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Abstract 

The quasi-likelihood estimating functions (EFs) properly weighted for survey data can be used to fit logit models. In 

practice, an asymmetric logit-Wald interval estimate (IE) is preferable to the usual Wald IE due to skewness in the 

distribution of estimates for low or high prevalence outcomes, and due to the possibility of the IE boundaries not 

being in the feasible range. However, IE may have poor coverage properties because of inadequate normality of 

estimated model parameters for small or moderate sample sizes (due to nonlinearity of estimates) which can be 

serious for low or high prevalence outcomes. We propose an alternative based on the Randomly Recentered 

Estimating Equations (RREE) methodology of Singh (2007) for the multiparameter case. In RREE, replicate 

parameter estimates are created by equating the vector of standardized EFs (or pivotals) to random vector values 

drawn from the standard multivariate normal distribution. These replicates are used to compute new point, variance, 

and interval estimates.  Simulations are used to evaluate the performance of RREE relative to logit-Wald in terms of 

bias and variance of point and variance estimators, and average length and coverage probability of interval 

estimators. 
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1. Introduction 

 

We consider the problem of modeling outcome prevalence for binary data using logit models. For example, for data 

from the Canadian Community Health Survey (CCHS), one may be interested in modeling the prevalence of healthy 

life style behavior outcomes such as smoking habit (a binary variable) using covariates such as age, gender, and 

education. The parameters of interest may be the conditional and marginal predictive means (Korn and Graubard, 

1999, Ch. 3) or dose for a given mean response (McCullagh and Nelder, 1989, Ch. 4). A commonly used method is 

that of quasi-likelihood (ql) estimation (see e.g., McCullagh and Nelder, 1989, Ch 9) where the Taylor linearization 

is used to obtain a (sandwich-type) covariance matrix of model parameter estimates and Wald’s method for 

normality-based interval estimates (IE). However, variance estimates (VE) for prevalence estimates may be unstable 

for small or moderate sample sizes as well as for low or high prevalence outcomes.  Moreover, the IE may have poor 

coverage properties due to inadequate normality of estimated prevalence especially when the sample size is not large, 

the main reason being that the skewness in the distribution of estimated prevalence may be marked.  As a result, the 

boundaries of the IE may not even be in the feasible range; i.e., 0 to 1. It would therefore be desirable to have 

asymmetric IE with appropriate coverage.  

 

To overcome the above problem with IE, logit-Wald (see e.g., Newcombe, 2001) is commonly used where the IE is 

first constructed in the logit scale using the approximate normality of model parameter estimates under ql-estimation 

(this is the Wald step), and then boundaries of IE are transformed back to the original scale via the inverse logit 

transformation. The logit-Wald method tends to improve coverage but may be conservative for small or moderate 

sample sizes again due to inadequate normal approximation of model parameter estimates because of their 

nonlinearlity. In the case of complex surveys (as opposed to standard simple random sample case),  above methods 

can be extended  using weighted quasi-likelihood (wql) EFs of Godambe and Thompson (1986) for model 

parameters, similar to the approach in Binder (1983) for finite population quantities.  

 

The purpose of this paper is to propose an alternative based on the multivariate version of the randomly recentered 

estimating equations (RREE) method of Singh (2007) in order to improve the performance of IE under ql-estimation 
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based on logit-Wald and VE based on Taylor linearization. The RREE method basically consists of creating 

parameter estimates by solving the standardized EF vector centered at the random vector of values drawn from the 

pivotal normal distribution.  The Monte Carlo distribution of parameter estimates so obtained is used to obtain new 

PE, VE, and IE.  This is described in Section 3 following a background review in Section 2. Empirical results based 

on a simulation study to compare RREE with ql-estimation are presented in Section 4.  Application to a complex 

survey data from the 2001 CCHS is given in Section 5.  Here, the concept of generalized design effect (gdeff) (see 

e.g., Skinner, 1989) is used to adjust the covariance matrix for complex designs. Finally, Section 6 contains 

concluding remarks. 

 

2. Background Review 

 

For simplicity, we first consider data from a simple survey; i.e., the sample is simple random with replacement or it 

could be without replacement but with a negligible sampling fraction.  For a random sample of n observations 

i=1,2,…,n, conditional on covariates ix ’s consider a logit model given by 

1

( ) , | ~ ( ( ))

logit( ( ))

i i i i i ind i

i i p

y y x Ber

x

µ θ ε µ θ

µ θ θ ×

= +

′=
,                  (2.1) 

where ix is a p-vector of covariates, and the parameter θ  is of dimension p. The ql-estimator of θ  solves the 

equation obtained by setting the ql-EF vector 
( )ql θψ to 0 where 

1

( ) 1
( ( ) / ) ( ( )) ( ( ))

n

ql i i ii
V y x yθ εψ µ θ θ µ θ µ θ−

=
′ ′= −∂ ∂ − = −∑ ,                 (2.2) 

Vε being the covariance matrix 1
diag( ( )(1 ( ))

i i i n
µ θ µ θ ≤ ≤− of the observation errors 

i
ε ’s,. The PE ˆqlθ can be obtained 

by solving (2.2) using an iterative method such as Newton-Raphson. The estimated covariance 
( )

ˆ
ql θΣ of ˆqlθ after 

Taylor linearization is obtained in a sandwich form as 
1 1

ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ; ( / )qlql ql ql ql ql qlJ V J Jθ θ ψ θ θ θθ

ψ θ− −′ ′ ′Σ = = −∂ ∂ ,                               (2.3) 

where 
( )ql

J θ is the p p× observed ql-information matrix computed as 
1
( )

n

i i iu x xθ ′∑  where ( ) ( )(1 ( ))
i i i
u θ µ θ µ θ= −  

and 
( )ql

V ψ is the p p× covariance matrix of the ql-EF vector 
( )ql θψ .  Here 

( )ql
V ψ coincides with ( )ql

J θ because the link 

function is canonical, and the EF is optimal for the model. 

 

Under regularity conditions, the estimator ˆqlθ is consistent, and gives rise to a consistent estimator ˆ( )ql
i
µ θ of the 

prevalence or the conditional mean given the covariate value.  In this paper we will mainly be concerned with 

estimating the prevalence for a given covariate level. Using Taylor, a consistent variance estimator ˆ( ( ))ql

i
v µ θ for 

ˆ( )ql
i
µ θ can be obtained as  

ˆ( )
ˆ( ( )) ( ( ) / ) ( ( ) / ) ; ( ) / ( )ql

ql

i i ql i i i iv u xθ θ
µ θ µ θ θ µ θ θ µ θ θ θ′ ′ ′ ′ ′= ∂ ∂ Σ ∂ ∂ ∂ ∂ =  .  (2.4) 

The VE ˆ( ( ))ql

i
v µ θ is expected to be unstable (i.e., with high relative variance) for small n or for low or high 

prevalence outcomes. 

 

For IE under ql-estimation, we can use Wald or logit-Wald.  The Wald IE for ( )
i
µ θ is a normality based symmetric 

interval given by 

/ 2
ˆ ˆ( ) ( ( ))ql ql

i i
z vαµ θ µ θ±      (2.5) 

which is expected to have undercoverage for small n or for low or high prevalence outcomes due to inadequate (i.e., 

unbalanced tails) normal approximation caused by nonlinearity of ˆ( )ql
i
µ θ .  The logit-Wald provides an improved 

alternative with asymmetric IE such that interval boundaries lie in the admissible range of (0,1). To obtain logit-

Wald IE, first a normal IE on the logit scale is constructed for ( )
i
µ θ , and then it is transformed back to the original 
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scale of ( )
i
µ θ . For example, suppose has one x-variable resulting in two θ -parameters (intercept and slope), we are 

interested in predicting ( , 5)xµ θ = which equals 1

0 1 0 1
(1 exp( 5 )) exp( 5 )θ θ θ θ−+ + + .  The Wald (symmetric) IE for 

0 1
5θ θ+ is given by (L,U) where the lower bound L is 

0 1 / 2 0 1
ˆ ˆ ˆ ˆ( 5 ) ( 5 )ql ql ql qlz vαθ θ θ θ+ − + and the upper bound U is 

0 1 / 2 0 1
ˆ ˆ ˆ ˆ( 5 ) ( 5 )ql ql ql qlz vαθ θ θ θ+ + + .  Next, the logit-Wald IE for ( , 5)xµ θ = is given by ( , )L U∗ ∗  where L∗ is 

1(1 exp( )) exp( )L L−+ and U ∗  is 1(1 exp( )) exp( )U U−+ .  Notice that ( , )L U∗ ∗ is not symmetric but indeed lies inside 

(0,1). Although the logit-Wald IE under ql-estimation improves coverage, it tends to be conservative. In the next 

section, we propose an alternative based on RREE (Singh, 2007) for the multi-parameter case. 

 

3. RREE: an Alternative to the Logit-Wald Method 

 

In RREE, we start with a pivotal 
1

( ) ( )ql ql
H ψ θψ−

based on the ql-EF 
( )ql θψ such that even for moderate n,  

1

( ) ( )
~ (0, )

ql ql approx p p
H N Iψ θψ−

× ,    (3.1) 

where 
( )ql

H ψ is the Cholesky root of the covariance matrix ( )ql
V ψ ; i.e., ( ) ( ) ( )ql ql ql

V H Hψ ψ ψ′= .  Under ql-estimation, 

ˆqlθ is obtained by solving 
1

( ) ( )
0

ql ql
H ψ θψ− = , or 

( )
0

ql θψ = , while under RREE, a large number R of replicate parameter 

estimates 
1

{ }
r r R
θ ≤ ≤
ɶ are obtained by randomly recentering the estimating equations; i.e., by solving the p-equations 

     
1

( ) ( )
; ~ (0, )

ql ql r r iid p
H N Iψ θψ ε ε− =  .    (3.2) 

The empirical distribution 
1

{ }
r r R
θ ≤ ≤
ɶ so obtained gives rise to new PE, VE, and IE for θ , and any function of it; see 

Singh (2007) for theoretical details. In fact, in certain special cases, one can show analytically that both PE and VE 

based on RREE have higher relative biases than that under ql-estimation but with smaller relative MSE (mean square 

error); the bias decreasing with larger sample sizes as expected. However, it is IE where RREE has in general much 

improved finite sample property in terms of central and tail coverage probabilities;  the reason being that the pivotal 
1

( ) ( )ql ql
H ψ θψ−

is expected to be closer to normal than the commonly used pivotal 
1

( ) ( )ql ql
H ψ θψ∗−

under ql-estimation where 

( )ql
H ψ

∗
is 

( )ql
H ψ evaluated at 

ˆqlθ ; see e.g., McCullagh (1991), and Godambe and Thompson (1999). For example, in 

the case of estimating a proportion  θ  , the superior performance of the Wilson IE based on the pivotal 
( ) (1 )n y θ θ θ− − over the commonly used Wald IE based on the pivotal ( ) (1 )n y y yθ− − is well 

documented in Cai, Brown and Dasgupta (2001).  

 

We remark that the empirical distribution 
1

{ }
r r R
θ ≤ ≤
ɶ is essentially invariant to any choice of the root of the covariance 

matrix 
( )ql

V ψ such as the Cholesky root ( )ql
H ψ (already mentioned) or the one (denote by ( )ql

H ψ
ɶ ) obtained from the 

spectral decomposition of 
( )ql

V ψ .  This is so because the random recenters transformed by a root of ( )ql
V ψ has the 

same distribution; i.e., both 
( )ql r

H ψ ε  and 
( )ql r

H ψ εɶ are distributed as 
( )

(0, )
p ql
N V ψ . Now, with RREE, it is possible to 

truncate the empirical distribution of ˆqlθ (although the theoretical distribution is approximately normal) by 

discarding those recenters 
r
ε ’s that give rise to nonfeasible or nonexistent solutions to the estimating equations. 

Moreover, before computing PE and VE, it is generally desirable in practice to trim extreme replicate values in 

1
{ }
r r R
θ ≤ ≤
ɶ for which at least one element of the p-vector lies outside the interval given bymedian 2.5( )IQR± ; IQR  

denoting the inter-quartile range. Such trimming helps to robustify PE and VE against extreme values.  However, 

trimming is not needed for IE as it is generally not affected by extreme values.  The empirical distribution 

1
{ }
r r R
θ ≤ ≤
ɶ gives rise to empirical distributions of other functions of ˆqlθ such as the conditional predictive mean or the 

prevalence ˆ( )ql
i
µ θ as 

1
{ ( )}

i r r R
µ θ ≤ ≤
ɶ at the covariate value

i
x . 
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For a simple example of a multi-parameter RREE, consider the logit model with a single covariate and the intercept. 

Then     
1

0 1 0 1
( ) exp( )[1 exp( )]
i i i

x xµ θ θ θ θ θ −= + + +     (3.3) 

and the corresponding ql- EFs based on a random sample of n observations are  

0 1( ) ( )1 1
( ( )), ( ( ))

n n

ql i i ql i i ii i
y x yθ θψ µ θ ψ µ θ

= =
= − = −∑ ∑ .   (3.4) 

The covariance matrix 
( )ql

V ψ is given by 

1 1

( )
2

1 1

( ) ( )

( ) ( )

n n

i i i

ql n n

i i i i

u x u
V

x u x u
ψ

θ θ

θ θ

 
 =
 
 

∑ ∑
∑ ∑

.    (3.5) 

Now, the replicate values of the vector parameter estimate ˆqlθ  are obtained by solving iteratively  

0

1

( ) 1,

( )

2,( )

ql r

ql

rql

H
θ

ψ
θ

ψ ε

εψ

   
=        

,     (3.6) 

where { }1, 2,, :1r r r Rε ε ≤ ≤ are independent standard normal deviates.  For computational convenience, one can first 

evaluate 
( )ql

H ψ at the initial value 
ˆqlθ to compute the next iterative value of θ  serving as the current value. Next 

( )ql
H ψ is evaluated at the current value of θ , and the process is repeated until convergence to obtain r

θɶ . 
 

4. Simulation Study 

 

A simulation study was conducted for a two parameter (intercept and slope) logit model for binary data where the 

covariate x for i=1, 2, …,n was defined as min {1, (mod( ,10) 0.5) /10}
i
x i= + ; i.e., it takes values from .05 to .95 in 

increments of .10 and then repeats itself. The θ -vector was chosen as ( 2.25,3)′− which gives rise to ( , 0.2)
i
xµ θ = as 

1(1 exp( 1.65)) exp( 1.65)−+ − − or 16.11% as the chosen parameter of interest. The sample size n was set at 10, 20, 30, 

50, and 100, the number M of simulation runs at 4000, and the number R of recenters for each simulation at 2000. 

Tables 1 and 2 compare results for three methods, QL (quasi-likelihood consisting of the solution of ql-EF at 0 for 

PE, Taylor linearization for VE, and Wald or logit Wald for IE), RREE* and RREE. Extreme replicate estimates 

were trimmed using the rule of median ± 2.5(IQR) for RREE methods. The abbreviation ME in Table 1 stands for 

MSE estimator which is the same as VE but the RB and RRMSE are computed by treating it as ME. 

 

It is seen from Table 1 that the RB for PE does go up for RREE but it decreases considerably larger n as expected, 

but the corresponding RRMSE are quite comparable. However, for ME, although RREE shows more RB, its 

RRMSE is substantially less. In other words, the VE of RREE as a measure of MSE is considerably more stable than 

that for QL. The performance of RREE* relative to RREE is generally poor as expected.  Turning to Table 2, QL-

Logit Wald does improve considerably the coverage over QL-Wald for the two-sided interval, but it is conservative. 

The non-coverage for one-sided intervals is also improved under QL-Logit Wald but still poor with unbalanced tails. 

The RREE method, on the other hand, provides good coverage for the two-sided interval, and shows somewhat less 

imbalance in the tails in comparison to QL-Logit Wald, but its non-coverage for one-sided intervals is still not 

satisfactory. 

 

Figures 1 and 2 depict in graphical form the information contained in Tables 1 and 2 but for all sample sizes 

considered in the simulation study.  We note that differences between the various inferential procedures are less 

important as the sample size increases. 
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Table 1: % Relative Bias and Relative Root MSE of PE and ME for µ(θ, x = 0.2)  

 

 

 

 

 

 

 

 

 

 

 

Table 2: 95% Coverage Probabilities of IE for µ(θ, x = 0.2)  

 

 

 

RB and RRMSE of PE 

 

RB and RRMSE of ME 

 

Figure 1: % Relative Bias and Relative Root MSE of PE and ME for µ(θ, x = 0.2)  

 

n=10 n=30 

PE ME PE ME 

 

 

Method 
RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

QL 13.56 97.64   6.10 73.03 1.60 59.12 -3.55 49.05 

RREE* 30.33 97.15 -20.43 64.39 4.27 57.48 -8.96 52.96 

RREE 33.53 97.55 -15.53 49.95 11.51 59.34 -12.65 42.84 

n=10 n=30 Method 

L (2.5%) C (95%) R (2.5%) Av. Len. 

 (SD) 

L (2.5%) C (95%) R (2.5%) Av. Len. 

(SD) 

QL-Wald  1.53  81.50  16.97   0.5747  

(0.2705) 

1.08  87.60   11.32  0.3502  

(0.1086) 

QL- Logit Wald  3.03  96.97  0.00   0.7142  

(0.0703) 

 3.12  96.88   0.00   0.3801  

(0.0576) 

RREE* 

 

 1.75  84.06 14.19   0.4681  

(0.2341) 

 0.95  88.95   10.10   0.3195  

(0.1144) 

RREE 

 

 4.76  95.24  0.00   0.5579 

(0.0882)  

 3.65  95.20   1.15   0.3510  

(0.0680) 
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Two-Sided Coverage probabilities (C) 

 

One-Sided Non-Coverage probabilities (L&U) 

 

Figure 2: 95% Coverage Probabilities of IE for µ(θ, x = 0.2)  

 

 

5. Application to Survey Data 

 

We illustrate an application of RREE to the data of cycle 1.1 of the Canadian Community Health Survey (CCHS) 

conducted in 2000-2001 whose goal was to collect general health information at the health Region level, a sub-

provincial level of geography (Béland, 2002). The target population is all persons aged 12 years or older living in 

private dwellings in the ten provinces and three territories.  The sample design is fairly complex involving stratified 

multi-stage cluster sampling. For the RREE application, suppose the parameter of interest is the proportion of 

smokers among 18 years old for the Yukon territory. For Yukon, the sample size was 809 while the population size 

was 24937. Using the optimal weighted quasi-likelihood (wql) method of Godambe and Thompson (1986), a two-

parameter logit model with a single covariate of age (treated as a continuous variable measured in single years of 

age) was fit to this data.  The wql-EFs for the parameters 
0 1

( , )θ θ are given by 

0 1( ) ( )1 1
( ( )), ( ( ))

n n

wq i i i wq i i i ii i
w y w x yθ θψ µ θ ψ µ θ

= =
= − = −∑ ∑ ,   (5.1) 

where 
i
w ’s denote the design weights.  A consistent estimate 

( )
ˆ
wq
V ψ of the covariance matrix ( )wq

V ψ of the EF-vector 

( )wq θψ can be obtained using standard survey sampling methods where the unknown θ -parameter is evaluated at the 

wql-estimator ˆwqlθ computed as a solution of (5.1). Analogous to (2.3), the estimated covariance matrix 
( )

ˆ
wq θΣ of 

ˆwqlθ is obtained after Taylor linearization in a sandwich form (Binder, 1983), and is given by  
1 1

ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ; ( / )wqlwq wq wq wq wq wqJ V J Jθ θ ψ θ θ θθ

ψ θ− −′ ′ ′Σ = = −∂ ∂ ,   (5.2) 

where the observed wq-information matrix 
( )wq

J θ is similar to the matrix in (3.5) except that sampling weights i
w ’s 

are appropriately inserted.  Now the wql-Wald or logit Wald method for IE can be applied using the approximate 

distribution of ˆwqlθ as 
( )

ˆ(0, )
p wq
N θΣ . To apply RREE to survey data, we need to express 

( )wq
V ψ as a function of all the  

parameters under consideration which may not always be the case with 
( )

ˆ
wq
V ψ (as, for example, in the case of linear 

models). Moreover, the estimated covariance matrix 
( )

ˆ
wq
V θ may not be stable for low or high prevalence outcomes. 
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To alleviate this problem, we can use a smoothed version of 
( )wq

V ψ obtained as follows. Assuming that the design is 

ignorable for the model (2.1), a working covariance 
( )wq

V ψ
∗

as an alternative to 
( )wq

V ψ , is obtained under the model but 

conditional on the selected units in the sample as  

 

2 2

1 1

( )
2 2 2

1 1

( ) ( )

( ) ( )

n n

i i i i i

wq n n

i i i i i i

w u w x u
V

w x u w x u
ψ

θ θ

θ θ

∗
 
 =
 
 

∑ ∑
∑ ∑

,                 (5.3) 

Now, the eigenvalues (or the generalized design effects; re: Skinner, 1989),
1 2
,λ λ , of the design effect matrix 

1

ˆ( ) ( ) wqlwq wqV Vψ ψ θ
∗−

are computed, and then following Singh, Folsom, and Vaish (2005), a smoothed version 
( )wq

V ψ of 

( )wq
V ψ is obtained as ( )wq

V ψλ ∗
where λ denotes the average of eigenvalues. Note that such type of smoothing works 

well if the coefficient of variation of eigenvalues is small. In our application, 
1 2
,λ λ are obtained as 0.85 and 1.52 

which are not very close, and so 
( )wq

V ψ may not be a good smoothed approximation. Note also that the eigenvalues 

for smoothing are computed only once using the consistent estimator ˆwqlθ and not for each replicate estimate. Now 

RREE can be easily applied as before using the normal approximation 
( )

(0, )
p wq
N V θ for the distribution of 

( )wq θψ .   

 

Table 3 illustrates the results obtained under wql-estimation and RREE as well as RREE*. It is of interest to compare 

results under the wrong assumption of a simple design obtained by completely ignoring the sampling weights. The 

precision of PE and the width of IE under the simple design assumption are misleading in that the estimate appears 

more precise, and the interval narrower. Notice that results for different methods are very similar because the 

prevalence parameter of interest is not low and the sample size even after discounting for the design effect is quite 

large. Nevertheless, this example does illustrate the modifications needed for application to complex surveys. 

 

Table 3: PE, VE, and IE for µ(θ,age = 18) for the 2001 CCHS Yukon Data 

 

Simple Design Assumed Complex Design of CCHS Method 

PE in % VE x 10
4
 IE in% PE in % VE x 10

4
 IE in % 

QL-Wald 28.95 6.91 (23.79, 34.10) 24.93 10.17 (18.67, 31.18) 

QL- Logit Wald 28.95 6.91 (24.08, 34.36) 24.93 10.17 (19.21, 31.68) 

RREE* 

 

29.02 7.09 (23.72, 34.30) 25.02 9.76 (18.81. 31.18) 

RREE 

 

29.01 7.10 (23.97, 34.32) 25.04 9.68 (19.24, 31.40) 

 

 

6. Concluding Remarks 

In this paper, we considered the problem of poor coverage of Wald and logit-Wald methods for IE under ql-

estimation for parameters of logit models for proportions. For small or moderate sample sizes, the Wald method for 

IE tends to give undercoverage for the two-sided interval while the logit-Wald method tends to yield overcoverage. 

The proposed alternative method of RREE is expected to improve coverage on theoretical grounds. Based on the 

limited simulation study, it was observed that RREE does improve considerably the coverage of two-sided intervals  

but only marginally for the one-sided intervals. However, for PE and VE, RREE for small sample sizes may 

introduce more bias in comparison to the ql-method, although the corresponding MSEs tend to be smaller especially 

for VE. An application of RREE to real data from the 2001 CCHS for the Yukon territory of Canada was presented. 

It was shown that after smoothing the covariance matrix of wql-EFs via generalized design effects, the application of 

RREE is essentially similar to that for the case of simple surveys; i.e., simple random samples. In practice, it is 

desirable to smooth the covariance matrix of wql-EFs for improved normal approximation because the design-based 

estimated covariance matrix for complex surveys may be unstable or may not be a function of all the parameters 
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under consideration.  It was observed that it is important to use a suitable pivotal to achieve superior performance of 

RREE.  The RREE* method, in particular, uses the Wald-type pivotal, and exhibited poor coverage properties.  

Finally, we remark that there is a need to develop an efficient algorithm for RREE for models with many parameters 

because solving recentered estimating equations for high dimensional parameters would be computationally very 

tedious. We plan to investigate it in future. 
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