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Abstract
Small area estimation based on area level models typically assumes that sampling error variances for the direct survey small
area estimates are known. In practice we use estimates of the sampling error variances, and these can contain substantial
error. This suggests modeling the sampling variances to improve them and to quantify e

,
dects of their estimation error on

small area inferences. We review papers that have attempted to address these issues. We then provide some results on the
latter issue, showing, in a simple framework, how error in estimating sampling variances can a

,
dect the accuracy of small area

predictions and lead to bias in stated mean squared errors.
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1. Introduction

A basic area level model used in small area estimation (Fay and Herriot 1979, Rao 2003) is as follows:

yi = Yi + ei i = 1, . . . ,m

= (x0iβ + ui) + ei (1)

where the yi are direct survey estimates of true population quantities Yi for m small areas, the ei are sampling errors
(of the yi) independently distributed as N(0, vi), the ui are small area random effects (model errors) distributed i.i.d.
N(0, σ2u), the xi are r × 1 vectors of regression variables for area i, and β is the corresponding vector of regression
parameters. Normality is not an essential assumption. A “standard” assumption, however, is that the sampling
variances, vi, are all known. If the model error variance, σ2u, is also known, then the best linear unbiased predictor
(BLUP) of Yi and its mean squared error (MSE) are (Rao 2003, 96-99 and 116-117)

Ỹi = hiyi + (1− hi)x
0
iβ̂ (2)

Var(Yi − Ỹi) = σ2u(1− hi) + (1− hi)
2x0iVar

³
β̂
´
xi (3)

where hi = σ2u/(σ
2
u + vi) and β̂ and Var(β̂) come from weighted least squares results:

β̂ = (X0Σ−1X)−1X0Σ−1y (4)

Var(β̂) = (X0Σ−1X)−1 (5)

where y = (y1, . . . , yn)0, X is n× r with rows x0i, and Var(y) ≡ Σ = diag(σ2u + vi).
From (2), the smoothed estimate Ỹi is a weighted average of the direct estimate yi and the regression prediction

x0iβ̂, with weights hi and 1 − hi determined by the model error variance σ2u and the sampling variance vi. The
first term in (3), σ2u(1− hi), is the inherent prediction error variance that would result if all model parameters were
known. The second term in (3) accounts for additional error due to estimating β. Considerable attention has been
given in the literature to augmenting (3) to reflect uncertainty due to estimating σ2u while still assuming the vi are
known. Prasad and Rao (1990) and Datta and Lahiri (2000) provide asymptotic results while Berger (1985, pp.
190-193) provides results from a Bayesian approach. Many other papers have extended these results towards more
general models (e.g., Booth and Hobert (1998) consider generalized linear mixed models) and to other approaches to
accounting for uncertainty due to estimating σ2u (e.g., Jiang, Lahiri, and Wan (2002) provide a jackknife approach).
Much less attention has been given to dealing with the fact that, in practice, the vi are not known but are

replaced in equations (2)—(5) by estimates v̂i. Typically the v̂i are direct sampling variance estimators based on
survey microdata (Wolter 1985) and, as such, are subject to errors (v̂i 6= vi.) In fact, if the direct survey point
estimates yi are very imprecise due to small sample sizes for some or all areas (which is what motivates model-based
small area estimation in the first place), the corresponding v̂i can also be expected to be very imprecise due to the
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same sample size limitations. This suggests modeling the v̂i to develop improved estimates of the vi and to quantify
their estimation error. It also suggests translating these results into improved measures of the MSE, or, from a
Bayesian perspective, improved measures of the (posterior) uncertainty of Yi. Section 2 discusses papers that have
attempted to address these issues.
Section 3 provides some results giving a rough indication of the extent to which estimation error in the v̂i can

affect small area prediction results in regard to (i) increase in MSE relative to use of the true (unknowable) vi, and
(ii) misstatement of prediction MSE. These topics are considered both in a conditional sense (for given values of the
v̂i) and in an unconditional sense (averaging over the distribution of the the v̂i).
Before proceeding a couple points are worth noting. First, the issues of concern here do not arise for unit level

small area models (Rao 2003), such as the nested error regression model of Battese, Harter, and Fuller (1988). We
can convert (1) to such a model by replacing the single index i by the double index ij, so that yij denotes the
observation from subject (ultimate sampling unit) j in area i, except we leave ui as is, so that it denotes a random
effect common to all observations from area i. With such models sampling variability is reflected in the variation
of yij within area i. The challenge is to specify a unit level model that adequately reflects the sampling variability,
including important features of the sample design. This challenge is made more severe if the sample design is complex
and/or the model is nonlinear. For example, while a number of papers have explored use of unit level generalized
linear mixed models for small area estimation, the papers have generally assumed, effectively, that the data arose
from simple random sampling (or basically they have ignored any consideration of the sample design). An exception
to this limitation is the paper by Malec, Davis, and Cao (1999).
Second, as noted by Wang and Fuller (2003), the asymptotic MSE results given by Prasad and Rao (1990) are

sufficiently general to cover the case where the sampling variances vi (as well as Var(ui)) depend on a finite number
of parameters and, potentially, on some additional covariates. (This is also true of the asymptotic MSE results
of Datta and Lahiri (2000).) In such a case more information accumulates about the sampling variances as the
number of observations m → ∞, and their parametric estimates should thus converge to the true values subject
to an assumption of correct specification of the parametric form of the variances. This differs fundamentally from
the situation where each individual variance estimate v̂i is used for the true vi, all of which are treated as distinct.
However, even if the parametric specification of the vi is reasonable these asymptotic results may not be very helpful
in practice since they assume that the parameters determining the vi are estimated using only the direct point
estimates yi as data (with no use made of direct survey variance estimates). Even if identifiability conditions hold
for the vi and Var(ui) in a strict mathematical sense, these quantities may be very weakly identified in a statistical
sense with any finite amount of data {yi}. In such cases the parameters determining the vi and Var(ui) will be
highly correlated and poorly estimated (Bell (1997) provides such an example), which may compromise practical
application of the asymptotic MSE results.

2. Literature Review: Dealing with Estimation Error in Sampling Variances

We group the papers reviewed here into three subsections: (2.1) approximate MSE results; (2.2) small area modeling
including sampling variance modeling; and (2.3) additional papers on modeling sampling variances.

2.1 Approximate MSE results

Wang and Fuller (2003, Theorem 1) provide an asymptotic result for the mean squared error of small area predictors
from the model (1) when small area sampling variances are estimated. Let Ŷi be the predictor for area i using
estimated sampling variances v̂i. The v̂i are assumed unbiased estimators of the vi that are independent of the
model and sampling errors ui and ei. In the notation being used here, under suitable assumptions their result can
be written:

MSE(Yi − Ŷi) ≈ σ2u(1− hi) + (1− hi)
2x0iV

³
β̂
´
xi + (σ

2
u + vi)

−3{σ4uV (v̂i) + v2i VA(σ̂
2
u)). (6)

V
³
β̂
´
is the variance of β̂, but differs from (5) because in Wang and Fuller (2003) β̂ is assumed not to depend on the

unknown variances σ2u and vi. See their paper for the expressions for this and for V (v̂i) and VA(σ̂
2
u). The expression

(6) is analogous to the asymptotic MSE result of Prasad and Rao (1990), but with addition of the term σ4uV (v̂i) to
reflect error in the estimates v̂i. Wang and Fuller derive two estimators of the MSE and examine their performance
in a simulation study. The estimators perform well in many of the cases considered, but do poorly when σ2u is quite
small relative to the sampling variances vi.
Rivest and Vandal (2003) provide an essentially similar MSE estimator, but obtained under the assumption

that the v̂i are approximately normally distributed. They provide some simulation results on its performance,
showing some improvements over the MSE estimator of Prasad and Rao (1990), which ignores error in the v̂i.

Section on Survey Research Methods – JSM 2008

328



The improvements are more pronounced as the degrees of freedom of the v̂i (assumed distributed as χ2 in their
simulations) gets small (they use a minimum of 4). However, in most cases that they consider the bias of the
Prasad-Rao MSE estimator is also small. Their simulations cover a relatively narrow range of values of vi/σ2u
(smallest is 1/3, largest is 2.5) compared to Wang and Fuller (smallest is 1/4, largest is 160).
An interesting feature of Wang and Fuller’s result is that it is asymptotic in both the number of small areas

m and the degrees of freedom d of the v̂i. They show that the error of the approximation (6) is O(rm,d) where
rm,d = max(m

−1.5,m−1d−1, d−1.5). One would not ordinarily think of the degrees of freedom of direct small area
variance estimates being large, which their theorem suggests is needed to make the approximation error in (6) small.
Similarly, Rivest and Vandal’s assumption of approximate normality of the v̂i obviously improves as d increases.
However, even with relatively small values of d (8 and 17 for Wang and Fuller, down to 4 for Rivest and Vandal),
the simulation results show fairly low bias of the MSE estimator in many cases, with the exception noted by Wang
and Fuller of the cases where σ2u is very small relative to the vi.
Note also that papers mentioned in the next section that feature Bayesian treatments of small area models which

include sampling variance models provide posterior variances reflecting uncertainty about the true sampling error
variances.

2.2 Small area modeling including sampling variance modeling

Arora and Lahiri (1997) examined theoretically a unit level small area model with random area variances proposed by
Kleffe and Rao (1992), but in analysis of an empirical example they used an area level model with direct sampling error
variance estimates assumed unbiased, independent of the direct survey point estimates, and distributed proportional
to a chi-squared random variable with known degrees of freedom. They then developed a Gibbs sampling scheme to
make Bayesian inferences for the model. The model is related to that of Otto and Bell (1995) (which is mentioned in
Section 2.3), though with a much simpler model for the sampling variances. They applied their model to data from
the Consumer Expenditure Survey on milk consumption for 43 small areas and, drawing eight 12.5 percent samples
from the survey data treated as a finite population, they compared direct and model-based small area estimators
from these samples. The hierarchical Bayes model yielded lower MSE than the direct survey estimates for all eight
samples, and lower MSE than an EBLUP for six of the eight samples. They didn’t attempt to assess the contribution
of uncertainty about the sampling error variances to their results.
You and Chapman (2006) analyzed an essentially similar area level model to that used by Arora and Lahiri (1997),

applying it also to their data, as well as to small area data on amount of land planted with corn and soybeans taken
from the paper of Battese, Harter, and Fuller (1988). You and Chapman provided results both for the model that
assumed the v̂i were distributed via div̂i/vi ∼ χ2di (with the degrees of freedom di assumed equal to ni−1 where ni is
the sample size for area i), and for a model that assumed the v̂i were equal to the vi. Comparing posterior standard
deviations or coefficients of variation for the two models showed, for the corn and soybean example, substantially
larger uncertainty surrounding the small area predictions from the model with the vi assumed unknown, but, for the
milk consumption example, almost identical results for the two models. The latter result was due to the large small
area sample sizes for that example, while for the corn and soybean example the small area samples were quite small.
Liu, Lahiri, and Kalton (2007) considered four alternative models for small area proportions. Two of these took

sampling variances as known, while the other two parameterized the sampling variances as [pi(1− pi)/ni]deff i, with
pi denoting the unknown true proportion for area i, ni the sample size, and deff i design effects that were estimated
and treated as known. Since the pi are unknown, the sampling variances were, to this extent, treated as unknown.
They applied the models to data on all registered births for 2002 and made predictions about the prevalence of low
birth weight for states from 1,000 samples drawn from the full data set. They examined coverage of 95 percent
credible intervals, finding that the models whose sampling variances depended on the true (unknown, to the models)
state proportions produced intervals with better coverage overall, though coverage rates for these and one of the
other two models were observed to increase with increasing sample size. They suggested, “that the credible intervals
are not adequately reflecting the effect of the greater precision of the direct estimates in the states with large sample
sizes.”
You (2008) considered a cross-sectional and time series model for estimated unemployment rates of small areas

in Canada, with sampling variances of the direct estimates parameterized in the same way as in the model of Liu,
Lahiri, and Kalton (2007), again with design effects estimated and then treated as known. He did not, however,
compare results to those from a model that assumed sampling variances were known.
Bell and Otto (1992) and Bell (1995) investigated time series models with sampling error components, with the

sampling error variances treated as unknown. A Bayesian approach was implemented via accept/reject sampling
and used to produce posterior means and variances of the time series components, a prediction problem analogous
to small area estimation. In the application considered the sampling errors were approximately uncorrelated over
time, and were assumed to have constant relative variance over time, with logarithms taken of the time series so
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the relative variance was taken as an approximation to the sampling variance in the log scale. Thus, the sampling
variances depended on this one unknown parameter, of which multiple estimates were available. The Bayesian
approach was used to reflect uncertainty about the common sampling relvariance and the other model parameters.
Nguyen, Bell, and Gomish (2002) applied a similar modeling approach to an application for which the sampling

errors did not appear uncorrelated over time (a second order autoregressive model was used), and for which the
sampling relvariances varied over time due to sample size fluctuations. Later, Bell (2005) provided some results from
a Bayesian treatment of this model.

2.3 Additional papers on modeling sampling variances

Several recent papers by (mostly) staff of the U.S. Bureau of Labor Statistics have explored fitting generalized
variance functions (GVFs) to direct survey variance estimates in a formal modeling context. Particularly relevant to
our concerns here is the paper by Gershunskaya and Lahiri (2005). They examined alternative approaches to variance
estimation for domain estimates in the Current Employment Statistics (CES) survey. In a simulation study with
subsamples drawn from part of the CES sample they noted that design-based variance estimates have low bias but
are unstable (very high CVs), while a synthetic model-based variance estimator was more stable but had substantial
bias. They developed simple models for design-based variance estimates or their logarithms that permitted empirical
Bayes smoothing of the variance estimates. They found the resulting variance estimates had low bias and were much
more stable than the design-based variances.
Additional papers on GVF modeling of direct variance estimates, though not doing empirical Bayes smoothing,

include Huff, Eltinge, and Gershunskaya (2002), Cho et al. (2002), and Eltinge, Cho, and Hinrichs (2002). An earlier
paper by Valliant (1987) connected use of a generalized variance function (GVF) with sample design by showing that
a commonly used GVF is consistent with a particular class of prediction models for estimating totals from stratified,
two-stage cluster samples.
Otto and Bell (1995) developed a model with state random effects for sampling covariance matrices of CPS

estimated poverty ratios. This model provides for a Bayesian or empirical Bayes smoothing of the direct sampling
variance estimates analogous to what was done by Gershunskaya and Lahiri (2005).

3. Examining How Error in Sampling Variance Estimates Can Affect Small Area Predictions

To get a rough idea of how error in sampling variance estimates can affect small area predictions — point predictions
and prediction error variances — we consider the simple case where the parameters β and σ2u are known, leaving only
the sampling error variances vi as unknown parameters. This assumption also applies as the number of small areas
m grows sufficiently large so that the estimation error of β and σ2u becomes small. We start by computing the MSE
treating the v̂i as fixed (i.e., conditional on the v̂i). Let Ŷi be given by (2) but using the estimated sampling variance
v̂i, that is, with weight ĥi = σ2u/(σ

2
u + v̂i) on the direct estimate yi. The MSE of Ŷi can be obtained by writing

Yi − Ŷi = (Yi − Ỹi) + (Ỹi − Ŷi), noting that the error Yi − Ỹi in the optimal predictor Ỹi is orthogonal to Ỹi − Ŷi,
which is a linear function of the data, so that E[(Yi− Ŷi)

2] = E[(Yi− Ỹi)
2] +E[(Ỹi− Ŷi)

2]. After a little algebra, we
have that

E[(Ỹi − Ŷi)
2|v̂i] = (hi − ĥi)

2(σ2u + vi).

We shall examine the percentage increase in MSE from using Ŷi instead of Ỹi. Since, with β and σ2u known the MSE
of Ỹi is given by the first term in (3), which can be written as σ2uvi/(σ

2
u+ vi), this percentage increase in MSE turns

out to be

MSE pct diff ≡ 100× MSE(Yi − Ŷi)− MSE(Yi − Ỹi)

MSE(Yi − Ỹi)

=
E[(Ỹi − Ŷi)

2|v̂i]
σ2uvi/(σ

2
u + vi)

=
(hi − ĥi)

2

hi(1− hi)
. (7)

We also examine the extent to which the MSE would be misstated by assuming that the v̂i are the true sampling
variances. The reported MSE would be, from (3), σ2u(1 − ĥi), while the actual MSE is, from above, σ2u(1 − hi) +
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(hi − ĥi)
2(σ2u + vi). The percentage difference between these two is

MSE relbias = 100×
(

σ2u(1− ĥi)

σ2u(1− hi) + (hi − ĥi)2(σ2u + vi)
− 1
)

= 100×
(

hi(1− ĥi)

hi(1− hi) + (hi − ĥi)2
− 1
)

(8)

upon dividing the numerator and denominator of the ratio by σ2u + vi and simplifying. Notice that we can write
hi = (1+ vi/σ

2
u)
−1 as a function of just the “noise-to-signal” ratio vi/σ2u. Similarly, ĥi = (1+ v̂i/σ

2
u)
−1. Thus, both

(7) and (8) can be computed given the ratios vi/σ2u and v̂i/σ
2
u.

We shall examine the MSE pct diff and MSE relbias for various multiplicative errors in v̂i as an estimate of vi.
These can be specified in terms of the ratio v̂i/vi = (v̂i/σ2u)/(vi/σ

2
u). For various degrees of underestimation of vi we

set v̂i/vi to one of the values (.75, .50, .25), reflecting underestimation by 25, 50, or 75 percent. For various degrees
of overestimation of vi we use the reciprocal values (4/3, 2, 4). We then computed MSE pct diff and MSE relbias for
values of the true ratio vi/σ2u ranging from 1 to 50, and their corresponding reciprocals ranging from 1 down to .02.
Results are plotted in Figures 1.a and 1.b. The dotted curves correspond to underestimation with the ratio v̂i/vi set
to .75 (green), .50 (blue), or .25 (red). The solid curves correspond to overestimation by the reciprocal factors 4/3
(green), 2 (blue) and 4 (red). The x-axis of both plots, for vi/σ2u, is on a log scale. Note that the MSE pct diff curves
are symmetric in that the MSE pct diff for (v̂i/σ2u, vi/σ

2
u) = (r1, r2) is equal to that for (v̂i/σ

2
u, vi/σ

2
u) = (r

−1
1 , r−12 ).

Examining first Figure 1.a we see that the increase in MSE from underestimating vi by 25 or 50 percent, or
overestimating vi by multiplicative factors of 4/3 or 2, is not very large, being no more than about 10 percent for
all values of vi/σ2u. With the more extreme estimation errors by factors of 1/4 or 4, consequences for MSE are
more severe. Note that when the sampling variance becomes larger than the model error variance (vi/σ2u > 1),
underestimation of vi is a more severe problem than overestimation. When the sampling variance is smaller than
the model error variance (vi/σ2u < 1), the reverse is true. Focusing on underestimation of vi, note that this implies
that the weight, ĥi = (1+ v̂i/σ

2
u)
−1, given to the direct estimate yi, exceeds the optimal weight hi = (1+ vi/σ

2
u)
−1.

When vi/σ
2
u < 1 the optimal weight exceeds 1/2, and giving a still larger weight to yi does not incur much increase

in MSE. However, when vi/σ
2
u > 1 the optimal weight is less than 1/2, and putting substantially more weight than

this on yi can lead to a substantial increase in MSE. The MSE increase peaks around vi/σ
2
u = 5, at which point

underestimating vi by a factor of 1/4 leads to ĥi = (1+5/4)−1 ≈ .44 compared to the optimal hi = (1+5)−1 ≈ .17,
with about a 55 percent increase in MSE. In other words, substantially underestimating the sampling variance vi
when it is large can substantially increase MSE. Note also, however, that for the largest values shown of vi/σ2u, even
underestimating vi at 1/4 its true value does not increase MSE so much. For example, if vi/σ2u = 50 the optimal
weight on yi is about .02, and if v̂i = vi/4 the weight is about .074, still quite small, so the increase in MSE is less
than 20 percent. Parallel comments clearly apply to overestimation of vi.
Turning to Figure 1.b we see that over- or underestimation of vi has more substantial effects on error in the

reported MSE than it did on the true MSE. The effects are largest for small values of vi/σ2u. Note that if v̂i/σ
2
u is

small (which it will be when vi/σ
2
u is small unless vi is substantially overestimated) ĥi is close to 1 and Ŷi is close

to yi, whose MSE is vi, so that errors in v̂i translate directly into errors in the reported MSE. With overestimation
of vi by factors of 2 or 4 the bias in the reported MSE is very large for small vi/σ2u, but declines fairly rapidly
as vi/σ2u increases, becoming much less important when vi/σ

2
u > 2. With underestimation of vi substantial bias

in the reported MSE persists into large values of vi/σ2u. When vi/σ
2
u gets sufficiently large then, even when vi is

underestimated to some extent, we have ĥi near zero, Ŷi close to the regression prediction x0iβ̂, and the MSE becomes
the variance of the regression prediction error, which is σ2u+x

0
iVar(β̂)xi. This depends on the vi only through Var(β̂),

which may not be severely affected by error in any individual vi (though here we are actually assuming Var(β̂) is
small due to m being large).
Notice that underestimation of vi is the more serious problem (in regard to both increased MSE and bias in

reported MSE) when vi/σ
2
u is large, while overestimation of vi is the more serious problem when vi/σ

2
u is small.

However, small values of vi generally result from large sample sizes, which also lead to more precise variance estimates
v̂i, making substantial error in the v̂i less likely. Thus, situations where overestimation of vi causes serious problems
seem generally less likely to arise than situations where underestimation of vi causes serious problems.
We now examine results for unconditional MSE obtained by assuming a distribution for the v̂i, integrating with

respect to this distribution to get E[(hi− ĥi)
2] and E(ĥi), and substituting these quantities into (7) and (8). These

results are consistent with the approximate unconditional MSE results of Wang and Fuller (2003) and Rivest and
Vandal (2003) discussed in Section 2, though again under the assumption that m is sufficiently large that σ2u and
β are essentially known. For this purpose we assume a χ2d distribution for dv̂i/vi. We choose d so that the lower 5
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percent point of the χ2d/d distribution for v̂i/vi roughly corresponds to the (.75, .50, .25) underestimation factors used
in Figures 1.a and 1.b. The corresponding 95 percent points of the χ2d/d distribution (Chemical Rubber Company
1971) are then substantially less than the reciprocals of (.75, .50, .25), as can be seen from Table 1, which also shows
the coefficients of variation (CVs) of the distributions.

Table 1. 5% and 95% points and CVs for the χ2d/d distribution

d 5% point 95% point CV
6 .27 2.10 .82
16 .50 1.64 .50
80 .75 1.27 .22

While these assumed distributions make a loose connection with the results in Figures 1.a and 1.b in relation to
underestimation of v̂i (the more serious concern), these assumptions are just for illustration, and clearly other
assumptions could be used. In particular, if we instead assumed a lognormal distribution with median 1 for v̂i/vi
(the mean would then exceed 1), then its 5 percent and 95 percent points would be reciprocals of one another, more
analogous to the calculations for Figures 1.a and 1.b.
Results from these unconditional calculations are shown in Figures 1.c and 1.d, with the red, blue, and green

curves corresponding to the values 6, 16, and 80 for d. From Figure 1.c we see that the increase in unconditional
MSE when d = 16 or d = 80 is quite mild, and is not very large (less than 10 percent) even for d = 6. What increases
there are in unconditional MSE are largest when vi/σ2u exceeds 1. (This is due to the nature of the χ

2
d/d distribution,

which makes severe underestimation of vi more likely than severe overestimation, in a multiplicative sense, as can
be seen from Table 1.) Examining Figure 1.d we see only slightly larger effects on the bias of the reported MSE,
with estimation error in v̂i leading to downward biases in the reported MSE (consistent with the asymptotic result
(6) of Wang and Fuller (2003)). Again, the effects are more pronounced when vi/σ

2
u exceeds 1, and are larger for

smaller values of d, reflecting larger amounts of estimation error in v̂i.
Clearly the most serious concerns arising from the results presented here are those of Figure 1.b on the percent

bias in the reported conditional MSE due to error in v̂i. Whether or not one takes comfort in the relatively mild
effects of estimation error in v̂i on the unconditional MSE and on the bias in the reported unconditional MSE, in
contrast to the potentially larger effects for a specific observed sample, probably depends on whether one views
things from a conditional or unconditional perspective.
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Fig. 1. Percent difference in MSE and percent bias in reported MSE
from using estimated versus true sampling variance
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