variance calculations.

Returns selected in year t_1:
• If \(\pi_{h_i} \leq \pi_{h_2} \), then unit \(i \) will automatically be included in the year \(t_2 \) sample with conditional probability of selection 1 and unconditional probability of selection \(\pi_{h_i} \), since \(r_i < \pi_{h_i} \leq \pi_{h_2} \).

• If unit \(i \) switches to a stratum with a smaller sampling rate, then it will be in the year \(t_2 \) sample if \(r_i < \pi_{h_2} \) with conditional probability \(\pi_{h_i} / \pi_{h_2} \) (and not in the sample with probability \(1 - \pi_{h_i} / \pi_{h_2} \)).

Returns not selected in year \(t_1 \):

• If \(\pi_{h_i} \leq \pi_{h_2} \), then a unit will only be in the year \(t_2 \) sample if \(\pi_{h_i} < r_i \leq \pi_{h_2} \) with conditional probability \((\pi_{h_2} - \pi_{h_i})/(1 - \pi_{h_i}) \) (and not in with probability \(1 - (\pi_{h_2} - \pi_{h_i})/(1 - \pi_{h_i}) \)).

• If unit \(i \) switches to a stratum with a smaller sampling rate, then it will not be sampled at time \(t_2 \) since \(\pi_{h_2} < \pi_{h_i} \leq r_i \) does not meet condition (2.1).

This sample selection method also ensures a large overlap between two years, since a sampled unit is selected in both years if \(r_i \leq \pi_{h_i} \leq \pi_{h_2} \). There are a small number of 1040 tax returns where \(r_i \) changes, even though the composition of the return itself remains the same (which can occur, for example, on a married joint tax return that switches the primary and secondary SSN’s, since \(r_i \) is calculated using the primary SSN). The overlapping of units across different year’s samples also creates a large covariance term that must be accounted for in variance estimation of the difference between two years’ estimates.

There are additional sample selection issues due to changes in population units that affect the covariance term. For example, in the 1040 sample, “marriages” occur when two tax returns that previously filed separately file as a joint married return the next year and “divorces” when a joint married tax return becomes two separate entities (which includes both legally divorced taxpayers and married taxpayers who choose to file their returns separately). We use the following rules in the covariance estimation, which generally lead to underestimating it:

• Marriages: two “single” returns (filing either as single or married separate) in year \(t_1 \) that file as a joint married return are considered two deaths in year \(t_1 \) and a birth in year \(t_2 \).

• Divorces: a married joint return that becomes two single entities is considered a death in year \(t_1 \) and two births in year \(t_2 \).

• SSN swapping: joint married tax returns that are in both years are tracked and considered the same unit in both years.

Sample design changes also result in sampling rate changes between years. For example, the 1040 samples included returns selected for the CWHS part of the sample using certain endings of the SSN. For Tax Year 2004, only half of the possible SSN endings were edited and used to produce the 2004 cross-sectional estimates and a de facto 100 percent increase in sampling rates. However, all selected CWHS returns were edited for the 2005 sample, resulting in approximately 60,000 additional returns used to produce the 1040 cross-sectional sample estimates. Also, the Congressionally-mandated five-year Foreign Income study was selected in the 2006 sample, resulting in sampling rate increases to include approximately 15,000 more returns in the associated strata. Our estimators can account for such changes.

3. Estimators for Totals and Their Change

3.1: Notation and Probabilities of Selection

A Bernoulli sample is selected within each stratum as described in Section 3, where \(\pi_{h} \), the stratum sampling rate in a given year, is also the probability of selection for all units in stratum \(h \). The following random variables denote sample inclusion of unit \(i \) at times \(t_1 \) and \(t_2 \):

\[
\delta_i(t_1) = \begin{cases}
1 & \text{if unit } i \in s_1 \\
0 & \text{otherwise}
\end{cases} \quad \text{and} \quad \delta_i(t_2) = \begin{cases}
1 & \text{if unit } i \in s_2 \\
0 & \text{otherwise}
\end{cases}
\]

From these expressions, the conditional and unconditional probabilities of selection by population domain can be derived. For Bernoulli sampling, the expected values and variances of the inclusion indicator for each year are:

\[
E[\delta_i(t_1)] = \pi_{h_i}, \quad Var[\delta_i(t_1)] = \pi_{h_i}(1 - \pi_{h_i})
\]

\[
E[\delta_i(t_2)] = \pi_{h_2}, \quad Var[\delta_i(t_2)] = \pi_{h_2}(1 - \pi_{h_2})
\]

To compute \(E[\delta_i(t_2)\delta_i(t_1)] - E[\delta_i(t_2)]E[\delta_i(t_1)] \) for the covariance, note that \(\delta_i(t_2)\delta_i(t_1) = 1 \) only when a unit is in the sample for both time periods. Thus, the covariance for the indicator variable for unit \(i \) in stratum \(h_1 \) at time \(t_1 \) and in stratum \(h_2 \) at time \(t_2 \) is given by:

\[
Cov[\delta_i(t_2), \delta_i(t_1)] = \min(\pi_{h_1}, \pi_{h_2}) - \pi_{h_1}\pi_{h_2} = \Delta_{h_1}h_{h_2}.
\]

3.2: Finite Population Totals of Interest
The finite population totals of a study variable of interest y at times t_1 and t_2 are denoted by

$$T(t_1) = \sum_{h_1=1}^{H_1} \sum_{i \in U_{h_1}} y_{1i} \quad \text{and} \quad T(t_2) = \sum_{h_2=1}^{H_2} \sum_{i \in U_{h_2}} y_{2i}$$ \hspace{1cm} (3.1)

where y_{1i} and y_{2i} are the y-values (for the same variable of interest) for unit i at times t_1 and t_2.

3.3. The Horvitz-Thompson Estimator

The Horvitz-Thompson (HT) estimators for $T(t_1)$, $T(t_2)$ are

$$\hat{T}_\pi(t_1) = \sum_{h_1=1}^{H_1} \sum_{i \in U_{h_1}} \frac{\delta_i(t_1) y_{1i}}{\pi_{h_1}} = \sum_{h_1=1}^{H_1} \hat{T}_{h_1}, \quad \text{and} \quad \hat{T}_\pi(t_2) = \sum_{h_2=1}^{H_2} \sum_{i \in U_{h_2}} \frac{\delta_i(t_2) y_{2i}}{\pi_{h_2}} = \sum_{h_2=1}^{H_2} \hat{T}_{h_2},$$ \hspace{1cm} (3.2)

where $1/\pi_{h_1}$ and $1/\pi_{h_2}$ are the base weights for unit i at times t_1 and t_2 and $\hat{T}_{h_1} = 1/\pi_{h_1} \sum_{i \in U_{h_1}} \delta_i(t_1) y_{1i}$, $\hat{T}_{h_2} = 1/\pi_{h_2} \sum_{i \in U_{h_2}} \delta_i(t_2) y_{2i}$ are HT estimators for each year’s stratum totals. The estimators $\hat{T}_\pi(t_1)$ and $\hat{T}_\pi(t_2)$ are unconditionally (i.e., over all possible samples for each year) unbiased for $T(t_1)$ and $T(t_2)$, respectively.

3.4. The Poststratified (Conditional HT) Estimator

Even though the HT estimator is unconditionally unbiased for the population total, it can have a high variance since the sample size is a random variable under Bernoulli sampling. Instead, SOI uses a poststratified (PS) estimator that conditions on the number of achieved units in each stratum. This estimator, which is conditionally unbiased for the population total (Brewer et al., 1972), reduces the variability caused by the random stratum sample sizes and leads to formulae simplifications.

First, the observed number of sample returns in stratum h from year t_1 is denoted by $n_{h_1} = \sum_{i \in U_{h_1}} \delta_i(t_1)$. Assuming that $n_{h_1} > 0$, it can be shown that conditional on \{$n_{1*}, n_{2*}, \ldots, n_{H_1*}$\}, the sample design at time t_1 is a stratified simple random sample with stratum sample sizes $n_{1*}, n_{2*}, \ldots, n_{H_1*}$. Thus, for N_{h_1*} denoting the number of population units in stratum h_1 at time t_1, the (conditional) HT estimator for $T(t_1)$ is

$$\hat{T}_{\pi c}(t_1) = \sum_{h_1=1}^{H_1} \frac{N_{h_1*}}{n_{h_1*}} \sum_{i \in U_{h_1*}} \delta_i(t_1) y_{1i}.$$ \hspace{1cm} (3.3)

Similarly, if $n_{h_2} = \sum_{i \in U_{h_2}} \delta_i(t_2) > 0$, then conditional on \{$n_{1*}, n_{2*}, \ldots, n_{H_2*}$\}, the sample design at time t_2 is a stratified simple random sample with stratum sample sizes $n_{1*}, n_{2*}, \ldots, n_{H_2*}$. For N_{h_2*} being the number of population elements in stratum h at time t_2, the (conditional) HT estimator for $T(t_2)$ is

$$\hat{T}_{\pi c}(t_2) = \sum_{h_2=1}^{H_2} \frac{N_{h_2*}}{n_{h_2*}} \sum_{i \in U_{h_2*}} \delta_i(t_2) y_{2i}.$$ \hspace{1cm} (3.4)

SOI uses $\hat{T}_{\pi c}(t_1)$ and $\hat{T}_{\pi c}(t_2)$ to estimate time-specific totals, which are conditionally unbiased for their corresponding population totals. They are special forms of the PS estimator, where the poststrata are the same as the design strata. The PS estimators (which are not unconditionally unbiased for the population totals, since they involve a ratio) for times t_1 and t_2 are

$$\hat{T}_{PS}(t_1) = \sum_{h_1=1}^{H_1} \frac{N_{h_1*}}{\hat{N}_{h_1*}} \hat{T}_{h_1}, \quad \text{and} \quad \hat{T}_{PS}(t_2) = \sum_{h_2=1}^{H_2} \frac{N_{h_2*}}{\hat{N}_{h_2*}} \hat{T}_{h_2},$$ \hspace{1cm} (3.5)

where $\hat{N}_{h_1*} = \frac{1}{\pi_{h_1}} \sum_{i \in U_{h_1*}} \delta_i(t_1)$ is the estimated number of stratum h_1 population units for year 1. For year 2, \hat{N}_{h_2*} is similarly defined. It can be shown, by definition of \hat{T}_{h_1} and \hat{T}_{h_2}, that $\hat{T}_{PS}(t_1)$ reduces to $\hat{T}_{\pi c}(t_1)$ and $\hat{T}_{PS}(t_2)$ reduces to $\hat{T}_{\pi c}(t_2)$.

3.5. Estimators of Change

The change in level between two time points is denoted by

$$D = T(t_2) - T(t_1).$$ \hspace{1cm} (3.6)

The conditional and unconditional estimators of time-specific totals lead to two estimators of this difference. Based on the
unconditional HT estimators, we have
\[\hat{D}_\pi = \hat{T}_\pi (t_2) - \hat{T}_\pi (t_1), \]
(3.7)
which is unconditionally unbiased for the change in level between time \(t_1 \) and \(t_2 \). By breaking \(\hat{T}_\pi (t_1) \) into the sum of births for time \(t_2 \) and units in both year’s sample summed over the year 1 strata, and \(\hat{T}_\pi (t_2) \) into the sum of the deaths for time \(t_1 \) and the units in both samples over the year 2 strata, expression (3.7) can be rewritten as:
\[
\hat{D}_\pi = \sum_{h_2=1}^{H_2} \sum_{i \in U_{h_2}} \frac{\delta(t_2) y_{2i}}{n_{*h_2}} - \sum_{h_1=1}^{H_1} \sum_{i \in U_{h_1}^0} \frac{\delta(t_1) y_{1i}}{n_{h_1}} + \sum_{h_1=1}^{H_1} \sum_{h_2=1}^{H_2} \sum_{i \in U_{h_0}} \left[\frac{\delta(t_2) y_{2i}}{n_{h_2}} - \frac{\delta(t_1) y_{1i}}{n_{h_1}} \right]
\]
(3.8)
Similarly, based on the conditional HT estimators,
\[\hat{D}_{PS} = \hat{T}_{PS} (t_2) - \hat{T}_{PS} (t_1), \]
(3.9)
which is conditionally unbiased for the change in level. Similarly, this estimator can be rewritten as:
\[
\hat{D}_{PS} = \sum_{h_2=1}^{H_2} \sum_{i \in U_{h_2}} \frac{N_{h_2} \delta(t_2) y_{2i}}{n_{h_2}} - \sum_{h_1=1}^{H_1} \sum_{i \in U_{h_1}} \frac{N_{h_1} \delta(t_1) y_{1i}}{n_{h_1}} + \sum_{h_1=1}^{H_1} \sum_{h_2=1}^{H_2} \sum_{i \in U_{h_0}} \left[\frac{N_{h_2} \delta(t_2) y_{2i}}{n_{h_2}} - \frac{N_{h_1} \delta(t_1) y_{1i}}{n_{h_1}} \right]
\]
(3.10)

4. Theoretical Variances

4.1: Single Year Variances

4.1.1: Unconditional HT Estimators
Using standard Poisson sampling results (Result 3.2.1 from Sarndal et al., (1992)), the variances of the unconditional HT estimators for times \(t_1 \) and \(t_2 \) are
\[
Var[\hat{T}_\pi (t_1)] = \sum_{h_1=1}^{H_1} \left(1 - \pi_{h_1} \right) \sum_{i \in U_{h_1}} y_{1i}^2
\]
(4.1)
\[
Var[\hat{T}_\pi (t_2)] = \sum_{h_2=1}^{H_2} \left(1 - \pi_{h_2} \right) \sum_{i \in U_{h_2}} y_{2i}^2
\]
(4.2)

4.1.2: Unconditional Variance of PS Estimators
Using \(N_h (1/\pi_h - 1) = N_h^2 / n_h (1 - n_h / N_h) \), Sarndal et al. (expression 3.2.7, p. 65) approximated the unconditional variance of the PS estimators. Their approximation, adjusted for our notation, is
\[
Var[\hat{T}_{PS} (t_1)] = \sum_{h_1=1}^{H_1} N_{h_1} (1/\pi_{h_1} - 1) S_{h_1}^2
\]
(4.3)
\[
Var[\hat{T}_{PS} (t_2)] = \sum_{h_2=1}^{H_2} N_{h_2} (1/\pi_{h_2} - 1) S_{h_2}^2
\]
(4.4)
where \(S_{h_1}^2 = 1/(N_{h_1} - 1) \sum_{i \in U_{h_1}} (y_{1i} - \bar{y}_{h_1})^2 \) and \(S_{h_2}^2 = 1/(N_{h_2} - 1) \sum_{i \in U_{h_2}} (y_{2i} - \bar{y}_{h_2})^2 \) are the population stratum variances for \(t_1 \) and \(t_2 \) and the population strata means are \(\bar{y}_{h_1} = 1/N_{h_1} \sum_{i \in U_{h_1}} y_{1i} \) and \(\bar{y}_{h_2} = 1/N_{h_2} \sum_{i \in U_{h_2}} y_{2i} \).

4.1.3: Conditional Variance of PS Estimators
Holt and Smith (1979) observed that conditioning on an achieved post stratum sample size is inferentially more appropriate than averaging over all possible sample sizes, as in (4.1) and (4.2). The theoretical conditional variances of the PS estimators for both years are simply the variances of a total under stratified simple random sampling:
\[
Var[\hat{T}_{PS} (t_1)] = \sum_{h_1=1}^{H_1} N_{h_1}^2 (1-n_{h_1}/N_{h_1}) S_{h_1}^2
\]
(4.5)
\[
Var[\hat{T}_{PS} (t_2)] = \sum_{h_2=1}^{H_2} N_{h_2}^2 (1-n_{h_2}/N_{h_2}) S_{h_2}^2
\]
(4.6)
The variances in (4.5) and (4.6) are preferable since they reflect the precision for the sample sizes actually obtained. In comparing expressions (4.1) to (4.5) and (4.2) to (4.6), in almost all practical situations, the conditional variances of the PS estimators are substantially smaller than the unconditional variances of the HT estimators. To see this, in general, we can write (expanding Exp.3.2.5 in Sarndal et al (1992) to stratified sampling):
Thus, the theoretical variance of a total under stratified Bernoulli sampling is equal to the stratified simple random sampling variance plus an additional factor (of the same magnitude) that depends on the stratum population mean of the study variable.

4.2: Variance of the Difference
4.2.1: Unconditional Variance of the HT Estimators
For the unconditional HT estimators, it can be shown that the unconditional variance of the difference is the variance from the year 1, births plus the variance from the year 2 deaths, plus the variance from returns in the same or different strata in both years. In formula form, this is:

\[
\text{Var} [\hat{D}] = \sum_{k_2=1}^{H_2} \frac{1 - \pi_{k_2}}{\pi_{k_2}} \sum_{i \in U_{k_2}} y_{2i}^2 + \sum_{h_1=1}^{H_1} \frac{1 - \pi_{h_1}}{\pi_{h_1}} \sum_{i \in U_{h_1}} y_{1i}^2 + \sum_{h_1=1}^{H_1} \sum_{h_2=1}^{H_2} \left[\left(1 - \pi_{h_1} \right) y_{2i}^2 \pi_{h_2} + \left(1 - \pi_{h_1} \right) y_{1i}^2 \pi_{h_2} - 2 \Delta_{hk_2} \frac{y_{2i} y_{1i}}{\pi_{h_1} \pi_{h_2}} \right]
\]

\[(4.8) \]

4.2.2: Unconditional Variance of the PS Estimators (Linear Approximation)
Using linear approximations to the PS estimators, the unconditional variance of the difference is

\[
\text{Var} [\hat{D}] = \sum_{h_1=1}^{H_1} \frac{1 - \pi_{h_1}}{\pi_{h_1}} \frac{N_{h_1}}{n_{h_1} \pi_{h_1}} S_{h_1}^2 + \sum_{h_1=1}^{H_1} \frac{1 - \pi_{h_1} \pi_{h_1}}{\pi_{h_1}} \frac{N_{h_1}}{n_{h_1}} S_{h_1}^2 - 2 \sum_{h_1=1}^{H_1} \sum_{h_2=1}^{H_2} \left[\Delta_{hk_2} \frac{N_{hk_2} S_{hk_2}}{\pi_{h_1} \pi_{h_2}} \right]
\]

where \(S_{hk_2} = 1 \left(N_{hk_2} - 1 \right) \sum_{i \in U_{hk_2}} (y_{2i} - \bar{y}_{hk_2}) (y_{1i} - \bar{y}_{hk_2}) \).

4.2.3: Unconditional Variance of PS Estimators (Substitution Form)
The variance in (4.8) can be expressed in a more standard form by converting some of the summations into stratum variances and covariances and approximating the sampling rates using the actual sample and population sizes achieved in each stratum. One approach is substituting marginal actual sampling rates for terms like \(1 - \pi_{h} \) and replace \(\pi_{h} \) by a stratum population size divided by the actual stratum sample size. Using these, we get

\[
\text{Var} [\hat{D}] = \sum_{h_1=1}^{H_1} \left(1 - \frac{n_{h_1}}{N_{h_1}} \pi_{h_1} \right) \frac{N_{h_1} S_{h_1}^2}{n_{h_1}} + \sum_{h_1=1}^{H_1} \left(1 - \frac{n_{h_1} \pi_{h_1}}{N_{h_1}} \right) \frac{N_{h_1} S_{h_1}^2}{n_{h_1}} - 2 \sum_{h_1=1}^{H_1} \sum_{h_2=1}^{H_2} \left[\Delta_{hk_2} \frac{N_{hk_2} S_{hk_2}}{\pi_{h_1} \pi_{h_2}} \right]
\]

\[(4.10) \]

5. Variance Estimators
5.1: Single-Year Variance Estimators
We assume that the terms \(N_{h_i} \) and \(N_{h_i} \) are known for all \(h_1, h_2 \) and consider both cases of the \(N_{h_1} \) being known and unknown. Assuming that the \(N_{h_1} \) are unknown, these are conditionally unbiased estimators of the strata population means:

\[
\bar{y}_{h_1} = \frac{1}{n_{h_1}} \sum_{i \in U_{h_1}} \delta_1(t_i) y_{1i} \quad \text{and} \quad \bar{y}_{h_2} = \frac{1}{n_{h_2}} \sum_{i \in U_{h_2}} \delta_2(t_i) y_{2i} .
\]

Since conditionally (and approximately unconditionally) unbiased estimators for the strata variances \(S_{h_1}^2 \) and \(S_{h_2}^2 \) are

\[
s_{h_1}^2 = \frac{1}{(n_{h_1} - 1)} \sum_{i \in U_{h_1}} \delta_1(t_i) (y_{1i} - \bar{y}_{h_1})^2 \quad \text{and} \quad s_{h_2}^2 = \frac{1}{(n_{h_2} - 1)} \sum_{i \in U_{h_2}} \delta_2(t_i) (y_{2i} - \bar{y}_{h_2})^2 ,
\]

the within-year variance estimators are the standard variance estimators under stratified simple random sampling:

\[
\text{var} [\hat{T}_{PS}(t_1)] = \sum_{h_1=1}^{H_1} \frac{N_{h_1}^2}{n_{h_1} \pi_{h_1}} \left(1 - \frac{n_{h_1}}{N_{h_1}} \pi_{h_1} \right) S_{h_1}^2
\]

\[(5.1) \]

\[
\text{var} [\hat{T}_{PS}(t_2)] = \sum_{h_2=1}^{H_2} \frac{N_{h_2}^2}{n_{h_2} \pi_{h_2}} \left(1 - \frac{n_{h_2}}{N_{h_2}} \pi_{h_2} \right) S_{h_2}^2
\]

\[(5.2) \]

These are conditionally unbiased for (4.5) and (4.6).

5.2: Variance Estimators of the Differences
5.2.1: The Unconditional Difference
Using sample-based estimates for each (4.8) component, we get the following estimate of \(\text{Var} [\hat{D}] \):
\[
\text{var} \left[\hat{D}_s \right] = \sum_{h_2=1}^{H_s} \frac{1 - \pi_{h_2}}{\pi_{h_2}} \sum_{i \in s_{h_2}^*} y_{2i}^2 + \sum_{h_1=1}^{H_1} \frac{1 - \pi_{h_1}}{\pi_{h_1}} \sum_{i \in s_{h_1}} y_{1i}^2 - 2 \sum_{h_1=1}^{H_1} \sum_{h_2=1}^{H_2} \Delta h_{h_1}h_{h_2} \frac{y_{2i}y_{1i}}{\min(\pi_{h_1}, \pi_{h_2}) \pi_{h_1} \pi_{h_2}}
\] (5.3)

5.2.2: The Conditional Difference

Using sample-based estimates for each (4.10) component, we have the approximate estimator of \(\text{Var} \left[\hat{D}_{PS} \right] \):

\[
\text{var} \left[\hat{D}_{PS} \right] = \sum_{h_2=1}^{H_2} \left(1 - \frac{n_{h_2}}{N_{h_2}} \right) \frac{N_{h_2}^2}{n_{h_2}^2} \frac{\pi_{h_2}^2}{\pi_{h_2}} + \sum_{h_1=1}^{H_1} \left(1 - \frac{n_{h_1}}{N_{h_1}} \right) \frac{N_{h_1}^2}{n_{h_1}^2} \frac{\pi_{h_1}^2}{\pi_{h_1}} - 2 \sum_{h_1=1}^{H_1} \sum_{h_2=1}^{H_2} \frac{\Delta h_{h_1}h_{h_2} c_{h_1h_2}}{\pi_{h_1} \pi_{h_2}}
\] (5.4)

where \(\hat{N}_{h_1h_2} = n_{h_1h_2} / \min(\pi_{h_1}, \pi_{h_2}) \), \(\pi_{h_1} = n_{h_1} / N_{h_1} \), \(\pi_{h_2} = n_{h_2} / N_{h_2} \), and the unweighted covariance between the \(y \) values for units in both years’ samples is \(c_{h_1h_2} = 1/(n_{h_1h_2} - 1) \sum_{i \in s_{h_1h_2}} (y_{2i} - \bar{y}_{h_2})(y_{1i} - \bar{y}_{h_1}) \). Note that the (5.4) covariance term is an estimator of the unconditional covariance, but it does partially account for achieved sample sizes in using \(n_{h_1} / N_{h_1} \) and \(n_{h_2} / N_{h_2} \) in place of \(\pi_{h_1} \) and \(\pi_{h_2} \).

6. Data Elements Required For Variance Estimators

The following information is needed to evaluate (5.3) and (5.4):

- The strata occupied by each sample unit at times \(t_1 \) and \(t_2 \) and the data values for every unit in the sample each time, \(y_{1i} \) and \(y_{2i} \).
- \(N_{h_1} \), the population size of stratum \(h_1 \) at time \(t_1 \) and \(N_{h_2} \) the population size of stratum \(h_2 \) at time \(t_2 \).
- \(\pi_{h_1} \), the probability of selection for a unit in stratum \(h_1 \) at time \(t_1 \), and \(\pi_{h_2} \), the selection probability for a unit in stratum \(h_2 \) at time \(t_2 \).
- \(n_{h_1}, \ N_{h_1}, \) and \(c_{h_1} \), the number of sample and population units and unweighted covariance in each of the \((h_1 h_2)\) cells.

To account for SOI’s sample including prior year returns in each sample, we matched the most recent tax return within each year together in both the population and sample. This led to ignoring a few cases where a taxpayer filed more than one return in a single year even though these returns were used in estimating totals. Doing so led to a slight underestimation of the covariances, but the impact of this was much less than ignoring the covariance term.

7. Results

Table 5 shows the ratios of the unconditional to conditional estimates for each year’s estimated total, the difference between them, and the associated variance estimates for eight variables estimated from SOI’s Tax Year 2004 and 2005 Individual samples. While the point estimates in Table 5 are essentially identical, the unconditional variances are much larger (as much as six to ten times larger, in Adjusted Gross Income and Taxable Income) than the corresponding conditional variance estimates when the means are larger for each year, as expected from (4.7).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimated Means (in $’s)</th>
<th>HT Total / PS Total</th>
<th>HT Variance / PS Variance</th>
<th>HT Total / PS Total</th>
<th>HT Variance / PS Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Gross Income</td>
<td>51,342</td>
<td>55,238</td>
<td>0.994</td>
<td>1.001</td>
<td>10.638</td>
</tr>
<tr>
<td>Taxable Income</td>
<td>35,320</td>
<td>38,231</td>
<td>0.994</td>
<td>1.001</td>
<td>6.642</td>
</tr>
<tr>
<td>Total Income Tax</td>
<td>6,292</td>
<td>6,957</td>
<td>0.995</td>
<td>1.000</td>
<td>3.891</td>
</tr>
<tr>
<td>Business or profession net income (loss less)</td>
<td>1,870</td>
<td>2,007</td>
<td>1.004</td>
<td>1.007</td>
<td>1.278</td>
</tr>
<tr>
<td>Alternative minimum tax</td>
<td>99</td>
<td>130</td>
<td>1.002</td>
<td>1.001</td>
<td>1.194</td>
</tr>
<tr>
<td>Net capital gain (loss less)</td>
<td>3,568</td>
<td>4,934</td>
<td>1.001</td>
<td>1.001</td>
<td>1.175</td>
</tr>
<tr>
<td>Charitable contributions</td>
<td>1,252</td>
<td>1,365</td>
<td>0.996</td>
<td>1.000</td>
<td>1.272</td>
</tr>
<tr>
<td>Charitable contributions other than cash</td>
<td>328</td>
<td>358</td>
<td>0.997</td>
<td>1.001</td>
<td>1.015</td>
</tr>
</tbody>
</table>

*\(v1\) is expression (5.4) using the estimated \(\hat{N}_{h_1h_2} \) counts; \(v2\) is (5.4) using the known \(N_{h_1h_2} \) counts.

Table 6 contains the ratio of the variance estimates of the unconditional and conditional differences in the 2004 and 2005 totals for our eight variables, when estimating and ignoring the covariance term in (5.3) and (5.4). We also include results when estimating the \(N_{h_1h_2} \) or using the known counts in (5.4). Ignoring the covariance leads to excessively large variance estimates because the benefit of having a large sample overlap is ignored. For example, ignoring the covariance would result...
in an estimated variance of the difference in HT estimators that was 68% too large and 57% to 59% too large for the variance of the difference in the PS estimators. While estimating the N_{h_2} did not lead to much different covariance estimates for these national-level variables, the HT estimates had higher decreases in the variance of the difference due to the estimated covariances for all variables except net capital gain (less loss), where the percentages were close. We also calculated the t-statistics to test whether the population differences were zero. While the t-statistics had different values depending on which variance estimator was used, all were highly significant, and were thus omitted.

Table 6. Ratios of Variances of Differences when Ignoring the Covariance to Variances When Estimating It

<table>
<thead>
<tr>
<th>Variable</th>
<th>HT Difference</th>
<th>PS Difference (Using Estimated \hat{N}_{h_2})</th>
<th>PS Difference (Using Known N_{h_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted Gross Income</td>
<td>1.682</td>
<td>1.574</td>
<td>1.595</td>
</tr>
<tr>
<td>Taxable Income</td>
<td>1.660</td>
<td>1.636</td>
<td>1.662</td>
</tr>
<tr>
<td>Total Income Tax</td>
<td>1.648</td>
<td>1.844</td>
<td>1.885</td>
</tr>
<tr>
<td>Business or profession net income (less loss)</td>
<td>1.537</td>
<td>2.145</td>
<td>2.248</td>
</tr>
<tr>
<td>Alternative minimum tax</td>
<td>1.242</td>
<td>1.456</td>
<td>1.466</td>
</tr>
<tr>
<td>Net capital gain (less loss)</td>
<td>1.099</td>
<td>1.403</td>
<td>1.433</td>
</tr>
<tr>
<td>Charitable contributions</td>
<td>1.546</td>
<td>2.352</td>
<td>2.512</td>
</tr>
<tr>
<td>Charitable contributions other than cash</td>
<td>1.077</td>
<td>1.158</td>
<td>1.169</td>
</tr>
</tbody>
</table>

8. Conclusions

The large overlap of units between SOI’s 2004 and 2005 Individual tax return samples resulted in a large covariance term in both the conditional and unconditional variances. In comparing the (5.3) and (5.4) estimates, using the unconditional (5.3) formulas produced larger estimates for the separate year variances. This is due to the unconditional formulas incorporating the extra variability due to random sample sizes. The most interesting result was that these variances are much larger than the associated PS estimates of the single year totals, despite the fact the HT and PS point estimates of totals are almost identical. The SOI data support expression (4.7), that is, the mean of the variable of interest affects the size of the variance estimate. Since valid inferences are obtained using the conditional variance estimates, in summary, the best estimation strategy is using expression (5.4) to estimate the variance of the difference in PS estimators with the known N_{h_1}, N_{h_2}, and N_{h_2} counts.

Despite large computing resources needed to match the two year’s population files, it was not difficult to compute the estimates once the n_{h_1}, N_{h_2}, and c_{h_2} quantities were produced. Notably, after the two population files were merged, only the N_{h_2} counts were needed. A more complicated estimator of between-year change, such as a relative change in the two years’ estimated totals, would require a more sophisticated approach (such as the Taylor series approximation used in Berger 2004 and Nordberg 2000). Our estimators would also need to be slightly modified for domain estimation. Such extensions are future consideration topics.

9. References

Cooney, S. (2008), Personal communication.

