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Abstract 
Calibration can be used to adjust for unit nonresponse when the model variables on which the response/nonresponse 

mechanism depends do not coincide with the benchmark variables in the calibration equation.  As a result, model-

variable values need only be known for the respondents.  This allows the treatment of what is usually considered 

nonignorable nonresponse.  Although one can invoke either quasi-randomization or prediction-model-based theory to 

justify the calibration, both frameworks rely on unverifiable model assumptions, and both require large samples to 

produce nearly unbiased estimators even when those assumptions hold.  We will explore these issues theoretically and 

with an empirical study. 

 

Key Words: Prediction model; Quasi-randomization; Benchmark variable; Model variable; Bias; Response-guided 

response group 

 

  

1.  Introduction 

 
Although not orginally designed for that purpose, calibration can be used to adjust for unit nonresponse.   See, for 

example, Kott (2006).  It is less well known that calibration can be employed when the (explanatory) model variables 

on which the response/nonresponse mechanism depends do not coincide with the benchmark variables in the 

calibration equation.  As a result, model-variable values need only be known for the respondents.  This allows the 

treatment of what is usually considered nonignorable nonresponse.   

 

Section 2 lays out the two theories behind using calibration as a method for nonresponse adjustment: quasi-random 

response modeling and prediction modeling.  Section 3 extends the prediction-modeling approach to cover 

nonignorable nonresponse.  The response mechanism is said to be “nonignorable” when the expected value of the 

survey variable under the prediction model differs between respondents and nonrespondents even when conditioned on 

benchmark variables. 

 

Only the prediction-modeling approach needs to be extended to cover nonignorable nonresponse.  This is because the 

ignorability of the response mechanism is an irrelevant concept under quasi-random response modeling since the unit 

propensities of response are modeled in that approach, not the survey variable.   

 

A new version of the prediction model in the extended approach bearing its name relates the survey variable to the 

model variables.  In the extension, a second model equation, called the “measurement-error model,” connects the model 

variables to the benchmark variables. 

 

The  respective theories behind the quasi-random-response and prediction-modeling approaches rely on samples being 

large and on model assumptions that can fail in practice.  We explore this empirically in Sections 4 and 5 for a census, 

thereby avoiding the added complication of a random-sampling component in the estimates.   

 

Mutually exclusive group-indicator variables known for all units in the population serve as the benchmark variables in 

our empirical evaluations.  The  “benchmark groups” themselves are based on previously-collected frame information.  
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Following Kott (2005), model variables are created by constructing analogous “model groups” using survey 

information known only for the respondents.   

 

Neither the prediction/measurement-error model nor the response model justifying calibration using these model 

groups is correct.  Both, however, are closer to the truth than the models justifying calibration treating the benchmark 

groups as the model groups.  As a consequence, using the response-generated model groups leads to much lower 

empirical biases and smaller mean squared errors if slightly larger empirical standard deviations.      

 

We had hoped that a prediction-model-based correction to the quasi-randomization mean-squared-error estimate would 

prove to be effective even when the models supporting the prediction-model approach were not strictly true.  

Unfortunately, this turns out not to be the case even when the model variables in the calibration are based on the true 

quasi-random response model.         

 

Section 6 provides a discussion of these and some additional empirical results.  In addition, we suggest areas for future 

research.   

 

 

2. Some Theory 

 

2.1 Calibration 
 

Linear calibration weights can be put in the form: 

 

                                             wk = dk(1 + zkg),                                                                            (1) 

                                                                                                       

where k denotes an element in population U,  {dk} is the set of original sample weights − the inverses of the element 

selection probabilities (for a census, all dk = 1) − for the elements in sample S,  zk = (zk1, ..., zkP)  is a row P-vector with 

zk1 = 1 (or the equivalent: zkλλλλ = 1 for some λλλλ),  g = (ΣS djxj'zj)
-1

(ΣU xj −ΣS djxj)', and xk  is a row P-vector of benchmark  

(or calibration)  variables  for  which  ΣU xj  is known.   To simplify the exposition,  we  will  assume  that  matrices  like 

N
 − 1ΣS djxj'zj when encountered in the theoretical sections of this paper are of full rank.  

 

The weights in equation (1) are constructed so that the calibration equation,  

 

                                               N
 − 1∑Swkxk = N

 − 1∑U xk,                                                               (2) 

 

holds.  In most multivariate applications, the vector zk coincides with xk, but that will not generally be the case here.  In 

linear regression, the components of  zk  when not equal to corresponding components of xk are called “instrumental 

variables.” 

 

Under mild conditions which we assume to hold,  t = ∑S wkyk  is  a randomization-consistent estimator for  T = ∑U yk.  In 

addition, t is an unbiased predictor for T under the linear prediction model:  

 

                                             yk = xkββββ + εk,                                                                                (3)  

 

for each k ∈U,  where  

 

                                         E(εk |{xj, zj, Ij ; j∈U}) = 0,                                                                 (4) 

 

and Ij = 1 when  j ∈S, 0 otherwise.   
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2.2 Nonresponse 
 

Linear calibration can also be used to adjust for nonresponse.  Redefining S as the subset of sample respondents, t 

remains a prediction-model unbiased predictor for T.  Equation (4) requires that the prediction model in equation (3) 

hold whether or not k is in S.  This now means the response mechanism, like the sampling mechanism, is ignorable.    

 

Strictly speaking, the sampling and response mechanism is ignorable if the distribution of  εk |{xj, zj, j∈U} is the same 

regardless of the Ij   For most  practical purposes, however,  it suffices to focus on the conditional expectation of the  εk. 

An alternative justification for linear calibration as a method of nonresponse adjustment treats sample response as an 

additional phase of probability sampling.  Each element in the population is assumed to have a Poisson probability of 

response equal to  

 

                                              pk  = ρ(zkγγγγ) = 1/(1 + zkγγγγ).                                                              (5) 

                                                                                      

If  g ≈γγγγ ,  then  t = ∑S wkyk  ≈  ∑S dk(1 + zkγγγγ)yk  would be randomization consistent under mild conditions.  This was first 

noted by Fuller et al. (1994) for the zk = xk case.    

 

The form of the response model in equation (5) is unlikely, but it may be reasonable to assume a response (propensity) 

model of the form 

 

                                                   pk  = ρ(zkγγγγ) =1/f(zkγγγγ)                                                             (6)

                                                                                     

where f(δ) is an appropriately-chosen monotonic and twice differentiable function.   Subject to  a set of mild conditions, 

if a vector g ≈γγγγ  can be found that satistifes   

 

                                               ∑S dkf(zkg)xk  = ∑U xk,                                                                  (7) 

 

then using the calibration weights, wk =  dkf(zkg), results in a randomization consistent estimator under the response 

model.  

 

Folsom and Singh (2000) describe an iterative method for finding such a g when zk = xk.  Kott (2006) provides the 

obvious extension to a more general zk.  This extension allows the explantory variables in the response model to differ 

from the benchmark variables in the calibration equation.  Earlier work along this line in France is described by Sautory 

(2003).  

 

Chang and Kott (2007) call f(δ) the “back-link function” because it is the inverse transformation of the link function in 

the generalized-linear-model literature.  See, for example, see McCullagh and Nelder (1983).    They also call the 

components of zk  “model variables.”   

 

When a g satisfying equation (7) can be found, t = ∑Swkyk = ∑S dkf(zkg)yk is both quasi-randomization consistent 

(randomization consistent under the response model) and prediction-model unbiased for T under mild conditions.  The 

former property is defined with respect to the model in equation (6) and the latter to the model in equation (3).  Observe 

that only one of the two models need hold for t to be a nearly unbiased estimator for T in some sense.  This property has 

been called “double protection” or “double robustness” in the biometrics literature (see, for example, Bang and 

Robbins, 2005). 

 

Note that if the back-link function in the response model is incorrect, then g defined implicitly by the equation (7) bares 

no relationship to γγγγ as defined in equation (6).  In fact, from a response-model-free point of view, γγγγ is simply the limit 

of g as the sample size grows arbitrarily large.  Some may argue that taking such a limit assumes a quasi-randomization 

framework.   Perhaps,  but the actual  Poisson response probabilities  need not conform to a  known  back-link  function  

f (δ). 
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2.3 An Example 
 

The ratio estimator provides an example of a estimator that is (nearly) unbiased when either the response or prediction 

model holds even though the other may fail.  It is  

 

                            where,   1.= = =
∑ ∑

∑ ∑
∑ ∑

k k k k kS S
k k kU U

k k k k kS S

d y d z y
t x x z

d x d z x
 

 

This estimator is nearly unbiased under the response model where every element in the original sample is equally like 

to respond (since all zk = zk = 1) regardless of how yk and xk are related.  Alternatively, it is unbiased under the 

prediction model where E(yk|xk) = βxk  (since xk = xk)  for both respondents and nonrespondents even when response 

probabilities vary with xk.     

 

2.4 Variance/Mean-Squared-Error Estimation 
 

If the εk in the prediction model of equation (3) are uncorrelated, and 2( )kE ε = 2 ,kσ then the model variance of t (as a 

predictor for T) is approximately 2 2( ) .k k kS w w− σ∑   The identity is exact when 2
kσ  = xkλλλλ for some λλλλ.    

 

 For simplicity, we will assume here that Poisson element sampling was used to draw the orginal sample or that the 

original sample was a census as will be the case in the empirical example in Section 4.  A nearly unbiased estimator for 

both the prediction-model variance and quasi-randomization mean squared error of t (under the respective models) 

would be 

                                                          2 2( ) ,k k kSv w w e= −∑                                                                    (8) 

 

where                                                  ek = yk − xk[∑S dj f1(zjg)zj'xj]
-1 ∑S dj f1(zjg)zj'yj,                                        (9) 

 

and  f1(δ) is the first derivative of  f (δ).  The f1(zjg) terms in the definition of the ek assure the nearly unbiasedness of v 

as an estimator for the quasi-randomization mean squared error of t.  They are no more than arbitrary constants from 

the prediction-model point of view. 

  

The relative (prediction-model) bias of v as an estimator of the prediction-model variance of t is O(1/n) under mild 

conditions, while the relative bias of v as an estimator of quasi-randomization mean squared error of t is OP(1/n
1/2

). 

Nevertheless, it is troubling that this prediction-model bias is positive when each 2 2( ) ,k kE e < σ  as will almost always be 

the case.   

 

Kott and Brewer (2001) describe a number of ways to sharpen the estimation of or for prediction-model variance.  One 

method replaces 2
ke  in equation (8) with  

 

                                  

( )

2
2

1

1 1

.

1 ( ) ( )

k
k

k j j j j k k kS

e
r

d f d f
−

=
′ ′− ∑x z g z x z g z

                                          (10) 

 

Only on rare ocassion will this procedure remove the entire prediction-model bias of v, but it will usually remove most 

of it, and the bias of the resulting prediction-model variance estimator will have an ambiguous sign. 

 

3. Nonignorable Nonresponse 
 

From a prediction-model point of view,  when the variables in zk are not all deterministic functions of the xk, it may be     

desirable to replace the requirement in equation (4) with a weaker variant:  

 

                                             E(εk |{ zj, Ij ; j∈U}) = 0.                                                               (4’) 
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Removing the conditioning on the xj in the above equation allows the possibility that the response mechanism is 

nonignorable under the linear prediction model, yk = xkββββ + εk, since the expectation of εk need not be zero when 

conditioned on xj, Ij ; j∈U.  In particular, E(εk |{xj ; j∈U}), although zero on average when the model holds for the 

population, may differ between respondents and nonrespondents.  

 

Some care is necessary when equation (4’) replaces (4), because g in wk = dkf(zkg) is a function of the sampled xj.  As a 

result, the strict prediction-model unbiasedness of t becomes near unbiasedness under mild assumptions.  One such 

assumption is that the limit of g exists as the sample size grows arbitrarily large.  Moreover, this limit, again called “γγγγ,” 

is assumed not to be a function of the sampled xj.   

 As a result, even when the second equation in (6) does not hold, so long as g = γγγγ + OP(1/n
1/2

), we have 

 

 

   E[N
 −1

(t – T) |{ zj, Ij ; j∈U}] = E(N
 −1∑S wkεk|{ zj, Ij ; j∈U})  

                                                = E(N
 −1∑S dk f(zkg)εk|{ zj, Ij ; j∈U})  

                                                = E(N
 −1∑S dk f(zkγ)εk|{ zj, Ij ; j∈U}) + OP(1/n

1/2
) = OP(1/n

1/2
). 

 

An example of a framework in which equation (4’) is sensible follows.  Suppose the yk can be fit by this prediction 

model:  

 

       yk = zkθθθθ + τk,                                                                           (11) 

 

where E(τk |{zj, Ij ; j∈U}) = 0.  In addition, suppose the benchmark variables can be fit by a “measurement-error” 

model:  

 

       xk = zkΓ + ξk,                                                                            (12) 

 

where E(ξk |{zj, Ij ; j∈U}) = 0 (“measurement-error” is in quotes because this use of measurement-error modeling is 

idiosyncratic).   It is not hard to see from equations (11) and (12) that ββββ in equation (3) is Γ
-1θθθθ, while εk is τk − ξkΓ

-1θθθθ.  If 

the (τk, ξk) are uncorrelated across the k, then so are the εk.  This is handy for prediction-model variance estimation as 

described in Section 2 and modified to allow the assumption in equation (4’) to replace that in (4).    

 

Both the prediction model in equation (11) and measurement-error model in (12) assume the response and sampling 

mechanisms are ignorable conditioned on zk  rather than xk.  Indeed, the components of zk have become model 

(explanatory) variables just as in the quasi-randomization framework.   

  

Equation (12) need not be a causal model.  Indeed, the components of xk are often frame variables determined before 

the sample is enumerated, while the components of zk can include survey values, perhaps even yk itself.  It is important 

to remember that our goal is to estimate T in a nearly unbiased fashion.  It is not to estimate θθθθ, Γ, or ββββ = Γ
-1θθθθ.   The 

estimation of model parameters is, at most, a means to an end.  

 

Chang and Kott (2007) extend the quasi-randomization approach to calibration for nonresponse to situations where 

there are Q < P components of zk.  They show that under mild conditions finding a g that minimizes the objective 

function: 

  

                       S = ( ) ( )2 1
( ) ( ) ,k k k k k k k kU S U SN d f d f

− − ′− −∑ ∑ ∑ ∑x z g x Λ x z g x  

 

where Λ is a positive-definite P x P matrix, will produce a randomization consistent t = ΣS wkyk = ΣS dk f(zkg)yk under the 

response model in equation (6).   

  

For a given ,Λ this means finding a g such that  

 

                 ( )2 1
1( ) ( ) ,k k k k j j j jU S SN d f d f

− − ′− =∑ ∑ ∑x z g x Λ z g x z 0                               (13) 
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In some sense, the optimal choice forΛ is the quasi-randomization variance of  Q = (n
1/2

/N) ( γ)j j jS d f ′∑ z x , but that 

variance cannot be estimated directly because γγγγ is unknown.  As a result, Chang and Kott suggest replacing Λ  in 

equation (13) with Λ̂ (g), an estimator for the randomization variance of Q under the assumption that γγγγ = g.  This 

value, which is Λ̂ (g) = (n/N 
2
)

2
{[ ( )] ( )}j j j j j jS d f d f ′−∑ z g z g x x  in our special case, gets revised in each iteration of 

the process used to find g.  

 

From a prediction-model viewpoint, given a P x Q matrix A of full rank, we can transform the calibration equation in 

equation (2) into N
 − 1∑S wkxkA = N

 − 1∑U xkA.  In addition, as long as the matrix A is not a function of the sampled xj, 

we can replace xk in equation (12) with  

 

                                                   xkA = zk ΓA + ξkA   

 or 

                                                                �xk = zkΓ�  + .kξ
�                                                                      (14) 

 

The results of  the  prediction-model analysis  then  follow  with  k
�x  replacing  xk,  and     N

 − 1
k kS w =∑ x� 1

kUN − ∑ x�  

replacing the calibration equation.     

  

Effectively, Chang and Kott set   

 

                           
1 1

1
ˆ ( )j j j jSN d f

− − ′= ∑A Λ z g x z ,                                                                         (15a) 

or 

                            

11
1

1
2

1

ˆ ˆ ( ) ( )

{[ ( )] ( )} ( )

j j j jS

N
j j j j j j j j j jS Sn

N d f

d f d f d f

−−

−

  ′=  

 ′ ′= −
 

∑

∑ ∑

A Λ g z g x z

z g z g x x z g x z

                      (15b) 

   

and  ˆˆ k k=x x A .   From  this perspective,  equation  (15)  simply  restates the  calibration 
 
equation  as  N

 − 1∑S wkxk Â  =  

N
 − 1∑U xk Â .   

 

Either version of Â in equation (15) is a function of the sampled xj violating an assumption needed from a 

prediction/measurement-error viewpoint to transform E(ξξξξk |{zj, Ij ; j∈U}) = 0  into the analogous E( kξ
� |{zj, Ij ; j∈U}) = 

0.  We can get around this problem by letting A be the asymptotic limit of Â , which we assume to exist whether or not 

the back-link function in equation (6) is specified correctly.  Moreover, this limit is assumed not to be a function of the 

sampled xj.  Consequently, with some work we can establish that t is nearly prediction/measurement-error model 

unbiased for T under mild conditions.  In addition, after xk is replaced by ˆˆ k k=x x A , when defining the ek in equation 

(9),  the prediction model variance of t can be estimated by v in equation (8).   Finally, although analogues to the 

sharpened version of prediction/measurement-error model-variance (or mean-squared-error) estimation described in 

and around equations (10) does not provide exact unbiasedness, it should lead to improvement over v.   

 

4.  Setting Up an Empirical Exploration 
 
In this section, we create data sets from respondent data for the 2002 Census of Agriculture in South Dakota.  We will 

be interested in estimating total sales from these data sets.  Since the data come from a census, the original sampling 

weight, dk, is 1 for all k.  It will remain so in our analyses.  

 

We will treat the entire South Dakota respondent data set with some additional created variables (and one “outlier” 

removed) as a population of interest.  To explore sample-size issues, we will also treat a 20% random subsample of this 

respondent set as a population of interest.  We will refer to the two as the 100% population and the 20% population.    
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In Chang and Kott (2008), we estimated the following element response function for South Dakota:  

 

          pk = {1 + exp(− 6.085 + 0.5188 logtvp2k  − 1.2285 s97k)}
-1

,                                (16) 

 

where logtvp2k is the (natural) logarithm of element sales (in dollars) truncated to the range [1,000, 100,000], and s97k 

is an indicator of whether or not the element responded to any surveys within the last five years.     

 

Equation (16) is a classic example of a nonignorable response mechanism in that response is a function of what we 

want to measure: sales.  We will use a truncated variant of this equation to generate independent subsets of 

respondents: 

 

                                    pk = 0.001 + 0.998{1 + exp{−6.085 + 0.5188 logtvp2k  − 1.2285 s97k)}
-1

.
    

                (17) 

  

This restricts the range of the response probabilities between 0.001 and 0.999.  

 

Sales are not known before enumeration.  That is why NASS used poststratification to adjust for nonresponse in the 

2002 Census of Agriculture based on groups formed using a before-the-fact projection of sales, called “frame sales” 

(because it is known for all elements on the frame) and the s97 indicator.   

 

Unfortunately, the element frame sales have not been retained on Census data sets.  Consequently, we use the actual 

sales reported from the 2002 Census as the frame sales for our two populations (100% and 20%) and generate the  true 

sales for each element using the formula:  

 

                                                                true salesk = {.5 + [1 + exp(σZk)]
-1

} frame salesk,                                          (18) 

 

where Zk is a random draw from a N(0, 1) distributions, and σ = 1.  Actual sales were often not recorded when less than 

1,000 because the element was deemed not to be a farm and therefore out of scope.  When that happened, we replace 

the missing value with a draw from the uniform distribution on [0, 1,000).    

 

We generate five sets of true sales for each element in a population.  This gives us five 100% population sets and five 

20% population sets.  Using equation (17), we generate 1,000 respondent subsets for each of the 10 population sets.    

 

We use frame sales to create true sales because the former, which are in practice often based on previously reported 

sales data, exists before the latter.  Thus, this is the more reasonable direction for the causality despite the 

measurement-error model assumed in equation (12).  Models in survey sampling are often little more than useful 

fictions.  One should always keep that in mind.      

 

We estimate total sales from each respondent subsample in basically two different ways.  One way employs simple 

poststratification, the most commonly used method in survey practice.  The population is divided into 10 mutually 

exclusive  response groups by cross-classifying five size classes based on frame sales (having cut points at 1,000, 

10,000,  50,000, and 250,000)  with the two realizations of  s97.  In our notation, the vector of benchmark variable, xk 

has ten components, each being a 0/1 indicator of membership in one of the groups.  Poststratification assumes the 

model variables, the components of zk, are the same as the components of xk. The choice of the back-link function, f(δ) 

has no effect as long as 1/f(δ), is free to attain the realized values of group response rates; see equation (6).  For 

simplicity, we can (usually) set  f(δ) = δ.   (We will explain the parenthetical limitation later in the section.)     

 

The quasi-random response model supporting this methodolgy is that every element in a particular “benchmark group” 

has an equal probability of response.  That is not true with our data, since response is generated using equation (17).  

The prediction model is that the true sales for every element in a particular benchmark group has the same expected 

value whether or not the element responds.  That is also not true, since we know from equation (17) that true sales and 

response are strongly related, and two elements in the same benchmark group can have farly divergent true-sales values 

(see equation (18)).   

 

In these evaluations, we know the true response model in equation (17), both its functional form and its arguments.  In 

real life, neither is likely to be the case.  For that reason, we now consider a vector of model variables, zk, the 
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components of which are defined analogously to the components of xk, but with true sales replacing frame sales.  This 

can be viewed as a useful locally-linear approximation for the true response model in which the probability of response 

is the same for any two elements in the same model group, that is to say, two elements having the same value for each 

component of zk.   

 

The prediction model supporting this calibration stipulates is that each element in the same model group has the same 

expected value of true sales regardless of whether or not it responds.  Not quite true − since response is correlated with 

true sales, but close − since true sales do not vary by much within model groups.  The measurment error model is that 

the components of xk of two elements in the same model group have the same expected value whether or not they 

respond.  It is likewise close to being true.        

 

To perform the calibration, we would like f(δ) again to be δ.  If that were so,  we would  have  wk =  1 + zkg,  where  g =  

( ∑S
 
xk'zk)

-1
(∑U xk  − ∑S xk)'.  Unfortunately, there is no guarantee that the components of g will be nonnegative.   That 

means that there is a possibility that some wk  will fall below unity, implying an element  response probability greater 

than 1.  

 

That never happens with any of our 5,000 respondent subsets based on the 100% population sets.  It does happen, 

however, with respondent subsets based on the smaller 20% population sets.  More details can be found in Section 5.   

 

In our calibration-weight determinations, we use the following truncated form of the logistic back-link function:  

 

                                                    f(δ)= 1+ e
-δ

 + 
21

999

e

e

− δ

−δ

−

+
 =  1 + 

1 999

999

e

e

−δ

−δ

+

+
.                                               (19) 

 

This restricts f(δ) to between 1,000/999, which is slightly larger than 1,  and 1000 (which is the restriction imposed on 

1/pk by equation (17)).  

 

We conduct the following iterative search g:  

 

                                                    g
(r+1)

 = g
(r)

 + [ ∑S
 
f1(zkg

(r)
) xk'zk]

-1
 [∑U xk  −∑S f(zkg

(r)
)xk]',                                      (20) 

 

where f1(δ) = ∂f(δ)/∂δ.   When no solution exists, usually because ∑S
 
f1(zkg

(r)
) xk'zk is not invertible, a model variable is 

dropped (which often corresponding to a zero in the diagonal  of ∑S
 
f1(zkg

(r)
) xk'zk) .  We then replace xk in equation (19) 

with  ˆˆ k k=x x A , where Â , defined in equation (15b), can change with each iteration.  

 

By truncating the back-link function in equation (17), we bound f(δ)
2
 − f(δ) away from zero and infinity.  This allows 

( ) 2 ( )
{[ ( )] ( )}

r r
j j j jS f f ′−∑ z g z g x x  in equation (15b) to be invertible as long as xj has full rank.   

 

Notice, however, by constraining f(δ) to be above 1, we force the estimated response probability in a model group to be 

less than 1.  This means that when the model and benchmark groups are (initially) the same, as is poststratification, 

using this back-link function would force the dropping of a component of zk when there is 100% response among the 

respondents in a group.  
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5.  The Main Results 
 

In this section, we will call the model groups formed using true sales “response-guided response groups” and the 

calibration method based on them the “RGRG method.”  We will call calibration using the frame-defined benchmark 

groups as the response (i.e., model) groups “poststratification.”   

 

5.1 The 100% Population Sets 
 

Although there are five 100% population sets, each have ten benchmark groups of population sizes 6001, 818, 685, 

369, 52, 5507, 2116, 4658, 6728, and 1013.  The smallest groups is the one containing farms with the larest frame sales 

but no survey responses over the last five years.  

 

The five population sets have response-guided-response-group population sizes ranging from 50 to 6,603.  The average 

response rate within such a model group ranges from 52 to 98%, and no group in any of the 5,000 respondent subsets is 

empty.  In fact,  we are aways able to compute calibration weights using the one step  procedure:  wk = 1 + zk ( ∑S
 
xj'zj)

-1 

(∑U xj '− ∑S xj') = zk ( ∑S
 
xj'zj)

-1ΣU xj' = ΣU xj ( ∑S
 
zj'xj)

-1
zk' (since zkλλλλ = 1 for some λλλλ, ∑S xj' = ∑S xj'zkλλλλ; the rest follows 

almost immediately). 

 

Scaling total sales to be 100, summary statistics averaged across 1,000 respondent subsets are displayed in Table 1 for 

each population set and across the sets.  They show that the absolute empirical bias from using the RGRG method is 

approximately 1/3 of that from poststratification.  The empirical standard errors (SE)  are slightly higher using the 

RGRG method rather than its rival, but the empirical root mean squared error (RMSE) from using RGRG is roughly 

2/3 the size.  

 

Since there is a definite bias when using incorrect models in the estimation, it is unclear whether equation (8) is 

supposed to estimate variance or mean squared error.  The table suggests it consistently underestimates mean squared 

error while overestimating variance slightly.  Using the “improved” version of the squared residuals suggested by 

equation (10) has very little effect on the standard-error/root-mean-squared-error estimates, tipping the rounding 

upward in some cases (not displayed).    

 

5.2 The 20% Population Sets 
 

The ten benchmark groups in the 20% population sets have population sizes ranging from 9 to 1,310.  The five 

generated populations have response-guided-response-group population size ranging from 7 to1,314 and response rates 

again ranging from 52 to 98%.  Although no response-guided response group ever contains no respondents, there are 

respondent subsets for which ∑S
 
f1(zkg

(r)
) xk'zk  (for some iteration r),  and on rare occasion, ∑S

 
xk'zk , is not invertible.  As 

a result, some component of zk  must be dropped.  

 

One of the five populations, Population 2, produces all four respondent subsets where ∑S
 
xk'zk  is not invertible and 99 

others where  ∑S
 
f1(zkg

(r)
) xk'zk   is not.   The other four populations produce  0,  1,  15, and  10 respondent subsets  where 

 ∑S
 
f1(zkg

(r)
) xk'zk  is not invertible, respectively.    

 

Perhaps the slightly larger empirical bias and empirical standard error for Population 2 under the RGRG method can be 

attributed to this pathology.  Otherwise, the results for this set of populations is very similar to those for the 100% 

population sets.  The empirical biases are about the same.  The empirical standard errors are larger, as we would expect 

since the respondent subsamples have roughly 20% of their 100% counterparts, yet the model groups are the same for 

both (except when a component of zk  is dropped).     

 

The estimated standard error/root-mean-squared errors are even closer to the empirical standard errors than before.  

Unfortunately, the “improved” variance estimates can not always be computed.  One reason for this is that the 

denominator in equation (10) can be negative.          

 

 

Section on Survey Research Methods – JSM 2008

259



 

Table 1:  Comparing the Two Methods   

(Total sales scaled to equal 100) 

 

                                          Response-Guided Reponse Group Method      Poststratification Method 

   

              Empirical  Empirical  Empirical  Estimated       Empirical  Empirical  Empirical  Estimated          

                    Bias          SE     RMSE            SE                Bias            SE            SE               SE  

                                                                                             (RMSE?)                                                             (RMSE?)        

100%  Population Sets 

 

Population 1 - 0.25     0.46      0.52           0.47   - 0.74        0.44            0.86          0.44     

Population 2 - 0.23        0.51      0.56            0.52   - 0.73        0.49            0.88          0.49 

      Population 3 - 0.26    0.53      0.60           0.54      - 0.73        0.52            0.89          0.52 

   Population 4 - 0.25      0.39      0.46            0.40   - 0.72        0.37            0.81          0.38    

 Population 5 - 0.24      0.55      0.60           0.55     - 0.73        0.53            0.90          0.53 

Overall       - 0.25      0.49      0.55            0.50   - 0.73        0.47            0.87          0.48 

 

20%  Population Sets 

 

               Population 1 - 0.26    0.66      0.71           0.65    - 0.79        0.63           1.01            0.61   

               Population 2 - 0.27      0.73      0.78            0.71     - 0.81        0.68           1.06            0.65 

  Population 3 - 0.27    0.65      0.70           0.66      - 0.79        0.61           1.09            0.61 

 Population 4 - 0.21      0.71          0.75            0.72    - 0.82        0.65           1.04            0.63    

Population 5 - 0.25      0.63      0.68           0.64    - 0.82        0.59            1.01            0.58 

               Overall       - 0.25      0.68      0.72             0.68    - 0.80        0.63            1.02            0.62 

 

Empirical Bias  =    ( )1 / ,R
rr t T R= −∑   where tr  is the estimate for response-set r of R ( = 1000 or 5000).   

Empirical SE    =     ( ) ( )
2

1 1 / / 1 .
R R

r sr st t R R= =
 − −
 ∑ ∑              

Empirical RMSE  = ( ) ( )2 2
.Empirical Bias Empirical SE+    

Estimated SE   =    1 / ,R
rr v R=∑     where vr is computed using equation (8).           

 

 

 

5.3 The Respondent Subsets for the 100% Population Under the Actual Response Mechanism 
 

Before trying to salvage the “improved” squared residuals in equation (10) under our simulations, we return to five 

100%  population  sets  and  generate 1,000  respondent  subsets  each  using  equation (17).   We  then  calibrate  using  

f(.) =1/pk, where 

                                            pk =  0.001 + 0.998{1 + exp(γ1 + γ2 logtvp2k  − γ3 s97)}
-1

.  

 

Again scaling total sales to be 100, the overall empirical bias is 0.00257 and the overall empirical standard error is 

0.613 (neither of these results are displayed).  The overall average estimate for the latter based on equation (8) is 

slightly smaller, 0.606.  The same rough relationship between the estimated and empirical standard errors holds for 

each of the five populations.   Using the improved squared residuals at most increases the estimated standard error by 

0.001 (by less before rounding).  

 

There is little reason to investigate the squared residuals in equation (10) further.     
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6.  Discussion 
 

The major result of our empirical investigation is that when response is a function of the variable of interest, using 

response-guided response groups rather than traditional frame-defined response groups can result in appreciable 

decreases in bias and root mean squared error even when neither the response nor prediction/measurement-error model 

fully justifying the methodology holds.   

 

Using the frame-defined response groups generally results in a slightly smaller empirical standard error than its 

competitor, but this advantaged is overpowered by the increase in empirical bias.  Similar findings (not displayed) 

result when the σ in equation (18) used to generate true sales from frame sales is increased from 1 to 10.     

 

A noticeable amount of bias still remains relative to standard error for the 20% population sets even though sometimes 

the response-guided response groups are so small a model variable has to be dropped.  Recall that a model variable is 

dropped either when ∑S
 
xk'zk is not of full rank and can not be inverted or when some wk = ΣU xj ( ∑S

 
zj'xj)

-1
zk' is less than 

1.  The latter, which is more common, forces us to choose a form for the back-link function, f(δ).  Otherwise, we can 

effectively set f(δ) = δ and compute the wk  in one step using wk = ΣU xj ( ∑S
 
zj'xj)

-1
zk'.      

 

As a practical matter, we suspect users will redefine their response-guided response groups (and corresponding 

benchmark groups) rather than be forced to select a nonlinear form for the back-link function and drop a model 

variable.  Since the groups vary considerably in size in our analysis, there is some flexibility here to form additional 

groups even for the smaller population size.  Clearly, however, the number of response-guided model groups that can 

be used with a particular respondent data set will usually be smaller than the number of analogous frame-defined 

groups.  More empirical work is needed on forming response-guided response groups.  

 

We are suprised that the Kott-Brewer method for improving variance estimates has little effect.  It may be that the 

distinction between an element’s prediction/measurement-error model error (εk = τk − ξkΓ
-1θθθθ) and its sample residual (ek 

from equation (9)) plays a smaller role in variance/mean-squared-error estimation than other small-sample factors such 

as the randomness of the wk due to their being functions of the random xj .  Alternatively, the problem may be the 

method’s reliance on prediction-model results that condition (inappropriately) on the zj and the xj instead of just the zj. 

 

The asymptotic variance estimator in equation (8) always does a good job estimating empirical variance in our 

analyses.  As an estimator for mean squared error, however, it works better the smaller the bias – better for the RGRG 

method than for poststratification.  

 

Things will become more complicated when it is not a census that suffers nonresponse but a randomly selected sample 

from a population U.  We noted in Section 3 that the prediction model in equation (11),  yk = zkθθθθ + τk, and 

measurement-error model in equation (12),  xk = zkΓ + ξk, combine to yield the standard prediction model in equation 

(3),  yk = xkββββ + εk.   

 

It is often reasonable to assume E(εk |{xj; j∈U}) = 0 whether or not k is in the sample, even though this equality does 

not hold when conditioned on whether k responds.  Thus, in the absence of nonresponse, it makes more sense to 

calibrate using the components of xk as both the model and benchmark variables rather than having the component of 

zk, with their unknown population total, serve as the model variables.  This suggests calibration, even when involving 

mutually exclusive groups, should be done in two steps, the first to calibrate the full sample to the population using 

only benchmark variables, and the second to calibrate the respondent sample to the full sample or population using 

response-guided model variables.    

 

A theoretical variance estimator is needed for such a two-stage calibration, and empirical work may help determine 

whether two-step calibration is worth the effort.   
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