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Abstract 
Since many epidemiological studies involve the study of individuals of different ages over time, it often becomes 
necessary to distinguish between and estimate both longitudinal and cross-sectional differences to overcome the 
possibility of selection bias.  This paper examines how the choice of age and time in modeling observational 
longitudinal data can affect the results.  In particular, age can be decomposed into two components: the age at entry 
into the study (first age) and the longitudinal follow-up time.  The implication of using age or first age and time is 
described for a number of possible linear mixed-effects models that may be used to describe the longitudinal data.  
The two approaches are illustrated using a number of different examples of data taken from the Baltimore 
Longitudinal Study of Aging (BLSA).  The examples illustrate that the added flexibility provided by the first age 
and time approach is usually necessary to adequately describe the data. 
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1. Introduction 

 
Mixed-effects models (Verbeke and Molenberghs, 2001) have become the standard approach to modeling repeated 
measures, longitudinal data.  When modeling data from a longitudinal observational study, the investigator must 
decide how to handle the confounding relationship of age and time of observation with a response variable.  This has 
been presented in many different ways by various researchers.  For example, Zeger, Liang, and Albert (1988) 
examined respiratory disease in a population of children ages 7 to 10 who were evaluated annually by only using the 
variable age in their model, thus considering the cross-sectional and longitudinal effect of age to be the same.  
Similarly, Park and Lee (1999) considered only age in modeling the occurrence of urinary incontinence during a 2-
year period in non-institutionalized community dwelling elderly 60  years and over.  In data from studies of the 
effects of a calcium supplement on bone density in a population of post-menopausal women (Smith et al. 1988), 
Lindstrom and Bates (1988) considered a linear mixed-effects model using only time of measurement of bone 
density in the treatment groups ignoring any possible age effects.  Also, Edwards et al. (2006) in an analysis of data 
from HIV patients evaluated only longitudinal changes in viral load by using only time from infection in fitting 
regression splines with a linear mixed-effects model.   
 
Brant and colleagues have presented analyses using a more flexible approach which models the cross-sectional 
differences among subjects along with the longitudinal changes within subjects by considering for each individual i 
and examination time j, Ageij = FAgei + Timeij, where FAgei is used to model a cross-sectional age differences and 
Timeij the longitudinal trend.  This approach was utilized on observational studies of hearing loss (Morrell and Brant 
(1991), Pearson et al. (1995), Morrell et al. (1997)), prostate disease (Carter et al. (1992), Pearson et al. (1994), 
Brant et al. (2003)), and cardiovascular function (Morrell et al. (1997), Pearson et al. (1997), Fleg et al. (2005)).  
Other authors employing a similar approach include Kenward, Lessafre, and Molenberghs (1994) in a study of the 
treatment of psychiatric patients, Chang (2000) in studies of diabetic retinopathy patients and radio surgery for 
meningiomas, and Zhang and Davidian (2001) in an analysis of cholesterol data. 
 
Another related issue of concern when modeling observational longitudinal data is the possibility of selection or 
recruitment bias (for example, see Heckman et al. (1996), Jensen et al. (2000), Korn et al. (2001), Hogan, Lin, and 
Herman (2004)).  In this paper, we consider selection or recruitment bias to correspond to the fact that subjects 
recruited into an ongoing study at an older age may be different from other subjects who were recruited at a younger 
age and remained in the study to reach the age of the older person.  For example, subjects who begin at age 50 may 
be different from subjects who started at age 40 and remain in the study for 10 years, i.e., it may be important to 
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distinguish between people studied at the  same age with  different starting ages in the  study.  In this situation the 
model must be able to account for these differences. 
 
In this paper we examine how choices of age and time in modeling observational longitudinal data can affect the 
results.  In the process, we also compare different approaches for modeling cross-sectional and longitudinal 
differences.  We explore a number of different examples of data taken from the Baltimore Longitudinal Study of 
Aging (BLSA) to illustrate the different modeling approaches for data sets with different characteristics with regard 
to age and time in the study.  See also Morrell et al. (2008). 
 

2. Comparing and Testing Models for Cross-Sectional and Longitudinal Change 
 
Scenario 2.1.  
We first consider a simple model where the response y is modeled as a linear function of age with a random effect 
for intercept.  The model is 
   y = β0 + bi0 + β1 Age + ε,  (1) 
which can be rewritten as  

y = β0 + bi0 + β1 (FAge + Time) + ε  = β0 + bi0 + β1 FAge + β1Time + ε. 
An alternative model or first age/time approach with separate terms for first age and time is 
   y = β0 + bi0 + β1 FAge + β2Time + ε (2) 
Note that models (1) and (2) will be the same only if β1 = β2 and this hypothesis may be tested within the mixed-
model framework.  Also, the first age/time approach allows for more flexibility in the model as the cross sectional 
and longitudinal effects are not constrained to be the same. 
 
Scenario 2.2.  
Now suppose that the model also contains a random age or time term to allow subjects to have varying longitudinal 
rates of change.  In this case,  
   y = β0+bi0+(β1+bi1)Age + ε, (3) 
which can be rewritten as  

y = β0+bi0 + (β1+bi1)(FAge + Time) + ε = β0+bi0 + (β1+bi1)FAge + (β1+bi1)Time + ε. 
The corresponding model using first age and time is 
   y = β0+bi0+β1FAge+(β2+bi1)Time + ε. (4) 
Model (4) is not nested within model (3) since in the Age model the random slope term appears with both the FAge 
and Time terms when the model is expanded.  Consequently one cannot use a Wald or likelihood ratio test to choose 
between these two models.  In this case, we can compare models using the AIC or the BIC. These criteria start with 
the log-likelihood and penalize the value for the complexity of the model.  One can choose between the models 
based on minimizing the AIC or BIC.  It is important to estimate the mixed-models using maximum likelihood 
(ML), not restricted maximum likelihood (RML), since the models being compared do not contain the same fixed-
effects.  Restricted maximum likelihood adjusts the likelihood for the fixed-effects in the model.  Consequently, if 
the models do not contain the same fixed effects RML will not produce comparable likelihood values. 
 
Scenario 2.3.  
Now we allow a quadratic age effect with a single random effect for intercept.   
  y = β0 + bi0 + β1 Age + β2 Age2 + ε, (5) 
which can be rewritten as  

y = β0 + bi0 + β1 (FAge+Time) + β2 (FAge+Time)2 + ε 
= β0 + bi0 + β1 FAge + β1 Time + β2 FAge2 + β2FAge×Time + β2Time2 + ε. 

The model involving first age and time is  
 y = β0+bi0 + β1FAge + β2Time + β3FAge2 + β4Time2 + β5FAge×Time + ε. (6) 
To compare these models we need to test: β1 = β2 & β3 = ½β4 = β5. 
 
Scenario 2.4.  
Finally, adding an age or time random effect yields:  
  y = β0+bi0 + (β1+bi1)Age +β2Age2 + ε, (7) 
which can be rewritten as 

y = β0 + bi0 + (β1+bi1) (FAge+Time) + β2 (FAge+Time)2 + ε 
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= β0 + bi0 + (β1+bi1)FAge + (β1+bi1)Time + β2 FAge2 + 2β2FAge×Time + β2Time2 + ε. 
The model involving first age and time is: 
 y = β0+bi0 + β1FAge + (β2 + bi1) Time + β3FAge2 + β4Time2 + β5FAge×Time + ε. (8) 
These models are again not nested but may be compared using AIC or BIC. 
Note:  As illustrated in the motivating example, all the models described above may contain additional explanatory 
variables without compromising our discussion (unless the other factors have interaction terms with the Age, FAge, 
or Time terms).  It is likely that that in some cases the Age/FAge/Time terms may lose their significance after the 
addition of additional explanatory variables.  However, it is likely that the change in significance will be similar in 
the FAge&Time model and the Age model. 
 

3. Examples 
 
All the examples presented in this paper use data from the Baltimore Longitudinal Study on Aging (BLSA) to 
illustrate various points using variables that, in some cases, are restricted to certain age ranges of the participants. 
 
Example 1.   
Consider the body weights of the 43 women in the BLSA over 70 years old who had at most 3 visits.  The resulting 
data contains 103 observations with a mean of 2.4 repeated observations per subject shown in Figure 2.  Note that a 
data set containing only participants with at most 3 visits was selected so that most of the subjects exhibit similar 
longitudinal patterns of change that appear to be linear and hence models (1) and (2) from Scenario 2.1 will be fit to 
this data.  Also participants with at most 3 visits require a model with only a single random effect in order to provide 
a satisfactory description of the data.  Models with additional random effects for age or time were also fit but the 
additional random effect was not necessary to describe this data. Table 1 compares the results of the fit of the 
models from Scenario 2.1 to this data.  The t-statistic testing the equality of the first age and time coefficients is 
statistically significant at the 5% level, and both the AIC and BIC suggest that the FAge&Time model (2) is more 
appropriate.  Figure 1 also gives the plot of the fitted models (1) and (2) which clearly shows the differences 
between the models as well as the selection bias present in the data.  Note that women beginning the study at older 
ages have lower predicted body weights than the body weights for women who attained the same age while 
beginning the study at a younger age.  Note also that the Time coefficient is not statistically significant in the 
FAge&Time model.  If this term were removed from the model, the reduced model would suggest that there are 
cross-sectional differences in body weight with age but no longitudinal changes over the short follow-up time in this 
data set. 
 
Also, note that the estimated random effects for the Age model (1) given in the right panel of Figure 2 show a clear 
downward trend with age.  This suggests that the Age model has a deterministic component that has not been 
accounted for in the model.  In contrast, the estimated random effects for the FAge&Time model (2) (left panel, 
Figure 2) appear to be randomly scattered with no correlation. 
 
Table 1: Parameter estimates (p-value) and comparisons between models from Scenario 2.1 for Example 1. 2σ̂  is 

the estimate of the error variance while 2ˆ Iσ  is the between subjects estimate of the variance of bi0. 
Age Model (1)  FAge&Time Model (2) 

Aβ̂  = -0.2418 (0.0213) Fβ̂  = -0.9285 (0.0033) 

 
Tβ̂  =-0.1698 (0.1160) 

2σ̂  = 9.2822 2σ̂  = 9.1879 
2ˆ Iσ  = 81.7874 2ˆ Iσ  = 72.4302 

 Ho: βF  = βT   
t  = -2.43, p-value  =  0.0182 

-2 lnL = 654.1 -2 lnL = 648.5 
AIC = 662.1 AIC = 658.5 
BIC = 669.2 BIC = 667.3 
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Figure 1: Observed (thin lines) and modeled body 
weights of women with first age at least 70 years old 
and at most 3 repeated measurements.  The thick dash-
dot line is from the Age model (1) and the thick solid 
lines are from the FAge&Time model (2). 

Figure 2: Plots of estimated random effects vs. age for 
models (1) and (2) in Example 1. 

 
Example 2:   
This example considers the cholesterol levels of 202 male participants over the age of 60 who had between 2 and 4 
visits resulting in 616 observations and 3.0 observations per participant.  The models (3) and (4) presented in 
Scenario 2.2 with an additional random effect for age or time are fit to this data.  Table 2 gives a summary of the 
two models and Figure 3 plots the observed cholesterol levels as well as the fitted models.  For this data, the plots of 
the fitted models in Figure 3 indicate that there again appears to be a selection bias and that the longitudinal and 
cross-sectional changes are not the same.  In addition, both the AIC and BIC prefer the FAge&Time model to the 
Age  model.   In the  FAge&Time  model, the FAge term is not statistically significant and could be eliminated from 
the model.  In this case, the data would suggest that there are no cross-sectional differences in cholesterol but that 
there are longitudinal declines. 
 
Again the estimated random effects from the FAge&Time model (two left panels of Figure 4) exhibit no association 
with age and a constant variability with age while the estimated random effects from the Age model (two right 
panels of Figure 4) exhibit significant associations with age and they also exhibit decreasing variability. 
 
Table 2: Parameter estimates (p-value) and comparisons between models from Scenario 2.2 for Example 2.  2σ̂  is 

the estimate of the error variance, 2ˆ Iσ  is the between subjects estimate of the variance of bi0, and 2ˆ Aσ  and 2ˆTσ  
estimate the between subjects variance of bi1 for models (3) and (4), respectively. 

 
Age Model (3) FAge&Time Model (4) 

Aβ̂  = -1.4814 (<0.0001) Fβ̂  = -0.6150 (0.0714) 

 
Tβ̂  = -2.6613 (<0.0001) 

2σ̂  = 470.84 2σ̂  = 455.83 
2ˆ Iσ  = 13260 2ˆ Iσ  = 1204.75 
2ˆ Aσ  = 1.7972 2ˆTσ  = 2.7582 

-2 lnL = 5971.2 -2 lnL = 5957.5 
AIC = 5983.2 AIC = 5971.5 
BIC = 6003.0 BIC = 5994.6 
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Figure 3: Observed (thin lines) and modeled 
cholesterol levels of men with first age at least 60 years 
old with 2 to 4 repeated measurements.  The thick dash-
dot line is from the Age model (3) and the thick solid 
lines are from the FAge&Time model (4). 

Figure 4: Plots of estimated random effects vs. age for 
models (3) and (4) in Example 2. 

 
Example 3:  
This example again considers the weight of BLSA women volunteers.  In this case we use data from participants 
who had exactly 2 visits, thus making the inclusion of a random age or time term unnecessary.  This data set consists 
of 198 women.  Here, we include a random intercept as well as the fixed components given in the models in 
Scenario 2.3 with an additional Age2 term in model (5) or additional FAge2,  Time2, and  FAge×Time  terms  in  
model  (6).   
 
While there is not much follow-up time and it is not anticipated that the fixed-effects Time2 term will be significant, 
it is retained in the model to make the FAge&Time model comparable with the Age model.  The results of the 
analysis are provided in Table 3, below, as well as in Figure 5.  As expected, the Time2 coefficient in model (6) is 
not statistically significant but the FAge2 and FAge×Time coefficients are significant while the Age2 coefficient in 
model (5) is statistically significant.  The test of the contrast of the parameters and both the AIC and BIC clearly 
indicate a preference for the FAge&Time model over the Age model. 
 
As before, the plot of the estimated random intercepts in Figure 6 from the Age model (right panel) shows a 
significant association with age.  This again suggests that the model has a deterministic component that has not been 
accounted for in the Age model. 
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Figure 5: Observed (thin lines) and modeled body 
weight of women with 2 repeated measurements.  The 
thick dash-dot line is from the Age model (5) and the 
thick solid lines are from the FAge&Time model (6). 

Figure 6: Plots of estimated random effects vs. age for 
models (5) and (6) in Example 3. 
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Table 3: Parameter estimates (p-value) and comparisons between models from Scenario 2.3 for Example 3. 
 

Age Model (5) FAge & Time Model (6) 

Aβ̂  = 1.1570 (<0.0001) Fβ̂  = 1.1565 (0.0002) 

2
ˆ

A
β  = -0.0098 (<0.0001) Tβ̂  = 1.2394 (0.0001) 

 
2

ˆ
F

β  = -0.01127 (0.0002) 

 
2

ˆ
T

β  = -0.02181 (0.3041) 

 
TF×β̂  = -0.01329 (0.0072) 

2σ̂  = 15.9065 2σ̂  = 14.6797 
2ˆ Iσ  = 145.01 2ˆ Iσ  = 140.08 

 Ho: βF  = βT & βF*F  = βT*T  = ½βF*T  
F  = 8.03, p  < 0.0001 

-2 lnL = 2819.0 -2 lnL = 2795.7 
AIC = 2829.0 AIC = 2811.7 
BIC = 2845.5 BIC = 2838.0 

 
Example 4:   
As a part of the testing performed in the BLSA related to body composition and fitness, a treadmill test is performed 
on the participants (Fleg et al., 2005).  One variable measured during this test is the maximum systolic blood 
pressure (MaxSBP) attained during the test.  In this example, we use data from 274 women over 40 years old who 
have at most 5 measurements of MaxSBP.  The data set contains 744 observations resulting in 2.72 observations per 
participant.  We fit the models (7) and (8) in Scenario 2.4 to this data (see Table 4).  For this data the fitted lines for 
both models (Figure 7) appear to be almost indistinguishable and there appears to be no selection bias.  The AIC 
prefers the FAge&Time model while the BIC prefers the Age model.  In the FAge&Time model, the FAge2 term is 
not statistically significant and could be eliminated from the model resulting in a more parsimonious description of 
the data. The estimated random effects (Figure 8) are not significantly associated with age for either model 
suggesting that, in this case, either model provides a good description of the data. 
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Figure 7: Observed (thin lines) and modeled maximum 
systolic blood pressure of women over 40 years of age 
with at most 5 repeated measurements.  The thick dash-
dot line is from the Age model (7) and the thick solid 
lines are from the FAge&Time model (8). 

Figure 8: Plots of estimated random effects vs. age for 
models (7) and (8) in Example 4. 
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Table 4: Parameter estimates (p-value) and comparisons between models from Scenario 2.4 for Example 4. 
 

Age Model (7) FAge & Time Model (8) 

Aβ̂  = 3.1002 (<0.0001) Fβ̂  = 3.0133 (0.0100) 

2
ˆ

A
β  = -0.01780 (0.0019) Tβ̂  = 3.6822 (<0.0001) 

 
2

ˆ
F

β  = -0.01734 (0.0688) 

 
2

ˆ
T

β  = -0.05472 (0.0287) 

 
TF×β̂  = -0.03738 (0.0118)

2σ̂  = 207.69 2σ̂  = 187.77 
2ˆ Iσ  = 525.26 2ˆ Iσ  = 377.96 
2ˆ Aσ  = 0.09078 2ˆTσ  = 0.9543 

-2 lnL = 6570.6 -2 lnL = 6559.7 
AIC = 6584.6 AIC = 6579.7 
BIC = 6609.9 BIC = 6615.8 

 
4. Conclusions 

 
In this paper we have examined the implications of modeling the longitudinal and cross-sectional components in a 
linear mixed-effects model using either Age or FAge&Time terms.  We have presented models for the two cases and 
shown how to compare models fit in both ways.  The examples presented show that the FAge&Time approach is 
more flexible and in many cases will provide a better description of the data than using only Age terms.  As we have 
seen, in a longitudinal study of normal healthy individuals, individuals who enter the study at older ages often have 
more favorable covariate values (e.g. less obese, lower cholesterol, etc.) than persons of the same age who began the 
study at an earlier are.  While using only terms involving Age yields predicted curves that are continuous, they are 
not adequate in accurately describing the real longitudinal and cross-sectional differences that are usually present in 
observational studies with longitudinal measurements. 
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