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Abstract 
In the literature, methods for creating strata, identifying take-all units and allocating samples generally seek to 

minimize the variance under a fixed cost or to minimize the costs under a fixed variance in estimating a total. For a 

complex statistic that corresponds to a smooth function of total, such as a ratio or a regression coefficient, a sample 

design based on the total of one of the variables involved in the statistic is not necessarily optimal. We propose using a 

Taylor linearization to build an auxiliary variable to identify take-all units, generate strata and allocate the sample. 

Then, we use the usual stratification and allocation methods to minimize the variance of the estimator or the size of the 

sample. A simulation study is used to measure the method’s efficiency. 
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1. Introduction 

 
In a survey, when we have an auxiliary variable for the whole population that correlates with our variable of interest, 

we can stratify the population in order to increase the precision of our estimator by creating homogeneous groups. 

Different allocation methods can be used to divide the sample efficiently among the strata (Cochran, 1977; Särndal et 

al, 1992; Lohr, 1999). Also, if the target population is skewed, the identification of take-all (TA) units also helps 

achieve a much greater precision for a given sample size (Lavallée and Hidiroglou, 1988). 

 

However, the methods described are generally applied to the estimation of a total ∑= U ky yt . In the case of a 

complex statistic or estimator θ  corresponding to a smooth function of totals ∑= U iky yt
i

, a common solution is to 

build a sample design aimed at optimizing one or more 
iy

t , particularly if these 
iy

t  are also among the survey variables 

of interest (on the issue of allocation in the case of several variables of interest, see Cochran, 1977 and Särndal et al, 

1992). However, this sample design may not be optimal for θ . 

 

We propose a method based on the Taylor linearization of the complex statistic. The statistic is first linearized and the 

usual stratification and allocation methods are then applied. We will measure the method’s efficiency through a 

simulation study. We will present an example of the application on Statistics Canada’s Survey of Employment, Payrolls 

and Hours (Grondin et al., 2005). 

 

2. Proposed Methodology 

 
To calculate the linearized variable of a complex statistic corresponding to a smooth function of totals, we propose to 

use the Demnati-Rao (2004) method. 

 

2.1 Demnati-Rao linearization method 
Taylor linearization is a method that is regularly used to estimate variance (for an overview, see Woodruff, 1971; 

Binder, 1996; Demnati and Rao, 2004). Among the different methods of linearization, the one proposed by Demnati 

and Rao is of particular interest: in addition to having the properties sought to estimate variance (approximate 
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unbiasedness for the model variance of the estimator under a hypothetical model and validity under a conditional 

repeated sampling framework), this is a simple application method involving the derivation of a linearized variable kz  

for all of the k units belonging to s and estimated based on the sample produced. To show this linearization method, we 

take a function )(bf  where b  is a column vector N of weights. This means a size N population U and its parameters of 

interest ))(( Uf d=θ , where )(Ud  is the dimension N unit vector. The expansion estimator becomes ))((ˆ sf d=θ  

where )(sd  is the dimension N vector containing the survey weights (for the sampled units) and 0s for the others. The 

linearized variable kz
~  of parameter θ  is given by 

)(

~
Ukk bfz

db=
∂∂= . In a case where only data from sample s are 

available, we instead use kz  for the linearized variable of estimator θ̂ , which is obtained through 
)(skk bfz

db=
∂∂= . 

In the issue at hand, because we have the values for our auxiliary variable for the entire U universe, we will use kz
~ . 

 

2.2 Example 
We illustrate the problem of stratification and allocation through an example aimed at estimating a ratio. The parameter 

of interest is xyxy ttR =/ , where ∑= U kkx xUdt )(  and ∑= U kky yUdt )(  and the expansion estimator is given by 

xyxy ttR ˆˆˆ
/ = , where ∑= U kkx xsdt )(ˆ  and ∑= U kky ysdt )(ˆ . Under Demnati-Rao linearization, the linearized 

variable Rkz~  for our parameter of interest is given by: 

 

( )kxyk
xUk

xy

Rk xRy
tb

R
z /

)(

/ 1~ −=
∂

∂
=

=db

 (1) 

 

This linearized variable will serve as an auxiliary variable to estimate xyR / . By dividing the population into 

homogeneous groups with Rkz~  and identifying extreme values as being TA units by using common stratification and 

allocation methods, we can define a sample design that will increase the precision of the xyxy ttR ˆˆˆ
/ = estimator. 

 

3. Simulation Study 

 
To measure the efficiency of using the linearized variable to stratify a population and allocate a sample, we performed a 

Monte Carlo (MC) simulation study. 

 

3.1 Description of the hypotheses 
We started by generating a population of 1,000 units based on hypotheses built on observations of the real data from a 

survey (presented in point 4). 

 

kkk

k

k

rxy

unitsofNN

unitsofN
r

x

=







+
→
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We chose the Γ  function for kx  to generate a skewed distribution with a few very large units, while the addition of a 

unit was used to avoid values too close to 0. In addition, we decided to generate values of kr  based on a normal 

distribution centred at 6,000, while 20% of the units received normal additional noise at zero expectation to create a 

pool of outlier units. Figure 1 presents the population thus generated. Once the population was created, we 

independently selected 1,000 size 50 simple random samples ( 1000,...,1=i ) for each of the different stratification and 

allocation scenarios presented below. 
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Figure 1: Simulated Population (1,000 units) 
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Once all the samples were selected, for each θ̂  estimator, we calculated the 1,000 MC iθ̂  estimates. We used the 

Monte Carlo coefficient of variation ( MCCV ) as a measure of goodness, calculated as follows: 

 
2/1

1000

1

2

1000

)1000/ˆˆ(1
)ˆ(













 Σ−
= ∑

=i

iiMC
CV

θθ
θ

θ  

 

Given that the estimators studied are all unbiased, we have a property whereby the MCCV  measures the square root of 

the relative mean square error. 

 

3.2 Parameters of interest, estimators and linearized variables  
We looked at four parameters and their estimators, that is to say two simple statistics (totals xt  and yt  of variables kx  

and ky ) and two complex statistics ( xyR /  ratio of the kx  and ky  variables and their coefficient of correlation 

yxRSQ , ). 

 

Table 2: Parameters of Interest and Estimators for the Simulation Study 

Names Parameter Estimator 

Total X ∑= U kkx xUdt )(  ∑= U kkx xsdt )(ˆ  

Total Y ∑= U kky yUdt )(  ∑= U kky ysdt )(ˆ  

Y/X Ratio xyxy ttR =/  
xyxy ttR ˆˆˆ

/ =  

Coefficient 

of correlation 

between X and Y 

( )
( )( )22

2

,
22 yyxx

yxxy

yx
tNttNt

ttNt
RSQ

−−

−
=  

( )
( )( )22

2

,
ˆˆˆˆˆˆ

ˆˆˆˆ
ˆ

22 yyxx

yxxy

yx
ttNttN

tttN
QSR

−−

−
=  

where ∑= U kkkxy yxUdt )( , ∑= U kkkxy yxsdt )(ˆ , ∑= U kky
yUdt 2)(2  , ∑= U kky

ysdt 2)(ˆ
2  

∑= U k UdN )(  and ∑= U k sdN )(ˆ  

 

For simple estimators of totals, the linearized variables ktx
z~  and kt y

z~  are simply kx  and ky , respectively. For the ratio 

estimator, the linearized variable Rkz~  is given by (1). In the case of the estimator for the coefficient of correlation, we 

get: 
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Table 3 provides the correlations among the four linearized variables as observed in the population created for the 

simulation. It is evident that kx  and ky  are strongly correlated. 

 
Table 3: Correlations Among the Four Linearized Variables in the Simulated Population 

 kx  ky  Rkz~  RSQkz~  

kx  1.000 0.990 -0.031 0.020 

ky  0.990 1.000 0.108 0.076 

Rkz~  -0.031 0.108 1.000 0.400 

RSQkz~  0.020 0.076 0.400 1.000 

 

3.3 First study: Identifying the take-all units 
The first study aims at measuring the efficiency of the linearized variables in identifying the TA units based on the 

estimator. We started by grouping the 1,000 population units according to a linearized variable. We identified the j 

( 49,...,0=j ) largest values as being the j TA units, and the other 1,000 – j units were assigned to a take-some (TS) 

stratum. The size n = 50 sample was allocated based on jnTA =  and jnTS −= 50 . For every linearized variable kx , 

ky , |~| Rkz  and |~| RSQkz  (the absolute values are to account for their symmetrical distributions), we produced 50 

stratification scenarios ( 49,...,0=j ). The charts in Figure 4 show the MC
jCV  of the different estimators based on j for 

every linearized variable. They show that the linearized variables kx , ky , Rkz~  and RSQkz~  respectively generate the 

best MCCV  for the xt̂ , yt̂ , xyR /
ˆ and yxQSR ,

ˆ  estimators. However, because the kx  and ky  variables are strongly 

correlated, we note that they generally produce similar results when used as auxiliary variables. 

 

Figure 4: Monte Carlo Coefficient of Variation for Estimators of xt̂ , yt̂ , xyR /
ˆ and yxQSR ,

ˆ  

by the Number of Take-all Units for Different Linearized Variables  
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3.4 Second study: Stratifying the population and allocating the sample 
The second study aims at measuring the efficiency of the linearized variables in stratifying the population and 

allocating the sample based on the estimator. We started by grouping the 1,000 population units according to a 

linearized variable to create up to three homogeneous strata. For the stratification, we analyzed the four linearized 

variables kx , ky , Rkz~  and RSQkz~ . We then allocated the sample of n = 50 units according to the Neyman method 

(Särndal et al, 1992) based on the 2
hS  variance of a linearized variable. We also used (independently of the 

stratification) the four linearized variables kx , ky , Rkz~  and RSQkz~  for the allocation, with the following variances: 
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Given that ∑= h
xhx tt  and ∑= h

yhy tt , the Neyman allocation under kx  or ky  yields: 

 

332211

50

TSTSTSTSTSTS

hh
h

SNSNSN

SN
n

++
=  

 

Given that ∑−=
h

hxyxhx RttR ,/
1 , the Neyman allocation under Rkz~  yields: 

 

3~332~221~11

~50

TSzxTSTSTSzxTSTSTSzxTSTS

hzxhh

h

RRR

R

StNStNStN

StN
n

++
=  

 

However, given that yxRSQ ,  is not a linear combination of correlations at the stratum level, the Neyman allocation 

under RSQkz~  cannot be accurately derived. We built an ad hoc allocation similar to the Neyman allocation under Rkz~ : 
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3~332~221~11

~50

TSzxTSTSTSzxTSTSTSzxTSTS

hzxhh

h

RSQRSQRSQ

RSQ

StNStNStN

StN
n

++
=  

 

For each of the 16 stratification and allocation combinations (four each), we introduced two mobile boundaries, a and 

b, to divide the population into three strata (including up to two empty strata), as illustrated in figure 5. 

 

Figure 5: Illustration of the Population Stratification  
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Mobile boundaries a and b ( ba < ) were placed so that the size of the strata 1TSN , 2TSN  and 3TSN  would be multiples 

of 10 (including 0), thereby generating 4,950 groups of strata (numbered 4950,...,1=j ). For each of these 16 

combinations, we obtained 4,950 MC
jCV  and kept scenario j, with the smallest MCCV  to empirically identify the 

optimal pair of stratification boundaries. Table 6 shows for each of the 16 combinations of stratification and allocation 

variables the minimum value of the MCCV . 

 

Table 6: Monte Carlo Coefficients of Variation According to the 

Population Stratification and Sample Allocation Scenarios 

Minimum CV Value Estimated Using the 

Monte Carlo Method Stratification 

Variable 

Allocation 

Variable 
xt̂  yt̂  xyR /

ˆ  yxQSR ,
ˆ  

kx  5.87 5.99 1.72 1.07 

ky  5.99 6.15 1.70 1.07 

Rkz~  6.19 6.30 1.69 0.84 
kx  

RSQkz~  13.42 13.60 2.06 0.99 

kx  6.11 5.79 1.89 1.17 

ky  6.04 5.83 1.91 1.15 

Rkz~  6.41 6.26 1.83 1.03 
ky  

RSQkz~  16.70 16.84 2.47 1.70 

kx  14.72 14.81 1.58 1.41 

ky  14.53 14.67 1.60 1.43 

Rkz~  20.34 20.22 1.08 0.89 
Rkz~  

RSQkz~  21.76 21.77 1.37 0.86 

kx  10.39 10.48 1.65 0.96 

ky  10.15 10.26 1.68 0.98 

Rkz~  11.40 11.54 1.26 0.56 
RSQkz~  

RSQkz~  17.33 17.56 1.46 0.34 

 

The results show that the linearized variable of an estimator helps stratify the population and allocate the sample in a 

way that reduces this estimator’s MCCV . 
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4. Application to a survey 

 
Statistics Canada’s Survey of Employment, Payrolls and Hours (SEPH) is a monthly survey that uses two sources of 

data: a census of administrative data and an establishment survey. The purpose of the SEPH is to produce estimates of 

levels and trends for employment, earnings, hours and other related variables, by province and industry. One of the 

SEPH’s key variables of interest is average weekly earnings. For the domain of interest d, if kx  and ky  represent the 

number of employees and their total weekly earnings, respectively, for establishment k, the ratio of average weekly 

earnings is defined as: 

 

∑∑=
dd U kU kd xyR  

 

This variable of interest is strongly correlated with an auxiliary variable, monthly earnings, which is available from the 

payroll deductions administrative file prepared by the Canada Revenue Agency. If ky′  represents the total monthly 

earnings of employees in establishment k, the ratio of average monthly earnings is defined as follows: 

 

∑∑ ′=′
dd U kU kd xyR  

 

For the redesign of the SEPH, which is to be implemented by 2009, we used a combination of auxiliary variables to 

make the sample design as efficient as possible, while at the same time remaining robust for the survey’s different 

variables of interest. 

 

Table 7: Identifying Take-all Units, Stratifying the Population and 

Allocating the Sample in the Redesigned SEPH 

Steps Strategies 

Identifying TA units 

. Units representing at least 25% of the relative share of the total of kx  or 

ky′  in their domain of interest 

. Units with an extreme value of kRz ′
~  in their stratum and with a 

significant impact on the size of the sample needed to meet a target CV for 

dR′  at the level of their domain of interest 

Stratifying the 

population 

. Initial division of the population by domain of interest (industrial and 

geographic groupings) 

. Addition of subdivisions by industry and/or size kx  with a significant 

impact on the size of sample required to meet a target CV for dR′  at the 

level of their domain of interest 

Allocating the 

sample 

. Neyman allocation algorithm based on the variance of kRz ′
~  

. Minimum size per stratum of 12 units up to a maximum of 40% of the 

population 

 

We decided to use the kx  variable, associated with the size variable for the survey units, to identify the major TA units 

and for the stratification because it is very stable and is somewhat correlated with most of the survey’s variables of 

interest. We felt that the use of a derived variable, kRz ′
~ , in the stratification was not appropriate because this variable is 

less stable, not well correlated with the other variables of interest, and rather difficult to present to all survey users. 

However, in order to make the strata more homogeneous for dR′ , we removed the extreme values of kRz ′
~  if the net 

impact was to reduce the total sample size (stratum to TS and units to TA) for a fixed CV. The sample was allocated 

according to the Neyman algorithm in order to minimize the size of the sample to produce a target CV for dR′ . Finally, 

we set a minimum size of units per stratum to meet operational constraints. One of the impacts of this minimum size is 

to ensure good CVs for the other variables of interest in the survey. 
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5. Conclusion 

 
In the case of a complex statistic or estimator, we proposed linearizing the estimator using the Demnati-Rao method to 

build an auxiliary variable to identify the take-all units, stratify the population and allocate the sample. We used a 

simulation to show that this is a truly efficient method. Moreover, it is consistent with Taylor’s method of estimating 

variance through linearization. However, this method requires a derivable (or smooth) statistic (or estimator). Also, the 

current stratification and allocation algorithms may require certain adjustments when they are applied to a linearized 

variable because it generally has a distribution that is symmetrical with extreme values at the two extremities. Finally, 

we believe that the use of a derived variable in some steps of the sample design can raise concerns on the part of data 

users. 

 

Naturally, the simulated population was created to reduce the correlation among the linearized variables, highlighting 

the method’s benefits. In conclusion, if the complex statistic θ  corresponding to a smooth function of totals 

∑= U iky yt
i

correlates with one of the iky , building an optimal sample design for 
iy

t  could suit θ̂ . But if not, using 

the linearized variable kz
~  as an auxiliary variable in the sample design would help increase the precision of the 

estimator θ̂ . 
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