
Canonical Correlation Analysis of Longitudinal Data

Jayesh Srivastava∗ Dayanand N. Naik†

Abstract
Studying the relationship between two sets of variables is an important multivariate statistical analysis problem in statistics.
Canonical correlation coefficients are used to study these relationships. Canonical correlation analysis (CCA) is a general
multivariate method that is mainly used to study relationships when both sets of variables are quantitative. In this paper,
we have generalized CCA to analyze the relationships between two sets of repeatedly or longitudinally observed data using a
block Kronecker product matrix to model dependency of the variables over time. We then apply canonical correlation analysis
on this matrix to obtain canonical correlations and canonical variables.
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1. Introduction

Canonical correlation analysis (CCA) is a well known statistical technique used to identify and measure the asso-
ciation between two sets of random vectors using specific matrix functions of variance-covariance matrices of these
variables. This is also one of the most general methods for data reduction in multivariate analysis. CCA was intro-
duced by Hotelling (1936) while studying the relationship between two sets of variables in instructional research.
Now CCA has found many applications in different fields and it is routinely discussed in many multivariate statistical
analysis textbook. For example, see Johnson and Wichern (2002), Khattree and Naik (2000), or Mardia, Kent and
Bibby (1979).

Suppose Σxx is the variance-covariance matrix the p×1 random vector x and Σyy is that of q×1 random vector
y. Also suppose the covariance between the vectors x and y is given by Σxy = cov(x,y). Then we can write the
variance covariance matrix of (y, x) as [

Σyy Σyx

Σxy Σxx

]
.

The main idea behind canonical correlation analysis is to find a q× 1 vector a and a p× 1 vector b, given Σxx, Σyy

and Σxy, so that the correlation between a′y and b′x is maximized.
The ith pair of canonical variables (a′iy,b′ix) is obtained by solving

Σ−1
yy ΣyxΣ−1

xx Σxyai = ρ2
i ai (1)

and Σ−1
xx ΣxyΣ−1

yy Σyxbi = ρ2
i bi, (2)

where ρi is a canonical correlation and ρ2
i is eigenvalue of

Σ−1/2
xx ΣxyΣ−1

yy ΣyxΣ−1/2
xx or Σ−1/2

yy ΣyxΣ−1
xx ΣxyΣ−1/2

yy .

Kettenring (1971) has generalized CCA to more than two sets of variables; other generalizations of the method
can also be found in the literature. Beaghen (1997) has used canonical variate method to analyze the means of
longitudinal data. However, no methods have been found in the literature to perform CCA on longitudinally observed
data. Focus in this paper is to generalize canonical correlation analysis of repeatedly observed x = (x1, ..., xp)′ and
y = (y1, ..., yq)′.

2. Repeated Canonical Correlation Analysis

Suppose we have observed x and y repeatedly over t time periods. Let xi and yi be the vectors y and x observed
at the ith occasion. Define Y = (y′1, . . . ,y

′
t)
′ and X = (x′1, . . . ,x

′
t)
′.

To model the dependency of repeated measures we assume that the variance covariance matrix D of u = (Y ′, X ′)′
has a Kronecker product matrix structure. That is,

D =
[

Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]
. (3)
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The matrices Ωyy, Ωxx and Ωyx are used to model the dependency over t time periods of repeated measurements
on y, on x and of the covariance matrix between repeated measurements of y and x respectively. Kronecker product
structures have been successfully utilized to analyze multivariate normal repeated measures data in Naik and Rao
(2001), Roy and Khattree (2005), Srivastava, Nahtman and von Rosen (2007), and Srivastava, Nahtman and von
Rosen (2008).

The problem here is to determine linear functions U = a′Y and V = b′X such that the correlation between them
is maximum. Here a is qt × 1 and b is pt × 1 vectors. Assuming E(Y) = 0, E(X ) = 0 and restricting U and V to
have unit variances, i.e

E(U2) = 1 ⇒ a′E(Y ′Y)a = a′Ωyy ⊗Σyya = 1 (4)
E(V 2) = 1 ⇒ b′E(X ′X )b = b′Ωxx ⊗Σxxb = 1, (5)

the correlation between U and V is given by

E(UV ) = E(a′YX ′b) = a′E(YX ′)b = a′Ωyx ⊗Σyxb. (6)

Thus the algebraic problem is to find a and b to maximize (6) subject to the conditions (4) and (5). Solution
to this problem can be easily obtained using Lagrangian multipliers method and vectors a and b are obtained by
solving the equations:

(
(Ωyx ⊗Σyx)(Ωxx ⊗Σxx)−1(Ωxy ⊗Σxy)− λ2(Ωyy ⊗Σyy)

)
a = 0 (7)

and
(
(Ωxy ⊗Σxy)(Ωyy ⊗Σyy)−1(Ωyx ⊗Σyx)− λ2(Ωxx ⊗Σxx)

)
b = 0. (8)

From equations (7) and (8) it is clear that λ2 is an eigenvalue of

(Ω−1/2
yy ΩyxΩ−1

xx ΩxyΩ−1/2
yy )⊗ (Σ−1/2

yy ΣyxΣ−1
xx ΣxyΣ−1/2

yy ).

and of

(Ω−1/2
xx ΩxyΩ−1

yy ΩyxΩ−1/2
xx )⊗ (Σ−1/2

xx ΣxyΣ−1
yy ΣyxΣ−1/2

xx ).

In general the vectors ai and bi, such that (a′iY,b′iX ) is the ith pair of canonical variables, are obtained as the
solutions to

(Ω−1/2
yy ΩyxΩ−1

xx ΩxyΩ−1/2
yy )⊗ (Σ−1/2

yy ΣyxΣ−1
xx ΣxyΣ−1/2

yy )ai = λ2
i ai

and
(Ω−1/2

xx ΩxyΩ−1
yy ΩyxΩ−1/2

xx )⊗ (Σ−1/2
xx ΣxyΣ−1

yy ΣyxΣ−1/2
xx )bi = λ2

i bi.

Suppose λ2 is the vector of eigenvalues λi. Then using the properties of Kronecker product we have the
following: λ2 = λ2

Ω ⊗ λ2
Σ, where λ2

Ω and λ2
Σ are the vectors of eigenvalues of (Ω−1/2

xx ΩxyΩ−1
yy ΩyxΩ

−1/2
xx ) and

(Σ−1/2
yy ΣyxΣ−1

xx ΣxyΣ
−1/2
yy ) respectively. It is interesting to note that the canonical correlations for repeated mea-

sures data are the scaled versions of the canonical correlations in the usual case. However, the scaling is by the
square root of the eigenvalues of the repeated effect matrix (Ω−1/2

yy ΩyxΩ−1
xx ΩxyΩ

−1/2
yy ).

Notice that if there is no repeated effect (that is, Ωij = I, for i, j = x, y) or all the repeated effect is same (that
is, Ωij = Ω) then

(Ω−1/2
xx ΩxyΩ−1

yy ΩyxΩ−1/2
xx ) = ωItt

and λ2
Ω = ω1t, where ω is a positive constant.

3. Estimation and Hypothesis Testing

Usually the matrices Σyy, Σyx, Σxx, Ωyy, Ωyx and Ωxx are not known and need to be estimated from the data.
The population canonical correlation will be estimated by the sample canonical correlations. Let us assume that
u = (Y ′, X ′)′ is distributed as multivariate normal with mean vector µ and variance covariance matrix D.

Let u1, . . . ,un be the random sample from the N(µ, D) where variance-covariance matrix D is given by equation
3.
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The log-likelihood function of the parameters given the observed data is

L(µ,D) = −0.5(n log(|D|) +
n∑

i=1

(ui − µ)′D−1(ui − µ)). (9)

The estimates µ̂ and D̂ can be obtained by maximizing the above log-likelihood function. In the context of analysis
of multivariate repeated measures data, Naik and Rao (2001) have provided the maximum likelihood estimates.
Srivastava, Nahtman and von Rosen (2007), and Srivastava, Nahtman and von Rosen (2008) have provided proofs
that the maximum likelihood estimates exist and are unique. We used SAS’ non linear optimization routine for
maximizing the log-likelihood function. Suppose Ω̂yy, Ω̂yx, and Ω̂xx are the maximum likelihood estimates of Ωyy,

Ωyx, and Ωxx respectively and Σ̂yy, Σ̂yx, and Σ̂xx are the maximum likelihood estimates of Σyy, Σyx, and Σxx

respectively.
Then the sample canonical correlations λ̂2

i are obtained as the positive square roots of the nonzero eigenvalues of

(Ω̂
−1/2

yy Ω̂yxΩ̂
−1

xx Ω̂xyΩ̂
−1/2

yy )⊗ (Σ̂
−1/2

yy Σ̂yxΣ̂
−1

xx Σ̂xyΣ̂
−1/2

yy ).

The vectors âi and b̂i corresponding to ith pair of canonical variables are obtained as the solution of

(Ω̂
−1/2

yy Ω̂yxΩ̂
−1

xx Ω̂xyΩ̂
−1/2

yy )⊗ (Σ̂
−1/2

yy Σ̂yxΣ̂
−1

xx Σ̂xyΣ̂
−1/2

yy )âi = λ̂2
i âi

and
(Ω̂

−1/2

xx Ω̂xyΩ̂
−1

yy Ω̂yxΩ̂
−1/2

xx )⊗ (Σ̂
−1/2

xx Σ̂xyΣ̂
−1

yy Σ̂yxΣ̂
−1/2

xx )b̂i = λ̂2
i b̂i.

Before performing any canonical correlation analysis using the samples u1, . . . ,un, the following hypotheses may
be tested.

1. First test for the repeated effect on the variance covariance matrices of y, x and on cov(x,y), i.e. test

H0 : D =
[

Iyy ⊗Σyy Iyx ⊗Σyx

Ixy ⊗Σxy Ixx ⊗Σxx

]
vs Ha : D =

[
Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]

Note that the null hypothesis here specifies that the variance and covariance matrices do not change with the
time factor. Here as well as in the cases that follow, the alternative hypothesis is assumed to be as in our assumed
model, that it is unstructured Kronecker product block matrix. Testing can be performed using the likelihood ratio
test (LRT). Maximizing the log-likelihood function L(µ,D) = −0.5(n log(|D|) +

∑n
i=1(ui −µ)′D−1(ui −µ)) under

H0 and Ha will produce the maximum likelihood estimates. The likelihood ratio test statistic is then

−2logΛ = −2log(`0/`a),

where `0 and `a denote the maximized likelihood functions under the null and alternative hypothesis. Under H0,
−2logΛ has a chi-squared distribution, as n →∞. The degrees of freedom of the chi-square is the difference between
the dimensions of the parameter spaces under H0 ∪Ha and under H0.

2. If we accept H0 then we can do the usual canonical correlation analysis by merging all the data. Otherwise
we will test whether the effect of time (or the repeated effect) is on the covariances between (x and y) only. This
amounts to testing

H01 : D =
[

Iyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ixx ⊗Σxx

]
vs Ha : D =

[
Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]
.

To test this hypothesis, `a is as in the previous case, i.e. as in (1) above. The maximum likelihood estimates
and the maximum value of the likelihood function under H01 can be obtained by maximizing (9) under H01.

3. If we accept H01, then we can perform canonical correlation analysis (CCA) using the estimated variance
covariance matrix given under H01 in (2) above. Otherwise we will test for repeated effect on variance covariance
matrices of y, x, by testing,

Hox : D =
[

Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ixx ⊗Σxx

]
vs Ha : D =

[
Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]
,

Hoy : D =
[

Iyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]
vs Ha : D =

[
Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]

As before the MLE and the value of the maximum likelihood function under Hox (and Hoy) can be obtained by
maximizing (9) under the null hypothesis. Under Ha, the value `a remains the same.
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4. If we accept Hox or Hoy then we can perform canonical correlation analysis (CCA) using the corresponding
estimated variance covariance matrix as in (3). Otherwise we will test for the same repeated effect, that is, test

Htt : D =
[

Ωtt ⊗Σyy Ωtt ⊗Σyx

Ωtt ⊗Σxy Ωtt ⊗Σxx

]
vs Ha : D =

[
Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]

The MLE of the common Ωtt and the other parameters can be obtained by maximizing (9) under Htt and in the
same way as before the LRT can be constructed.

5. If we accept Htt then it suggest that change in variance covariance matrices over time is same and we should
perform canonical correlation analysis (CCA) using the estimated structured variance covariance matrix as discussed
in (4) above. Otherwise we should proceed with the general structured variance covariance matrix

D =
[

Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]
.

4. A Simulation Example

In order to illustrate the analysis discussed here, we will work with simulated data. First we use the Helmert matrix
to generate the positive definite matrices. The general form of a Helmert matrix Hk of order k has k−1/21′k for its
first row, and each of its other k − 1 rows for i = 1, . . . , k − 1 has the partitioned form

[
1′i | − i | 0

]
/
√

ai

with ai = i(i+1). A Helmert matrix is an orthogonal matrix, that is, H′H = HH′ = Ik. For example, the 4th order
Helmert matrix is given by

H4 =




1√
4

1√
4

1√
4

1√
4

1√
2

−1√
2

0 0
1√
6

1√
6

−2√
6

0
1√
12

1√
12

1√
12

−3√
12


 .

The spectral decomposition of a symmetric matrix, A is A =
∑

λiuiu′i, where the ui’s are the eigenvectors of
A. Now to generate a k× k positive definite matrix we take the kth order Helmert matrix, whose columns will give
us the eigenvector of the desired matrix. Then choosing k positive eigenvalues and using the spectral decomposition
property we can construct the desired k × k positive definite matrix. We will use thus constructed positive definite
matrix as Σ.

Partitioning Σ will give

Σ =
(

Σyy Σyx

Σxy Σxx

)
,

and Σyy,Σxx and Σyx can be used as variance-covariance matrix for y, x and covariance matrix between y and x
respectively. Then by choosing t× t modeling matrix Ωyy to associate with Σyy, Ωxx with Σxx and Ωyx with Σyx

we can construct the desired matrix

D =
[

Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]
.

We can simulate any desired number of observations from the multivariate Normal N(0,D) and do repeated
canonical correlation analysis on them as discussed earlier.

For our simulation example, we chose three y components, two x components and three repeated measurements,
that is, q = 3, p = 2, and t = 3. A Helmert matrix of order 5 is chosen and used to determine a 5×5 positive definite
variance covariance matrix Σ. In addition, we picked 9.5262261, 8.7983733, 4.3901993, 2.2263795 and 1.9919697 as
the eigenvalues which yields the following positive definite matrix Σ by the method described earlier.

Σ =




5.3866296 2.1523738 0.3669639 −1.729692 1.580125
2.1523738 5.3951715 1.9648395 1.3893513 1.0761869
0.3669639 1.9648395 4.7251901 0.2368742 0.183482
−1.729692 1.3893513 0.2368742 8.4097148 −0.864846
1.580125 1.0761869 0.183482 −0.864846 3.016442




.

Biometrics Section – JSM 2008

566



Table 1: Hypothesis Testing
Hypothesis Chi Square Test Statistics Dof p-value

H0 108.0483 3 0
H01 85.490536 2 0
Hox 53.496484 1 2.59E-13
Hoy 44.505918 1 2.54E-11
Htt 4.3754035 2 0.1121743

Table 2: Canonical Correlation Estimates
Can. Corr. Parameter Estimate Root MSE Bias

ρ ρ̂
√

E((ρ− ρ̂)2) |(ρ− ρ̂)|
ρ1 0.237273404 0.2418999 0.025882426 0.004626013
ρ2 0.208651984 0.2124004 0.018033303 0.003754997
ρ3 0.177922968 0.1889365 0.020921281 0.011013628
ρ4 0.1591106 0.159546475 0.018627936 0.009110434
ρ5 0.14793029 0.1447519 0.016281892 0.00317805
ρ6 0.126144001 0.1247618 0.018398369 0.001382172

By partitioning Σ we get Σyy, Σxx and Σyx as:

Σyy =




5.3866296 2.1523738 0.3669639
2.1523738 5.3951715 1.9648395
0.3669639 1.9648395 4.7251901


 ,

Σxx =
[

8.4097148 −0.864846
−0.864846 3.016442

]
and Σyx =



−1.729692 1.580125
1.3893513 1.0761869
0.2368742 0.183482


 .

We assume AR(1) structure for repeated modeling matrices Ωyy, Ωxx, and Ωyx with correlation parameter
ρy = 0.1, ρx = 0.2, and ρyx = 0.1 respectively. Arranging all the matrices together we have

D =
[

Ωyy ⊗Σyy Ωyx ⊗Σyx

Ωxy ⊗Σxy Ωxx ⊗Σxx

]
.

We simulated 500 observations from the multivariate normal (N(0,D)) distribution and estimated the population
parameters Σyy, Σxx, Σyx, ρy, ρx, and ρyx. The estimates were found by maximizing the log-likelihood function
using SAS NLPQN optimization routine.

5. Results and Discussion

To illustrate testing of various hypothesis discussed above, we used a set of data generated in the simulation. The
chi-square test statistics and the asymptotic P-values for testing different hypothesis are shown in Table 1. As can
be seen from the Table 1, all of the p-values are quite small except for the Htt hypothesis (p − val = 0.1121743).
Thus all hypotheses except the Htt are rejected. In hypothesis Htt we are testing that the repeated effect is same
on all components. In our simulation we have used the AR(1) structure for the repeated correlation matrix with
correlation parameters ρy = 0.1, ρx = 0.2, and ρyx = 0.1. Apparently these values are not very different to reject Htt

using likelihood ratio test and this sample data. Although those values are not provided here to save space, when
we chose quite different values for AR(1) parameters, the LRT did reject Htt.

Next, in order to estimate the bias in estimating canonical correlations and other parameters, we repeated the
simulation 5000 times and calculated the average values of all estimates. Table 3 shows the average of the parameter
estimates based on these simulations. Table 2 presents the means the estimated canonical correlations. In the
table, at the left of estimates we have provided true canonical correlation values calculated for the matrix used for
simulation. In Table 2, minimum and maximum bias values are 0.001382172 and 0.011013628 respectively. Similarly
in Table 3 biases ranges from 4.23009E − 05 to 0.00409767. From both the tables it can be said that the estimates
are very close to the true values.
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Table 3: Maximum Likelihood Estimates, root MSE, and Bias
Pop. Para. Para. Estimate Root MSE Bias

θ θ̂

√
E((θ − θ̂)2) |(θ − θ̂)|

Σyy(1, 1) 5.38663 5.386232775 0.196693162 0.000397225
Σyy(2, 2) 5.39517 5.394642743 0.201315673 0.000527257
Σyy(3, 3) 4.72519 4.724343576 0.175820078 0.000846424
Σyy(1, 2) 2.15237 2.149807789 0.151351577 0.00256221
Σyy(1, 3) 0.36696 0.367644263 0.131625226 0.000684262
Σyy(2, 3) 1.96484 1.963606497 0.139320494 0.001233503
Σxx(1, 1) 8.40971 8.406462064 0.312531758 0.003247938
Σxx(2, 2) 3.01644 3.014373036 0.111293755 0.002066964
Σxx1, 2 -0.86485 -0.864892301 0.131922326 4.23009E-05

Σyx(1, 1) -1.72969 -1.727133373 0.177219073 0.002556627
Σyx(1, 2) 1.58013 1.57732949 0.111941503 0.002800511
Σyx(2, 1) 1.38935 1.387468714 0.175657622 0.001881287
Σyx(2, 2) 1.07619 1.073755928 0.109225913 0.002434073
Σyx(3, 1) 0.23687 0.232772331 0.159496395 0.00409767
Σyx(3, 2) 0.18348 0.182754843 0.097614036 0.000725157

ρy 0.1 0.100341533 0.024503061 0.000341533
ρx 0.2 0.199774535 0.034666987 0.000225466
ρyx 0.1 0.100673171 0.041535527 0.000673171

6. Concluding Remarks

In this paper, we have provided an easy to implement procedure to perform canonical correlation analysis of repeat-
edly observed data sets. To accommodate the effects of repeated measure we have adopted a Kronecker product
structure to the variance covariance matrices. To account for the existence of repeated measure effects on different
blocks of the variance covariance matrix, we have provided testing of different hypothesis. All of the procedures
have been implemented on simulated data sets.

We have also proposed methods for performing correspondence analysis (CA) and canonical correspondence
analysis (CCPA) of longitudinally observed data and those results will be reported elsewhere.
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