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Abstract 

The variance of a probability expansion estimator is sensitive to sample design and can be large when the design is 

subject to administrative and physical constraints.  Models and model based estimates provide a more efficient 

alternative but are dependent on models of questionable validity and sacrifice the impartiality of randomization.  

There is a third estimation technique that retains the comforting impartiality of randomization and uses this 

randomization to impose a model on the sample data under which there is a Best Linear Unbiased Estimator 

(BLUE).  Since the model is imposed by the statistician through designed randomization, model failure tends toward 

a non-issue.  Examples from actual surveys are provided where the sampling variance of the Combined Ratio 

Estimator is tens to hundreds of  times greater than that of the BLUE.    
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1.  Introduction 

Models can be imposed on sample data by randomized construction of the sample units (and universe units). This 

randomized construction is called pre-sampling.  In what follows, “pre-sampling” is used to describe the randomized 

construction of sample units and “sampling” is used to describe the selection of these randomly constructed sample 

units from the universe of all units. The models imposed by pre-sampling provide Best Linear Unbiased Estimators 

(BLUE) for all study variables, Rao (1973); their foundation is the pre-sampling design, not the potentially fickle or 

dated nature of historical sample data generally used to hypothesize models. Therefore the estimators based on pre-

sampling imposed  models retain the impartiality of randomization and the inferential power of model based BLUEs 

under models assured by the pre-sampling design.  The methodologies described here were developed to provide an 

alternative to inefficient design based estimators when design control is difficult due to physical and administrative 

constraints.    

An application of this methodology is found in two other papers, Woodruff (2006,2007).  In these papers, the 

sample and population units consist of sets whose elements are called atoms.  These sets can reasonably be 

described as simple random samples without replacement (SRSWOR) from all the atoms in the population or from a 

stratum of that population.  Each of these subunits (atoms), have data for all population study variables for which 

population totals are to be estimated.  This paper expands upon those two papers and applies the basic structure 

described in them to a multivariate framework.   

First consider the structure of universe and sample units as samples of atoms.  If 𝑦𝑖𝑘  denotes the 𝑖𝑡ℎ  study variable 

attached to the 𝑘𝑡ℎ  sample unit then 𝑦𝑖𝑘  can be written as the following sum over the atoms that comprise the 𝑘𝑡ℎ  

sample unit.   

𝑦𝑖𝑘 =  ω𝑖𝑘𝑗    
𝑛𝑘
𝑗=1 where  ω𝑖𝑘𝑗  is the study variable for the  𝑗𝑡ℎ  atom of the 𝑘𝑡ℎ  sample unit’s 𝑖𝑡ℎ  study variable and 

𝑛𝑘   is the pre-sample size of atoms in the SRSWOR from the population of atoms in the stratum being sampled (the 

stratum containing the 𝑘𝑡ℎ  unit).    

These atom totals that comprise each sample unit, 𝑦𝑖𝑘 , can be recorded without measuring or recording these study 

variables for each atom.  For example, if weight is a study variable attached to each atom, weighing the whole unit 

provides this sum.  Other measures like be pressure, volume, or radioactivity may share this property.  An example 

is found in Woodruff (2006, 2007) where containers holding mail pieces are sampled and used to measure mail 

characteristics.  A mail container is a sample unit and its mail pieces are its atoms.  The study variables are weight 

and postage to be found on each mail piece and their container sum is the unit’s study variable for weight and 

postage.   Within tightly defined categories of mail, it is entirely appropriate to think of the pieces within a container 
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as an SRSWOR from all the mail pieces within the mail category.  Another example is measurement of stream 

pollution or other water born particulate.  The quantity of particulate (atoms) in a bucket (sample unit) sampled from 

the stream is proportional to the weight of water in the bucket.   Weight or volume is the auxiliary variable that is 

recorded for the entire volume of water passing the sampling point during a time interval defining a stratum.  

In Section 2, a multivariate structure is described for deriving a population model under pre-sampling.  This 

structure allows for several auxiliary variables (study variables for which population/strata totals are known) and 

several types of atoms within each sample unit.  This structure provides greater flexibility and more appropriate 

sample expansions for different study variables, escaping the restriction of applying the same probability based 

expansion to all study variables (as with Horwitz-Thompson estimation).   Probability based expansions may be 

appropriate for some variable estimates but can be very inefficient for others, especially in large multi-purpose 

surveys.   

Section 3 describes a simulation study that compares the combined ratio estimator, Cochran (1977) with the model 

based BLUE under an inefficient stratified cluster sample design and SRSWOR pre-sampling.  Section 4 concludes 

that this study is just the tip of an iceberg and that sampling theory may profit from the extension of this work to 

more general pre-sampling designs, their models, and their BLUEs.  

In Summary, pre-sampling imposes a model on sample data that is substantially immune from model failure and 

inefficiency in the sample design.  This methodology combines the strengths of design based inference 

(randomization/impartiality) with the strengths model based inference (existence of a BLUE) while eliminating their 

respective shortcomings (inefficient sample design and potential model failure).   

2. Models Induced by Simple Random Pre-Sampling 

For the population considered here, the atoms contained within a sample unit are an SRSWOR from all atoms in the 

population or stratum of the population.   The number of universe units and their constituent atoms in the study 

population are both sufficiently large to be appropriately described as coming from a continuous density function 

(infinite population).  Finite population considerations are omitted in this development.   

The study variables attached to each population unit, k, consist of auxiliary variables and target variables and can be 

described as a vector, 𝑌𝑘 , where: 

  𝑌𝑘 =   

𝑦1𝑘
𝑦2𝑘

⋮
𝑦𝑚𝑘

 =  
𝐴𝑘
𝑇𝑘
 =  

𝜇 𝐴
𝜇 𝑇
 𝑛𝑘  +    

𝜖 𝐴𝑘
𝜖 𝑇𝑘

   and 𝑛𝑘  is the number of atoms in the 𝑘𝑡ℎ   universe (or sample) unit,  

𝐴𝑘   is the 𝑚𝐴-vector (column) of the 𝑚𝐴   auxiliary variables, the variables whose population means or totals are 

known, 𝜇 𝐴 =𝐸 𝐴𝑘  , 𝜖 𝐴𝑘  is a vector valued random variable with 𝐸 𝜖 𝐴𝑘  = zero vector, and with 𝑚𝐴 × 𝑚𝐴  

covariance matrix,  Ʃ𝐴  .     𝑇𝑘   is the 𝑚𝑇-vector  of target variables, the variables whose population means or totals 

are to be estimated,  𝑚 = 𝑚𝐴 + 𝑚𝑇  , and 𝜇 𝑇  , 𝜖 𝑇𝑘 , & Ʃ𝑇  defined analogously to 𝜇 𝐴 , 𝜖 𝐴𝑘 , & Ʃ𝐴  above. 

Let 𝐴𝑘  =   

𝑎1𝑘

𝑎2𝑘

⋮
𝑎𝑚𝐴𝑘

    and 𝑇𝑘  =   

𝑡1𝑘
𝑡2𝑘

⋮
𝑡𝑚𝑇𝑘

  .  Then 

𝐸  
𝜖 𝐴𝑘
𝜖 𝑇𝑘

 =  
0
0
   and the covariance matrix of  

𝜖 𝐴𝑘
𝜖 𝑇𝑘

  is  
Ʃ𝐴 Ʃ𝐴𝑇
Ʃ𝑇𝐴 Ʃ𝑇

  𝑛𝑘 .    (2.0)    

A prime is used to denote matrix transpose, ie  Ʃ𝐴𝑇
′ = Ʃ𝑇𝐴 .   

Expectation and variance are matrix-proportional to the number of atoms (𝑛𝑘  ) and by the transitivity of matrix-

proportionality (given non-singularity of a matrix given below), both expectation and variance of the target variables 

are matrix-proportional to the auxiliary variables yielding a regression model under which a Best Linear Unbiased 

Estimator (BLUE) is available for  𝜇 𝑇 .   

Let U denote the universe of population units.   
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The number of atoms in unit k, 𝑛𝑘 , is a random variable but its value is not required to derive a model,  only its 

existence.  However, the numbers of atoms per unit are required for the estimation of the variance-covariance 

matrices in (2.0).  The atoms that comprise a population unit are a random sample of random size from the set of all 

atoms and for any unit k, the  ω𝑖𝑘𝑗  𝑗=1

𝑛𝑘
 may be considered independent and identically distributed for any fixed pair 

(i, k) and all 1 ≤ 𝑗 ≤ 𝑛𝑘 .  Let their common mean and variance be  𝜇i = 𝐸 ω𝑖𝑘𝑗   and 𝜎𝑖
2 = 𝑉𝑎𝑟 ω𝑖𝑘𝑗   for all i , k , 

and j.  Let 𝜇n  = 𝐸 𝑛𝑘  and 𝜎𝑛
2 = 𝑉𝑎𝑟 𝑛𝑘  for all k, and let the  𝑛𝑘  and  ω𝑖𝑘𝑗  𝑗=1

𝑛𝑘
 be uncorrelated for any fixed pair 

(i, k) and all 1 ≤ 𝑗 ≤ 𝑛𝑘 .   

Suppose each sample unit, k, is composed of 𝑚𝐴  types of atoms: type 1, type 2, …….. , type 𝑚𝐴 .  Let 𝑛𝑘𝑟  be the 

number of type r atoms for each r=1,2,…… 𝑚𝐴.  Then 𝑛𝑘 =   𝑛𝑘𝑟
𝑚𝐴
𝑟=1 .  Assume that for each r, the 𝑛𝑘𝑟  type r atoms 

are a random sample from all type r atoms in the population/stratum.  Assume the study variables attached to each 

type r atom have a common  𝑚𝐴 + 𝑚𝑇 × 1, mean vector,  𝜇 𝑟 =  
𝜇 𝐴𝑟
𝜇 𝑇𝑟

 .  The stochastic structure given above can 

describe units as containers of water drawn from a stream, and atoms as stream particulate.  For this case, the above 

assumptions seem appropriate.  We  then have:  𝑦𝑖𝑘 =   ω𝑖𝑘𝑟𝑗   
𝑛𝑘𝑟
𝑗=1

𝑚𝐴
𝑟=1    where ω𝑖𝑘𝑟𝑗   denotes the value of the 𝑗𝑡ℎ  

atom of type r for the 𝑖𝑡ℎ  study variable of the 𝑘𝑡ℎ  sample unit.  The population totals for the 𝑚𝐴  types of atoms are 

known for all the 𝑚𝐴  auxiliary variables.  Given the randomization in the selection of atoms and the very large 

population size of atoms, it is appropriate to assume the  ω𝑖𝑘𝑟𝑗  𝑟=1,2,…..𝑚𝐴&𝑗=1,2….,𝑛𝑘𝑟
 for sample unit k are 

uncorrelated with one another for each k in the sample.   

The preceding implies, that conditional on the sample unit’s realized values for the  𝑛𝑘𝑟  𝑟=1
𝑚𝐴   : 

𝐸 𝑦𝑖𝑘 | 𝑛𝑘𝑟  𝑟=1
𝑚𝐴   =  𝜇𝑖𝑟𝑛𝑘𝑟

𝑚𝐴
𝑟=1   , where 𝜇𝑖𝑟  = 𝐸 ω𝑖𝑘𝑟𝑗   for all j and k in group r.  

Let: 𝐶𝑜𝑣 𝑦𝑖𝑘 , 𝑦𝑙𝑘 | 𝑛𝑘𝑟  𝑟=1
𝑚𝐴  =   𝑛𝑘𝑟𝐶𝑖𝑙𝑟

𝑚𝐴
𝑟=1         (2.1) 

where 𝐶𝑖𝑙𝑟  is the covariance between the 𝑖𝑡ℎ  and 𝑙𝑡ℎ  study variables attached to an atom of type r.  Assume the 

covariance between the 𝑖𝑡ℎ  study variable of type r and the 𝑙𝑡ℎ  study variable of type 𝑟′  are zero for all i, l, and 𝑟′ 

≠ 𝑟.  All co-variances between study variables of different atoms are zero and all between unit co-variances are also 

zero.  From (2.1) the vector of auxiliary variables, 𝐴𝑘 , is: 

𝐴𝑘 =   

𝑎1𝑘
𝑎2𝑘

:
𝑎𝑚𝐴𝑘

  =  

𝜇11 𝜇12

𝜇21 𝜇22

⋯ 𝜇1𝑚𝐴

⋯ 𝜇2𝑚𝐴

⋮ ⋮
𝜇𝑚𝐴1 𝜇𝑚𝐴2

⋯ ⋮
⋯ 𝜇𝑚𝐴𝑚𝐴

  

𝑛𝑘1

𝑛𝑘2
:

𝑛𝑘𝑚𝐴

 +  

𝜖1𝑘

𝜖2𝑘

⋮
𝜖𝑚𝐴𝑘

           (2.2) 

And 𝜖 𝐴𝑘 =  

𝜖1𝑘
𝜖2𝑘

:
𝜖𝑚𝐴𝑘

  ~  

0
0
⋮
0

 , 𝛴𝐴   where 𝛴𝐴  =  𝑛𝑘𝑟
𝑚𝐴
𝑟=1 𝛴𝐴𝑟    and the matrix of the  𝐶𝑖𝑙𝑟  , 1 ≤ 𝑖 ≤ 𝑚𝐴 and 

1 ≤ 𝑗 ≤ 𝑚𝐴 is 𝛴𝐴𝑟  , the covariance matrix for the group r auxiliary variables.   

The  𝛴𝐴𝑟  𝑟=1
𝑚𝐴   involve none of the  𝑛𝑘𝑟  𝑟=1

𝑚𝐴 .   Let 𝑁𝑘 =   

𝑛𝑘1

𝑛𝑘2
:

𝑛𝑘𝑚𝐴

   and 

 𝑀𝐴  =  

𝜇11 𝜇12

𝜇21 𝜇22

⋯ 𝜇1𝑚𝐴

⋯ 𝜇2𝑚𝐴

⋮ ⋮
𝜇𝑚𝐴1 𝜇𝑚𝐴2

⋯ ⋮
⋯ 𝜇𝑚𝐴𝑚𝐴

  ,  then (2.2) can be expressed as: 

 𝐴𝑘 = 𝑀𝐴𝑁𝑘 + 𝜖 𝐴𝑘  .   

A similar equation holds for the 𝑚𝑇-vector of target variables:  𝑇𝑘=𝑀𝑇𝑁𝑘+ 𝜖 𝑇𝑘  
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Where 𝑀𝑇  is the 𝑚𝑇X𝑚𝐴  matrix of means analogous to 𝑀𝐴  and 𝜖 𝑇𝑘  is the 𝑚𝑇-vector of error terms for the target 

variables.   

The sample data for unit k, given the  𝑛𝑘𝑟  𝑟=1
𝑚𝐴  is summarized by: 

 
𝐴𝑘
𝑇𝑘
  =  

𝑀𝐴
𝑀𝑇
 𝑁𝑘 +  

𝜖 𝐴𝑘
𝜖 𝑇𝑘

    where  
𝜖 𝐴𝑘
𝜖 𝑇𝑘

 ~   
0
0
 ,  𝑛𝑘𝑟

𝑚𝐴
𝑟=1  

𝛴𝐴𝑟 𝛴𝐴𝑇𝑟
𝛴𝑇𝐴𝑟 𝛴𝑇𝑟

        (2.3)   

Where the  Ʃ𝐴𝑟 , Ʃ𝑇𝑟 , Ʃ𝐴𝑇𝑟  𝑟=1
𝑚𝐴     are not functions of the  𝑛𝑘𝑟  𝑟=1

𝑚𝐴  .  Note that in (2.2) above  𝛴𝐴  =  𝑛𝑘𝑟𝛴𝐴𝑟
𝑚𝐴
𝑟=1   and 

similarly for 𝛴𝑇   and  𝛴𝐴𝑇  . 

When there are 𝑚𝐴  auxiliary variables, 𝑚𝐴  types of atoms, and 𝑀𝐴  is nonsingular, then the model given by (2.3) 

above can be transformed into one in which the target variables are matrix-proportional to the auxiliary variables as 

follows. 

𝐴𝑘=𝑀𝐴𝑁𝑘+ 𝜖 𝐴𝑘   can be rewritten as: 𝑁𝑘 = 𝑀𝐴
−1 𝐴𝑘 − 𝜖 𝐴𝑘  = 𝑀𝐴

−1𝐴𝑘  - 𝑀𝐴
−1𝜖 𝐴𝑘  

or  𝑁𝑘  = 𝑀𝐴
−1𝐴𝑘  + 𝜖 𝐴𝑘

∘    where 𝜖 𝐴𝑘
∘  = - 𝑀𝐴

−1𝜖 𝐴𝑘 ,   𝜖   𝐴𝑘
∘  ~ 0, 𝑀𝐴

−1Ʃ𝐴 𝑀𝐴
−1 ′     (2.4) 

Thus 𝑇𝑘 =  𝑀𝑇 𝑀𝐴
−1𝐴𝑘 + 𝜖 𝐴𝑘

∘  + 𝜖 𝑇𝑘  = 𝑀𝑇𝑀𝐴
−1𝐴𝑘 +  𝑀𝑇𝜖 𝐴𝑘

∘ + 𝜖 𝑇𝑘   .  Let B= 𝑀𝑇𝑀𝐴
−1 ,  then 

 𝑇𝑘 = 𝐵𝐴𝑘   + 𝛿𝑘   for k=1,2,……..,n.       (2.5) 

Where  𝛿𝑘   =  𝑀𝑇𝜖 𝐴𝑘
∘ + 𝜖 𝑇𝑘    , 𝐸 𝛿𝑘 =0,  and the covariance matrix of  𝛿𝑘   is 

 

𝛴𝛿   =  𝐵𝛴𝐴𝐵
′ ⎯𝐵𝛴𝐴𝑇 − 𝛴𝑇𝐴𝐵

′ + 𝛴𝑇     for all k.   Let 𝐵 =  𝑏𝑖𝑗   , an 𝑚𝑇 × 𝑚𝐴  matrix  and let the transpose of its 𝑖𝑡ℎ  

row be 𝐵𝑖  =  

𝑏𝑖1
𝑏𝑖2
⋮

𝑏𝑖𝑚𝐴

  𝑓𝑜𝑟 𝑖 = 1,2,… . . ,𝑚𝑇 .  Then (2.5) can be written as: 

 𝑇𝑘 =  
𝐵1

′

⋮
𝐵𝑚𝑇

′
  

𝑎1𝑘

⋮
𝑎𝑚𝐴𝑘

 + 𝛿𝑘   for k=1,2,……..,n         (2.6) 

      =  𝐼⨂𝐴𝑘
′   

𝐵1

⋮
𝐵𝑚𝑇

 +  𝛿𝑘          (2.7) 

for k=1,2,……..,n  where 𝐼 is the 𝑚𝑇 × 𝑚𝑇 identity matrix.        

The linear relationship summarizing all the sample data for k=1, 2, …,n is: 

 

 
 

𝑇1

𝑇2

⋮
𝑇𝑛−1

𝑇𝑛  

 
 

=  

 

  
 

𝐼⨂𝐴1
′

𝐼⨂𝐴2
′

⋮
𝐼⨂𝐴𝑛−1

′

𝐼⨂𝐴𝑛
′  

  
 

 

 
 

𝐵1

𝐵2

⋮
𝐵𝑚𝑇−1

𝐵𝑚𝑇  

 
 

+  ∆  where 𝐼 is the 𝑚𝑇 × 𝑚𝑇  identity matrix,  ⨂ is the Kronecker product, and 

∆ is the n𝑚𝑇  random column vector  
𝛿1

⋮
𝛿𝑛

  with expectation of 0 and covariance matrix ℐ⨂𝛴𝛿   where ℐ is the 𝑛 × 𝑛 
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identity matrix.  The Kronecker product of two matrices is defined as the matrix result of multiplying each 

component of the first matrix by the second matrix.  The BLUE for 𝛽 = 

 

 
 

𝐵1

𝐵2

⋮
𝐵𝑚𝑇−1

𝐵𝑚𝑇  

 
 

 is:  

 𝛽  = 

 

  
 

𝐵 1

𝐵 2

⋮
𝐵 𝑚𝑇−1

𝐵 𝑚𝑇  

  
 

  =     𝐼⨂𝐴𝑘 𝛴𝛿
−1 𝐼⨂𝐴𝑘

′  𝑛
𝑘=1  

−1
  𝐼⨂𝐴𝑘 𝛴𝛿

−1𝑇𝑘
𝑛
𝑘=1  ,   Rao (1973). 

Substituting estimates for 𝑀𝑇  , 𝑀𝐴 , 𝛴𝐴  , 𝛴𝑇   and 𝛴𝐴𝑇  , into 𝛴𝛿 , 𝐵  can be approximated directly from the sample data.   

Then the BLUE for the vector of target variable population totals and its co-variance matrix are: 

𝑇 𝑇𝑂𝑇  =  𝐼⨂𝐴 𝛽  and  Var(𝑇 𝑇𝑂𝑇 )= 𝐼⨂𝐴    𝐼⨂𝐴𝑘 𝛴𝛿
−1 𝐼⨂𝐴𝑘

′  𝑛
𝑘=1  

−1
 𝐼⨂𝐴 ′    (2.8) 

Where A =    𝑎1𝑘
𝑁
𝑘=1 ,……………… , 𝑎𝑚𝐴𝑘

𝑁
𝑘=1    , N is the number of universe units, and 𝐼 is the 𝑚𝑇 × 𝑚𝑇  

identity matrix.   

The sampling and estimation methodology described here is applicable to flow sampling where a flow consists of a 

population in constant one-way movement past a point where it is sampled, much like sampling a population whose 

strata are rivers and streams over a time period (i.e. a month).  This occurs for actual rivers and streams but also for 

other types of populations like parts moving through an assembly process, autos moving along roads to or from a 

city or country, or mail moving through processing centers.  Auxiliary data may occur naturally or be a part of the 

design that is added to the flows upstream in known quantities to provide auxiliary data.  For example, known 

quantities of a chemical marker may be added to a river or stream far upstream from the sampling point (to insure 

complete mixing).  The setup presented in this section with 𝑚𝐴  types of atoms and 𝑚𝐴  auxiliary variables can model 

a flow consisting of 𝑚𝐴  inputs from tributaries to the stream where total flow volume or weight is measured for each 

tributary to provide an auxiliary variable for each tributary.  

3. Pre-sampling BLUE Compared to the Combined Ratio Estimator - A Simulation Study  

The following study compares the combined ratio estimator (with probability based expansions) to the BLUE based 

on pre-sampling with a single auxiliary variable - the simplest case (with 𝑚𝐴=1) of the setup described in Section 2.  

A single auxiliary variable may be the case most experienced in sampling practice and simulates a government 

survey. Analysis of the estimators is done with respect to repeated sampling under a complex design (although the 

BLUE is based on a model).  The results described here may seem extreme, but they are readily explained in the 

repeated sampling context.  Design based procedures are inherently problematic for the population being measured 

due to several factors that amplify each other to produce large levels of sampling error in the Combined Ratio 

Estimator while leaving the BLUE with orders of magnitude less sampling error.  Apparently survey design can be a 

more difficult endeavor than suggested by the orthodoxy of good survey practice.  This is particularly true under 

administrative and operational constraints encountered in practice.  The government agency providing this example 

is purposely left opaque. 

In this example, the population consists of F strata (F≅150) where 𝑈𝑓  denotes the set of universe units in stratum f 

and 𝑁𝑓   for f=1, 2, 3, …….F denotes the number of universe units in 𝑈𝑓 .  Each unit in 𝑈𝑓  consists of a simple 

random pre-sample of atoms selected from all atoms making up the units in 𝑈𝑓 .  For example, a bucket of water 

taken from a stream (stratum) could be a sample unit and the particulate matter in the bucket’s water, the atoms. It 

would be quite reasonable to assume that this particulate was an SRSWOR from all the particulate in the stream 

flowing past a fixed point over a brief time period. For sampling flows, time period and sampling location are the 

primary components of strata definition.  In this example, estimates of the total number of atoms in a population 

consisting of the streams flowing into an inlet or lake during a month are required.  The total weight in kilograms of  
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water containing the universe units in 𝑈𝑓  is known for all the strata and recorded for each sample unit.  These 

kilogram measures are the auxiliary variables.   

Each stratum, 𝑈𝑓 , is partitioned into first stage clusters consisting of the stream flow past a fixed point during an 

hour of each day.  Let 𝑀𝑓  be the set of clusters in 𝑈𝑓  and 𝑁𝑓  =24 be the number clusters in 𝑀𝑓 .  Let 𝑠𝑓  be an 

SRSWOR from 𝑀𝑓  and let 𝑛𝑓  be the number of clusters in 𝑠𝑓 .    Let 𝑈𝑓𝑑  be the set of second stage universe units in 

cluster d of stratum f for d=1,2,3,…., 𝑁𝑓 .  Let 𝑁𝑓𝑑  be the number of universe units in 𝑈𝑓𝑑    𝑁𝑓𝑑
𝑁𝑓
𝑑=1 =  𝑁𝑓 .  Let 

𝑠𝑓𝑑   be an SRSWOR selected from the universe units in 𝑈𝑓𝑑  and let 𝑛𝑓𝑑  be the number of units in 𝑠𝑓𝑑 .  For the 

survey being studied, workload constraints restrict both 𝑛𝑓  and 𝑛𝑓𝑑  to being roughly 4, (between 3 and 5) for all f 

and d.   

Let 𝐾𝑓𝑑𝑗  be the weight in kilograms of the  𝑗𝑡ℎ  unit in 𝑈𝑓𝑑  and let 𝜋𝑓𝑑𝑗 be the probability of selection of the 𝑗𝑡ℎ  unit 

in 𝑈𝑓𝑑 .  Then 𝜋𝑓𝑑𝑗 =
𝑛𝑓

𝑁𝑓

𝑛𝑓𝑑

𝑁𝑓𝑑
.  When referring to population units, upper case is used and for sample units, lower case 

is used - 𝑦𝑓𝑑𝑗  is the value of the study variable for the 𝑗𝑡ℎ  sample unit from 𝑠𝑓𝑑  and 𝑌𝑓𝑑𝑗  denotes the value of the 

study variable for the 𝑗𝑡ℎ   population unit in 𝑈𝑓𝑑 .   The Horwitz-Thompson Estimator (probability expansion) for 

total kilograms of the units in 𝑈𝑓  is  𝑘 𝑓 =   
𝑘𝑓𝑑𝑗

𝜋𝑓𝑑𝑗
𝑗𝜀 𝑠𝑓𝑑𝑑𝜖𝑠𝑓

  where 𝑘𝑓𝑑𝑗  and 𝐾𝑓𝑑𝑗  are defined analogously to 𝑦𝑓𝑑𝑗  and 

𝑌𝑓𝑑𝑗 .  Let the total kilograms in stratum f be known and denoted, 𝐾𝑓 =   𝐾𝑓𝑑𝑗
𝑁𝑓𝑑
𝑗=1

𝑁𝑓
𝑑=1 , then 𝐾𝑓 = 𝐸 𝑘 𝑓 .   Define 

𝑦 𝑓  and 𝑌𝑓   similarly.  Let 𝐾 =  𝐾𝑓
𝐹
𝑓=1  and similarly for Y.  Let 𝛽𝑓 =

𝑌𝑓

𝐾𝑓
.  The four estimators to be studied are: 

𝑇 𝐻𝑇 = 𝑦 𝑓  is the Horwitz-Thompson estimator for Y. 

𝑇 𝐶 = 𝐾
 𝑦 𝑓
𝐹
𝑓=1

 𝑘 𝑓
𝐹
𝑓=1

  is the combined ratio estimator for Y. 

𝑇 𝑆 = 𝐾 𝑊𝑓𝛽 𝑓
𝐹
𝑓=1  is the separate ratio estimator for Y where 𝑊𝑓 =

𝐾𝑓

𝐾
 , and   𝛽 𝑓 =

𝑦 𝑓

𝑘 𝑓
. 

𝑇 𝐵 =  𝐾 𝑊𝑓𝛽 
 
𝑓

𝐹
𝑓=1  is the BLUE for Y where 𝛽  𝑓 =

𝑦 𝑓

𝑘 𝑓
 ,  𝑦 𝑓 =

  𝑦𝑓𝑑𝑗𝑗𝜀 𝑠𝑓𝑑𝑑𝜀 𝑠𝑓

 𝑛𝑓𝑑𝑑𝜀 𝑠𝑓

 , and 𝑘 𝑓  is defined similarly to 𝑦 𝑓 .   

These four estimators are studied under the sample design just described where the size of the first stage cluster sizes 

vary from nearly uniform – each cluster about the same size in units and weight  – to quite diverse in size – clusters 

have widely different numbers of units and total weights.  This analysis studies the variance of the four estimators as 

functions of a measure of first stage cluster size variability given by 

Q = 
1

𝐹
 

1

 𝑁𝑓−1 
  𝑁𝑓𝑑 − 𝑁 𝑓 

2𝑁𝑓
𝑑=1

𝐹
𝑓=1  where 𝑁 𝑓 =

1

𝑁𝑓
 𝑁𝑓𝑑
𝑁𝑓
𝑑=1

.   

Q is an increasing function of the variance between first stage cluster sizes, that is, the average variability of the 

 𝑁𝑓𝑑  𝑑=1

𝑁𝑓
 for f=1,2,……,F over the F strata.   

The population studied here consists of about 44 million atoms, about 700,000 units, and 150 strata.  Within each 

stratum f, the 
𝑦𝑓𝑑𝑗

𝑘𝑓𝑑𝑗
  are relatively homogeneous and vary around 𝛽𝑓 .  The 150 different values of the  𝛽𝑓  vary 

from rough unity to more than 50.  The study that follows summarizes variance of the four estimators for about 50 

populations that are similar except for first stage cluster size variability within strata.  That is, once the units have 

been randomly assigned atoms, the units within each stratum are randomly assigned to clusters.  These assignments 

vary from nearly uniform (small Q) to widely variable (large Q).   

The variance of each estimator can be either derived directly from the sample design and population parameters 

(cluster means, totals, and variances) or by brut force simulations – selecting 500 samples according to the above 
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design and estimating means and variances of all four estimators from these 500 independent replicates. The direct 

derivation and the derivation based on 500 replications yield similar results, summarized below.  For a detailed 

description of these two studies see Woodruff (2007).  The direct derivation provides the variance components that 

explain the behavior of the four estimators as functions of Q and these formulae are also given in Woodruff (2007). 

In Graph 1 below, CRE is 𝑇 𝐶 ,  SRE is 𝑇 𝑆, BLUE is 𝑇 𝐵 , and HT is 𝑇 𝐻𝑇 .   Q is represented along the horizontal axis 

and variance of the four estimators (in units of 1010  ) on the vertical axis.  These four estimators are analyzed as 

functions of Q over a wide range because, in practice, Q varies a great deal over time in an unpredictable manner 

making a study based on a range of Q necessary.   

Graph 1 

  

Let 𝑉 .   denote variance with respect to repeated sampling, then given the pre-sampling as SRSWOR the variance 

of the Combined Ratio Estimator can be expressed as: 

  𝑉 𝑇 𝐶 ≅ 𝐾2𝑉  𝑊𝑓𝛽 𝑓
𝐹
𝑓=1  + 𝐾2𝑉  𝛽𝑓𝑊 𝑓

𝐹
𝑓=1   ,  where 𝑊 𝑓 =

𝑘 𝑓
 𝑘 𝑚
𝐹
𝑚=1

     (3.1) 

The first term of 𝑉 𝑇 𝐶  is the variance of 𝑇 𝑆 but the  𝛽 𝑓  are ratios of correlated random variables and so this first 

term should be relatively small compared to the second term of  𝑉 𝑇 𝐶 .  The  𝛽𝑓 𝑓=1

150
 vary from about 1 to over 50 

and this second term is the variance of a randomly weighted average of these   𝛽𝑓 𝑓=1

150
 (the weights,  𝑊 𝑓  , are 

random variables) and each 𝑊 𝑓  is the ratio of nearly uncorrelated random variables and thus the variance of this 

second term can be substantial.  Graph 1 demonstrates the dominance of the second term in 𝑉 𝑇 𝐶  – the second term 

of  𝑉 𝑇 𝐶  is the difference between the red and black lines and accounts for over 90% of 𝑉 𝑇 𝐶 .   

The sample design is not one that would be chosen if proper sample control could be exercised.  In particular, it is 

not self-weighting.  The ratio, H= 
𝑉 𝑇 𝐶 

𝑉 𝑇 𝐵 
  ,  for values of Q experienced historically were in the interval 

(20,40).  Although it is impractical to use a self-weighting design in the real survey, a self-weighting design was 

tried in the simulation by increasing the second stage sample sizes to achieve a self weighting design.  With the self-

weighting design, H went from the interval (20,40) to (80, 160).  Thus H can be over 100 under what is considered 

the gold standard in survey design!   Apparently, the roughly five fold increase in sample size to achieve a self 

weighting design results in a roughly five fold decrease in sampling variance in the BLUE, 𝑉 𝑇 𝐵 ,  but only a 10% 
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to a 20%  decrease in 𝑉 𝑇 𝐶 .  Sample allocation to achieve a self-weighting design places much sample in strata 

where it does little to reduce 𝑉 𝑇 𝐶  and starves additional sample from strata where it would most reduce  𝑉 𝑇 𝐶 .  

The model based estimation strategy derived from pre-sampling retains randomization as an essential feature but 

avoids the inefficiencies that plague the sample design and the Combined  Ratio Estimator. The result is a model 

based estimation methodology under a model that is imposed by statistical design and is largely immune from the 

usual weakness of model based inference – the question of model suitability.     

4. Conclusions 

Pre-sampling uses designed randomization to force a model on sample data under which there is a BLUE.  Pre-

sampling is not always possible but when it can be applied or when it occurs naturally, the BLUE derived from it 

can manifestly improve the precision of survey estimates. This is especially true when operational and 

administrative constraints force an inefficient sample design.  Pre-sampling avoids questions about model fit by 

imposing the model deductively.  Thus Pre-sampling methodologies retain the main advantages of both model based 

and design based inference while avoiding their most notable shortcomings.  

Pre-sampling methodologies provide a more appropriate set of sample expansions that better capture the stochastic 

structure of sample data when there are many different population totals to be estimated.  These methodologies 

replace the “one size fits all” expansions based on probabilities of selection.  The pre-sampling BLUE is based on a 

multi-parameter model that provides considerable flexibility for a better fit of estimator to the parameter being 

estimated.  Since the model is deduced from designed randomization it is not dependent upon sample data or 

historical data that could be anomalous or otherwise poorly reflect the process that generates the sample data. 

Section 3 examines a real survey where accepted sample design based inference performs poorly and pre-sampling 

model based inference provides a gratifying improvement.  This example provides a comparison of the pre-sampling 

model based BLUE to the Combined Ratio Estimator under a stratified cluster sample design in which first stage 

cluster size variability and the large difference in strata ratios of study variables to the auxiliary variable cause 

disturbingly large variance in the Combined Ratio Estimator.  The variance of the pre-sampling BLUE remains 

small and unaffected by the cluster totals and strata ratios.  This is a univariate application of Section two with a pre-

sampling BLUE that achieves a 20 to 40 fold variance reduction compared to the Combined Ratio Estimator.   It 

may be noted that the sample design in Section three is far from self-weighting for moderate to large values of Q.  

When the sample was increased to achieve a self-weighting design,  the pre-sampling BLUE experienced an 80 to 

160 fold variance reduction compared to the Combined Ratio Estimator!     

Simple random pre-sampling as presented here can readily be extended to more complex pre-sampling designs.  A 

two stage cluster pre-sampling design yields sample units that follow a regression model similar to that developed 

under simple random pre-sampling in section two.   

The application in Section 3 of pre-sampling avoids the more challenging issues encountered in multivariate 

applications, estimation of the parameter matrices, 𝛴𝐴 ,  𝛴𝑇  , 𝛴𝐴𝑇  , 𝑀𝐴 , and 𝑀𝑇 .  The estimation of these parameters 

was omitted due to space limitations.  Although their estimation is basic, it requires some calculation that may be 

informative and therefore deserves consideration.  Further study using the full multivariate structure described in 

Section 2 is underway and will be the subject of future work.     
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