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Abstract

A key difficulty in drawing inference of school effect from
student test score gains is the fact that test scores are
noisy measurements of students’ academic achievements.
In this paper we examine competing inferential methods
of dynamic panel data models using noisy data. In par-
ticular, we consider a score-level model where the score of
the current period depends on the score of the previous
period. We compare Monte Carlo simulation results of
estimators of this model and estimates using the student
test score data of Missouri.
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1. Primary Subhead

In recent years, voluminous research has been conducted
to estimate the ”value-added” by school teachers, based
on the gains in student scores in standard tests. The
ultimate goal of this line of inquiry is to help administra-
tors evaluate teachers and schools, redirect resources, and
create incentive schemes to improve the K-12 education.
It is widely acknowledged (e.g., McCaffrey, et. al. 2003
monograph) that the current literature is still limited and
the scholarly research is not reliable enough for high stake
public policy making. A key difficulty in drawing infer-
ence of teacher effect from student test score gains is the
fact that test scores are noisy measurements of students’
academic achievements. The design of the tests, the ran-
domness in student’s performance on the day of the test,
etc. Kane and Staiger (2002a) estimate that forty per-
cent of the variations in test scores are noise. Chay et al.
(2005) show that ignoring the noise in data can result in
substantial bias in teacher evaluations.

In practice, the number of observations on each stu-
dent is too small to justify the use of large sample (T )
theory. The finite sample inference of such models is far
from trivial. In the absence of measurement errors, it is
well known that the serial correlation in the dependent
variable (test score) induces finite sample bias of OLS in
the autoregressive model(see e.g., MacKinnon and Smith
1998). For fixed effect dynamic panel data models, the
OLS is inconsistent as the number of student goes to in-
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finity (see, e.g., Nickell 1981 and surveys by Chamberlain
1984 and Arellano 2003). The measurement errors in
the level of test scores further complicate the inferential
problem. The measurement errors in the level render a
spurious negative serial correlation in score gains and in-
consistency of OLS of the regression using observed test
scores (for large T ). Finite sample properties of dynamic
panel simulated with the focus on near unit root cases
(e.g., Kiviet 1995 and Phillips and Sul 2003) show that
the bias can be significant.

In this paper we examine competing inferential meth-
ods of dynamic panel data models using noisy data. In
particular, we consider a score-level model where the
score of the current period depends on the score of the
previous period, and a score-gain model where the score
gain of the current period depends on the score gain of the
previous period. We compare Monte Carlo simulation re-
sults of four estimators of these models. As a benchmark,
we first consider the OLS and GLS of pooled regression or
fixed effects regression, ignoring the measurement errors.

We then consider Generalized Method of Moments
(GMM) estimator of fixed effects dynamic panel model
with measurement errors. Without making distributional
assumptions on the model, the basic approach to mea-
surement errors is through instrumental variables (see
Altonji and Siow (1987) and Dynan (2000) for such ap-
proach to noisy data in income and consumption expendi-
ture). The parameters of interest are estimated through
two stage least squares or (GMM), where both depend on
the instruments employed. There are several difficulties
with the instrumental variables approach. First, in the
regression with the lags of test score, the period t equa-
tion involves measurement errors of dependent in period
t − 1, and the instruments need to be twice lagged. For
relatively short panels, using lagged variables to serve
as instruments exacerbates the shortage of data. Second,
instruments are often weak and lead to inefficient estima-
tion. Third, the finite sample distributions of estimators
are not analytical.

If the distribution of the error is Gaussian, then Maxi-
mum Likelihood Estimation (MLE) based on the Kalman
filter will produce more efficient estimates than instru-
mental variables methods. The third approach to score
model is writing it a state space model. Kane and Staiger
(2001) discussed the motivation for filtering out the noise
in test score and show the approach improves forecast-
ing performance. They used Kalman filter to evaluate
the likelihood and estimated the model using MLE. The
Kalman filter approach to the state space model has sev-
eral drawbacks. The resultant likelihood is complicated,
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which does not permit analytical finite sample inference.
In addition, although a researcher can either assume the
variance of measurement errors or estimate it, there is no
flexibility to model the uncertainty about it.

The last approach we consider is a Bayesian approach,
which has several advantages. (i) It is often the case that
the researcher has some information on the nature of mea-
surement error. Such information can be incorporated in
the prior and improves the precision of the estimates. (ii)
The fundamental difference between the Bayesian infer-
ence and the frequentist inference discussed above is that
the latter is conditional on the true parameters and the
former is conditional on the sample observed. The pres-
ence of the lagged dependent variable in regressors makes
the finite sample frequentist inference difficult. Because
the Bayesian inference is conditioning on the finite sam-
ple of data, the posterior of the regression coefficients
is no more complicated than that of the simple regres-
sion model. In the Bayesian framework the measurement
errors can be viewed as nuisance parameters and easily
integrated out from the joint posterior. The joint pos-
terior of the thousands of parameters in this study can
be derived from the likelihood and prior but the marginal
posterior of each parameter is drawn numerically through
Monte Carlo simulations. If the marginal posteriors are
not standard, we can draw conditional posteriors of pa-
rameters (fixing the data and the rest of the parameters)
from standard distributions, the Markov Chain will con-
verge to the joint posterior, and the marginal distribu-
tions of a parameter of interest follows from averaging
out other parameters. (iii) Unlike the OLS or GMM esti-
mation that take the first difference in data, the Bayesian
inference makes use of the whole data set. The difference
in data utilization is important if the sample period is
short, as is the case for most applications concerning stu-
dent test scores. (iv) A key computational advantage
of the Bayesian simulation over the state space model
with Kalman filter is that no nonlinear optimization is
involved here. It is known that nonlinear optimization
over a large number of parameters for MLE can result
in local optimum and produce unstable estimates with
a minor change in instruments or starting value of the
optimization algorithm.

To compare the finite sample performance of these es-
timators, we generate 1000 sets of data from dynamic
panel of short panels with T = 5 and different sample
sizes N . We compare several types of OLS, GMM, as
well as Bayesian estimates and find the Bayesian esti-
mates show smaller bias and mean squared errors than
the OLS and GMM estimates.

We also compare estimates discussed above using the
student test score data of St Louis school district. We find
substantial difference in estimated school effects under
competing estimators. The disparity in the estimates is
not surprising given the differences in estimates we report
in the numerical examples. We conclude that it is useful
for researchers to check robustness of estimates of value-
added models to the estimation method when using data

of noisy short panels.

2. Estimators of Dynamic Panels with
Measurement Errors

We consider two types of models on value-added. The
number of observations in the panels are: N students
with T observations in score level. Let Sit be the score of
unit i in period t, (t = ti, ti + 1, · · · , Ti) subject to mea-
surement error τit, τit ∼ N(0, κ2). The observed score
is:

S∗i,t = Si,t + τi,t. (1)

First, true period t+1 score depends on period t score
and covariants. We start with the framework that the
gain score of unit i is

Si,t = φSi,t−1 + µi + XXX′i,tθθθ + εi,t, (2)

or εi,t ∼ N(0, σ2
i ). Here XXXi,t is a p-vector of control vari-

ables, including student dermatographies, teacher effect,
school effect; εi,t is a normal error with variance σ2

i . µi

is the student i fixed effect. Substituting (1) to (2), we
have a regression model on observed variables

S∗i,t = φS∗i,t−1 + µi + XXX′i,tθθθ + ξi,t, (3)

where ξi,t = εi,t − φτi,t−1 + τi,t.
Denote ni = Ti − ti,

S∗i =




S∗i,ti

S∗i,ti+1

...
S∗i,Ti


 , µµµ =




µ1

µ2

...
µN


 ,

WWWi =




S∗i,ti−1 Xi,ti

S∗i,ti
Xi,ti+1

...
...

S∗i,Ti−1 Xi,Ti


 , iiij =




1
1
...
1




j×1

,

DDD =




iiin1 0 · · · 0
0 iiin2 0 0
0 · · · · · · 0
0 · · · 0 iiinN


 , ξξξi =




ξi,ti

ξi,t+1i

...
ξi,Ti


 .

Stacking up the student-level data, we denote

SSS∗ =




SSS1
...

SSSN


 , WWW =




WWW1
...

WWWN


 , βββ = (φ, θθθ), ξξξ =




ξξξ1
...

ξξξN


 .

2.1 Ordinary Least Square Estimator

The OLS or GLS estimates of dynamic panel data model
(3) with measurement errors are inconsistent, because the
error term of period t, ξi,t = εi,t − φτi,t−1 + τi,t, is corre-
lated with the regressor S∗i,t−1. The extent of the incon-
sistency depends on the data-generating parameters. We
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will explore this quantitatively through numerical simu-
lations.

We can rewrite the regression (3) in matrix form

SSS∗ = DDDµµµ + WWWβββ + ξξξ. (4)

Because the number of students is much larger than the
number of schools, instead of estimating the above model
with student fixed effect dummy, we can either estimate
the partitioned regression (which is equivalent to subtract
the score by the student-average) or take the first differ-
ence of the score. The latter creates serial correlation in
the error and requires at least three observations from
each student while the former requires at least two.

Taking the first difference in (3) to eliminate the stu-
dent fixed effect, we have

S∗i,t − S∗i,t−1 = φ(S∗i,t−1 − S∗i,t−2) + (XXX′i,t −XXX′i,t−1)θθθ
+ξi,t − ξi,t−1,

Denote

∆SSS∗i =




S∗i,ti+1 − S∗i,ti

S∗i,ti+2 − S∗i,ti+1
...

S∗i,Ti
− S∗i,Ti−1




(ni−1)×1

,

∆WWWi =




S∗i,ti
− S∗i,ti−1 X ′

i,ti
−X ′

i,ti−1

S∗i,ti+1 − S∗i,ti
X ′

i,ti+1 −X ′
i,ti

...
...

S∗i,Ti−1 − S∗i,Ti−2 X ′
i,Ti

−X ′
i,Ti−1


 ,

∆ξξξi =




ξi,ti − ξi,ti−1

ξi,t+1i
− ξi,ti

...
ξi,Ti − ξi,Ti−1




(ni−1)×1

.

The matrix form regression on the first difference is

∆SSS∗ = (∆WWW)βββ + ∆ξξξ. (5)

The OLS estimator is given by

β̂ββ1 = [(∆WWW)′(∆WWW)]−1(∆WWW)′(∆SSS∗). (6)

The OLS estimator of the first-differenced data is in-
consistent because the error is correlated with the regres-
sor for two reasons, the correlation between measurement
error in ξi,t and S∗i,t−1 mentioned earlier and the corre-
lation between ∆ξi,t and regressor ∆S∗i,t induced by the
first difference.

OLS estimate with student-fixed effect can be ex-
pressed as

β̂ββ2 = (WWW′MMMWWW)−1WWW′MMMSSS∗. (7)

where

MMM = III−DDD(DDD′DDD)−1DDD′

=




IIIn1 −
iiin1 iii

′
n1

n1
0 · · · 0

0 IIIn2 −
iiin2 iii

′
n2

n2
0 0

0 · · · · · · 0
0 · · · 0 IIInN

− iiinN
iii′nN

nN


 ,

This OLS estimator is inconsistent as the number of
student N goes to infinity as shown by Nickell (1982).
The presence of measurement errors makes the estimator
inconsistent with respect to N and time period T .

2.2 GMM Estimator

Note that ξi,t − ξi,t−1 is correlated with S∗i,t−2. Valid
instruments of the lags of S∗i,t must be S∗i,t−j with j =
3, · · · , t − 3. As in Arellano and Bond(1991), we apply
instrument Zi,t, the moment condition is

EEE[Zi,t(ξi,t − ξi,t−1)] = 0, (8)

for i = 1, · · · , N and t = ti + 3, · · · , Ti. The moment
conditions can be written in a matrix form

EEE[ZZZ′i(∆ξi)] = 0.

ZZZj is the jth of ni − 2 rows, (S∗i,ti
, · · · , S∗i,ti+j−1) (j =

1, .., Ti − ti − 2). Stacking up the instruments we have a
matrix ZZZ. With a weighting matrix HHH, the GMM estima-
tor βββ minimizes

(
1
N

∑

i

ZZZi∆ξ′i)HHH(
1
N

∑

i

ZZZ′i∆ξi).

The estimator is given by

β̂ββGMM1

= [
n∑

i=1

(∆WWW′
i)ZZZiHHHZZZ′i(∆WWWi)]−1[

n∑

i=1

(∆WWW′
i)ZZZiHHHZZZ′i(∆SSS∗i )].

The weighting matrix that minimizes the asymptotic
variance of the estimator is

ĤHH = [(1/N)
N∑

i=1

ZZZ′i ̂(∆ξi) ̂(∆ξi)
′
ZZZi]−1, (9)

where ∆̂ξi is the first difference of the residuals given a
consistent estimator β̂ββ. In a widely-used two step proce-
dure of estimation, we first set HHH as the identity matrix
and derive the first-step β̂ββGMM1 from (9). Then we plug
β̂ββGMM1 into (9) to calculate the optimal weighting ma-
trix HHH and plug the new weighting matrix in (9) to derive
the second-step GMM estimate of βββ.

An alternative to first differencing GMM estimator is
given by Arellano and Bover (1995) based on forward
orthogonal deviations. Denote the number of observation
of each unit by n. The estimator is obtained by pre-
multiplying the matrix form regression (3) by

AAA = diag[
n− 1

n
, · · · , 1

2
]
1
2

×




1 − 1
n−1 − 1

n−1 · · · − 1
n−1 − 1

n−1 − 1
n−10 1 − 1

n−2 · · · − 1
n−2 − 1

n−2 − 1
n−2· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · 1 − 1
2 − 1

20 0 0 · · · 0 1 −1




for i = 1, · · · , N
AAASSS∗i = AAADDDµµµi + AAAWWWiβββ + AAAξξξi. (10)
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By construction, elements of each row of AAA add to zero,
hence the fixed effects are eliminated and we have

AAASSS∗i = AAAWWWiβββ + AAAξξξi. (11)

AAAξξξi is a vector of weighted errors, the tth element of
which only depends on the errors of tth period and on-
ward. The moment condition takes the form

EEE(ZZZ′iAAAξξξi) = EEE[ZZZ′iAAA(SSS∗i −WWWiβββ)] = 0.

The GMM estimator is

β̂ββGMM2 = [
N∑

i=1

(WWW′
iAAA

′ZZZi)HHH(ZZZ′iAAAWWWi)]−1

×[
N∑

i=1

(WWW′
iAAA

′ZZZi)HHH(ZZZ′iAAASSS∗i )],

where the weighting matrix HHH is chosen in two steps. The
one-step choice for HHH is

HHH =
{ N∑

i=1

ZZZ′iAAAAAA′ZZZi

}−1

.

A two-step choice is

HHH =
{ N∑

i=1

ZZZ′iAAAξ̂ξξiξ̂ξξ
′
iAAA

′ZZZi

}−1

,

where ξ̂ξξi is the step-one residual.

2.3 Bayesian Model

An advantage of the state-space and the following
Bayesian approach is that all observations are utilized.
Denote the observed data as the true data plus a noise τ :

S∗it = Sit + τit,

where τit ∼ N(0, κ2). Our prior for κ2 is IG(pκ, vκ).
Denote

τττ i =




τi,ti−1
τi,ti...
τi,Ti


 . (12)

We assume

τττ i = SSS∗i − SSSi ∼ N(0, κ2IIIni+1).

Define ρ′it = (µi + XXX′itθθθ). We rewrite model (2) as

BiSi − ρi ∼ N(0, σ2
i IIIni

),

with

BBBi =

( −φ 1 0 0 0 0 0
0 −φ 1 0 0 0 0
0 0 0 .. .. .. 0
0 0 .. 0 0 −φ 1

)

(ni)×(ni+1)

,

ρρρi =




ρi,ti

...
ρi,Ti




The posterior is

π(βββ, κ, µi, σσσi,SSSi(i = 1, · · · , N) | DDD)

∝ κ−2(pκ+1) exp(−vκ

κ2
)

exp

{
−1

2
(βββ − β̄ββ)′ΩΩΩ−1(βββ − β̄ββ)

}

×
N∏

i=1

[
σ
−2(pσ+1)
i exp(− v0

σ2
i

)(σ2
i )
−ni

2 exp

{
− (µi−µ̄i)

2

2σ2
µ

}

exp

{
− (SSS∗i − SSSi)′(SSS∗i − SSSi)

2κ2

}

× exp
{
− (BBBiSSSi − ρρρi)′(BBBiSSSi − ρρρi)

2σ2
i

}]
.

It follows that the conditional posterior of the true data
is

SSSi ∼ N(ŜSSi,QQQi), (13)

where QQQi = (κ−2III + BBB′iBBBiσ
−2
i )−1, ŜSSi = QQQi(κ−2SSSi

∗ +
BBB′iρρρiσ

−2
i ).

Denote hit = Sit − φSit−1 − XXX′itθθθ. The posterior for
student fixed effects is given by

π(µi | βββ, σi,DDD) ∝ exp

{
−

Ti∑
t=ti

(hit − µi)2

2σi
2

}
exp

{
− (µi − µ̄i)2

2σ2
µ

}

∝ N([σ−2
µ + σi

−2(ni + 1)]−1[σ−2
µ µ̄i + σi

−2
Ti∑

t=ti

hit],

[σ−2
µ + σi

−2(ni + 1)]−1). (14)

The posterior of the slope coefficients of the regression
is

π(βββ | µµµ, σ,DDD) ∝ exp

{
−1

2
(βββ − β̄ββ)′ΩΩΩ−1(βββ − β̄ββ)

}

exp

{
−

N∑

i=1

Ti∑
t=ti

(Sit − µi −W ′
itβββ)2

2σi
2

}

∝ N([ΩΩΩ−1 +
N∑

i=1

Ti∑
t=ti

σi
−2W ′

itWit]−1[ΩΩΩ−1β̄ββ

+
N∑

i=1

Ti∑
t=ti

σi
−2W ′

it(Sit − µi)], [ΩΩΩ−1 +
N∑

i=1

Ti∑
t=ti

σi
−2W ′

itWit]−1).

(15)

The conditional posterior of the noise variance is

κ2 | SSS∗i ,SSSi; (i = 1, · · · , N) ∼ IG(pκ +
N∑

i=1

ni + 1
2

,

vκ +
N∑

i=1

(SSS∗i − SSSi)′(SSS∗i − SSSi)
2

). (16)

The conditional posterior of the regression error variance
is

π(σ2
i | β, µi, θθθ, SSSi,DDD) ∝ (σ2

i )−(pσ+1)
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exp(− v0

σ2
i

)(σ2
i )−(ni)exp

{
− (BBBiSi − ρρρi)′(BBBiSi − ρρρi)

2σ2
i

}

∝ IG(pσ +
ni

2
, vσ +

(BBBiSi − ρρρi)′(BBBiSi − ρρρi)
2

), (17)

The conditional posteriors suggests a Gibbs
sampling MCMC algorithm: In cycle k, with
(ccc(k−1)

i , βββ
(k−1)
i , θθθ(k−1), σ

(k−1)
i , κκκ(k−1)) drawn already,

(1) Draw (SSS(k)
i | σ

(k−1)
i , βββ(k−1), µi,DDD) (i = 1, · · · , N))

from the normal distribution (13).
(2) Draw µi

(k)|SSS(k)
i , βββ(k−1), σ

(k−1)
i ,DDD (i = 1, · · · , N))

from the normal distribution (14).
(3) Draw (βββ(k) | SSS(k), µµµ(k), σ(k−1),DDD) from the normal

distribution (15).
(4) Draw κ2(k) | SSS(k), σ

(k−1)
i , (i = 1, · · · , N),DDD) from

(16).
(5) Draw σ2

i
(k) | SSS(k), βββ(k), µ

(k)
i (i = 1, · · · , N),DDD) from

(17).
We use the posterior mean as the estimator.

3. Numerical Simulation

We simulate 1000 samples of panel data based on param-
eters similar to the estimates from the Missouri student
test score data. Specifically, N = 1000, ti = 1, Ti = 5,
p = 1, XXXit = cos(0.1×i×t), θ = .1, µi = sin(i), κ2 = 0.2,
σ2

i = 0.1, φ = 0.9. We obtain estimates of the param-
eters using two types of OLS, two types of GMM, and
the Bayesian posterior mean. For Bayesian estimation,
we set the prior of parameters as the data generating pa-
rameters and prior variance as unity.

The following tables show that compared with the
data generating parameters φ = 0.9 all estimates show
downward bias, especially the estimates based on first-
differenced data (OLS1 and GMM1). GMM estimators
do better than OLS, for differenced data (GMM1 vs.
OLS1) or undifferenced data (GMM2 vs. OLS2). The
Bayesian estimates show smallest bias and mean squared
errors. Intuitively, the prior shrinks the Bayesian poste-
rior towards the mean, reducing the error of estimates.

To investigate the effect of sample size N on the es-
timates obtained through different methods, we increase
N from 100 to 1000, and keep the rest of the parameters
in the data generating model unchanged. We report the
average of the estimates of 1000 generated samples and
plot the estimates for these generated samples. The ta-
bles show that increasing N does not substantially affect
the bias in the estimates, but the plots show that the fre-
quency distributions become tighter compared with the
case with N = 100.

3.1 Estimates of Schools Effects Using St Louis
Data

The data set consists of 109 schools and five consecutive
years (from 2000 to 2004) of Terra Nova for math of 27000
students. We allow for student fixed effects and estimate

Table 1: Estimation Result I: t=5, N=100, x = cos(i ∗
t ∗ 0.1) and µ(i) = sin(i). Prior for µ(i) ∼ N(0, 1)

OLS1 OLS2 GMM1 GMM2 Bayes

φ .400(.042) .732(0.026) .546(.065) .705(.038) .843(.026)

θ .074(.026) .092(0.024) .080(.040) .090(.033) .098(.035)

The table reports the average of estimates for 1000 simulated
samples (with standard deviations of the estimates cross sam-
ples in the parentheses).

Table 2: Mean Squared Error(MSE) of parameters

Method OLS1 OLS2 GMM1 GMM2 Bayes

MSE of φ̂ .252 .029 .129 .040 .004

MSE of θ̂ .001 .001 .002 .001 .001

The table reports the mean squared errors of estimates for
1000 simulated samples.

Table 3: Estimation Result I: t=5, N=1000, x = cos(i ∗
t ∗ 0.1) and µ(i) = sin(i). Prior for µ(i) ∼ N(0, 1)

OLS1 OLS2 GMM1 GMM2 Bayes

φ .393(.013) .729(.008) .540(.021) .699(0.012) .843(.008)
θ .075(.008) .092(.007) .082(.013) .090(0.011) .097(.011)

The table reports the average of estimates for 1000 simulated
samples (with standard deviations of the estimates cross sam-
ples in the parentheses).

Table 4: Mean Squared Error(MSE) of parameters

Method OLS1 OLS2 GMM1 GMM2 Bayes

MSE of φ̂ .257 .029 .130 .041 .003

MSE of θ̂ .001 .000 .001 .000 .000

The table reports the mean squared errors of estimates for
1000 simulated samples.
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Figure 1: N=100. Data generating values φ = 0.9.
Black=OLS(1). Red = OLS(2). Blue= GMM(1). Or-
ange = GMM(2). Green= Bayesian estimator.
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Figure 2: N=100. Data generating values θ = 0.1.
Black=OLS(1). Red = OLS(2). Blue= GMM(1). Or-
ange = GMM(2). Green= Bayesian estimator.

school effects. We plot the estimated 108 school effects
using OLS2, GMM2, and the Bayesian posterior mean.
The plots show that the estimated school effects are quite
sensitive to the estimation method. The range of the
estimated school effects is about ten percent, and the
range is slightly tighter under for the Bayesian estimates.

4. Summary and Comments

The Monte Carlo simulation results presented in this
study shows that Bayesian estimates under plausible pri-
ors dominate OLS and GMM estimates in dynamic panel
models when data are noisy and the panels are short.
Estimated school effects using St Louis school district
data with different estimation methods substantially dif-
fer. We conclude that when estimating value-added mod-
els with noisy test scores, it is advisable to check the ro-
bustness of the estimated school effects.
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Figure 3: N=1000. Data generating values φ = 0.9.
Black=OLS(1). Red = OLS(2). Blue= GMM(1). Or-
ange = GMM(2). Green= Bayesian estimator.
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Figure 4: N=1000. Data generating values θ = 0.1.
Black=OLS(1). Red = OLS(2). Blue= GMM(1). Or-
ange = GMM(2). Green= Bayesian estimator.
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Figure 5: Estimated School Effects by OLS2 : dependent
variable = log(score), 108 Schools

REFERENCES

Altonji, Joseph G. and Aloysius Siow (1987). “Testing the Response
of Consumption to Income Changes with (Noisy) Panel Data,”
Quarterly Journal of Economics, 102, 293-328.

Arellano, Manuel (2003). Panel Data Econometrics, Oxford: Ox-
ford University Press.

Arellano M. and O. Bover (1995). “Another look at the instrumen-
tal variable estimation of error-components models,” Journal
of Econometrics, 68, 29-51.

Baltagi, Badi. H. and Ping X. Wu (1999). “Unequally Spaced
Panel Data Regressions with AR(1) Disturbance,” Econometric
Theory, 15, 814-823.

Chamberlain, Gary (1984). “Panel Data,” Handbook of Econo-

Social Statistics Section – JSM 2008

956



0 20 40 60 80 100

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

0.
06

0.
08

school i=1,2...105

sc
ho

ol
 e

ffe
ct

(G
M

M
 e

st
im

at
or

)
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