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Abstract  

Statistical Agencies need to make informed decisions when releasing sample microdata from social 

surveys with respect to the  level of protection required in the data according to the mode of access. 

These decisions should be based on objective quantitative measures of disclosure risk and data utility. 

We assume microdata that contain individuals investigated in a survey and the population is unknown.  

Disclosure risk is a function of both the population and the sample counts in cells of a contingency 

table spanned by identifying discrete key variables, i.e. place of residence, sex, age, occupation, etc. 

Disclosure risk measures are estimated using probabilistic modeling. Based on the disclosure risk 

assessment, appropriate Statistical Disclosure Limitation (SDL) methods are chosen depending on the 

access mode, user requirements and the contents of the data. Information loss measures are defined to 

quantify the effects of SDL methods on statistical analysis. We demonstrate a Disclosure Risk-Data 

Utility assessment on a sample drawn from a Census where the population is known and can be used 

to validate procedures. 

Key Words:  Log-linear models; Goodness of fit; Measurement error; Additive noise; Micro-

aggregation; Random rounding; PRAM; Information loss  
 

1.  Introduction 

Statistical Agencies release sample microdata from social surveys under different modes of access. 

Access methods range from Public Use Files (PUF)  in the form of tables or highly perturbed datasets 

to Microdata Under Contract (MUC) for researchers and licensed institutions where levels of  

protection are less severe. Statistical Agencies also often have on-site datalabs where registered 

researchers can access unperturbed statistical data. Microdata Review Panels (MRP) need to make 

informed decisions when releasing microdata  based on objective disclosure risk measures, and set 

tolerable risk thresholds according to the access mode. They also provide quality guidelines and initial 

rules for data masking based on recoding variables.  

 

We assume that the microdata contain individuals investigated in a survey and the population is 

unknown (or only partially known through some marginal distributions). The disclosure risk is a 

function of both the population and the sample, and in particular the cell counts of a contingency table 

defined by combinations of identifying discrete key variables, i.e. place of residence, sex, age, 

occupation, etc. Using probabilistic models, we estimate per-record disclosure risk measures which 

can be used to target high-risk records for Statistical Disclosure Limitation (SDL) techniques. 

Consistent global file-level disclosure risk measures are aggregated from per-record risk measures. 

Global risk measures are used by MRPs to inform decisions on the release of microdata. Section 2 

provides an overview of disclosure risk assessment for sample microdata using probabilistic modeling.   

 

Based on the disclosure risk assessment, Statistical Agencies must choose appropriate SDL methods 

either by perturbing, modifying, or summarizing the data. The choice of the SDL method depends on 

the access mode, requirements of the users and the impact on quality and information loss. Choosing an 

optimal SDL method is an iterative process where a balance must be found between managing 

disclosure risk and preserving the utility in the microdata. SDL methods for microdata include 

perturbative methods that alter the data and non-perturbative methods which limit the amount of 

information released. Each SDL method impacts differently on information loss and they should be 

combined and optimized to preserve the consistency and integrity of the perturbed microdata. In 

Section 3,  we present improvements to some standard perturbative SDL methods for sample 

microdata. In Section 4, we define information loss measures to quantify the effects of SDL methods 

on bias and variance and other statistical analysis tools. In Section 5, we demonstrate the Disclosure 
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Risk-Data Utility assessment on sample data drawn from a Census (where the population is known). 

Section 6 concludes with a discussion.  

 

2. Disclosure Risk Assessment 
Identifying key variables for disclosure risk assessment are determined by a disclosure risk scenario, 

i.e. assumptions about available external files and IT tools that can be used by intruders to identify 

individuals in released microdata. For example, key variables may be chosen which allow linking the 

released microdata to a publicly available file containing names and addresses. Disclosure risk is 

assessed on the contingency table of counts spanned by these identifying key variables. The other 

variables in the file are sensitive variables.  

 

Some methods for assessing disclosure risk rely on heuristics to identify special uniques on a set of 

cross-classified key variables, i.e. sample uniques that are likely to be population uniques (see Elliot, et 

al., 2005, Skinner and Elliot, 2002 and references therein) and probabilistic record linkage (see Yancey, 

Winkler, and Creecy, 2002, Domingo-Ferrer and Torra, 2003 and references therein). A drawback of 

these methods is that they do not take into account the protection afforded by the sampling and 

inconsistent record level and global level disclosure risk measures. We assess disclosure risk using 

probabilistic modeling.  

 

We consider individual per-record risk measures in the form of a probability of re-identification. These 

per-record risk measures are aggregated to obtain global risk measures for the entire file. Let kF  be the 

population size in cell k  of a table spanned by key variables having K cells and  kf  the sample size.   

Also, NF
K

k

k =∑
=1

 and ∑
=

=
K

k

k nf
1

 .  We focus our attention on the set of sample uniques,  

}1:{ == kfkSU  since these are potential high-risk records, i.e. population uniques. Two global 

disclosure risk measures (where I is the indicator function) are the following:  

1. Number of sample uniques that are population uniques:     ∑ ===
k

kk FfI )1,1(1τ  

2.   Expected number of correct matches for sample uniques (i.e., a matching probability) 

∑ ==
k

kk FfI /1)1(2τ .   

The individual risk measure for 2τ  is kF/1 . This is the probability that a match between a record in 

the microdata and a record in the population having the same values of key variables will be correct. If 

for example, there are two records in the population with the same values of key variables, the 

probability is 0.5 that the match will be correct. Adding up these probabilities over the sample uniques 

gives the expected number (on average) of correctly matching a record in the microdata to the 

population when we allow guessing. We assume that population frequencies kF  are unknown and   

estimate from a probabilistic model the risk measures by:  

      )1|1(ˆ)1(1̂ ====∑ kk

k

k fFPfIτ      and )1|/1(ˆ)1(ˆ
2 ===∑ kk

k

k fFEfIτ             (1) 

Skinner and Holmes (1998) and Elamir and Skinner (2006) propose  a Poisson Model to estimate 

disclosure risk measures. In this model, they assume the natural assumption in contingency table 

literature:  )(~ kk PoissonF λ  for each cell k. A sample is drawn by Poisson or Bernoulli sampling 

with a sampling fraction kπ  in cell k: ),(~| kkkk FBinFf π . It follows that:  

           )(~ kkk Poisf λπ  and  ))1((~| kkkk PoissonfF πλ −                                              (2) 

where kk fF |  are conditionally independent.  

 

The parameters }{ kλ are estimated using log-linear modeling. The sample frequencies  kf   are 

independent Poisson distributed with a mean of  kkk λπµ = . A log-linear model for the kµ  is  

expressed as:  βµ kk x′=)log(  where kx  is a design vector which denotes the main effects and 
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interactions of the  model for the key variables. The maximum likelihood (MLE) estimator β̂  may be 

obtained by solving the score equations: 

             0)]exp([ =′−∑ kkkk

k

f xx βπ                                                                                       (3) 

The fitted values are calculated by: )ˆexp(ˆ βkku x′=  and kkk u πλ /ˆˆ = .  

Individual disclosure risk measures for cell k   are: 

            ))1(exp()1|1( kkkk fFP πλ −=== , 

            )]1(/[))]1(exp(1[)1|/1( kkkkkk fFE πλπλ −−−==                                              (4)     

Plugging kλ̂ for kλ  in (4) leads to the estimates )1|1(ˆ == kk fFP  and ]1|/1[ˆ =kk fFE  and 

then to 1̂τ  and 2τ̂  of (1). Rinott and Shlomo (2007b) consider confidence intervals for these global 

risk measures. 

 

Skinner and Shlomo (2008) develop a method for selecting the log-linear model based on estimating 

and (approximately) minimizing the bias  of the risk estimates 1̂τ  and 2τ̂ . Defining 

)1|1()( === kkk fFPh λ  for 1τ  and )1|/1()( == kkk fFEh λ  for 2τ , they consider the 

expression:    ∑ −==
k

kkk hhfIEB )]()ˆ()][1([ λλ                                                                             

A Taylor expansion of h leads to the approximation  

  ]2/)ˆ)(('')ˆ)((')[exp( 2

kkkkkkkkkk hhB λλλλλλλλπ −+−−≈∑   

and the relations  kkkEf λπ=  and 
222 )ˆ(])ˆ[( kkkkkkk EffE λλπλπ −=−−  under the 

hypothesis of a Poisson fit lead to a further approximation of B of the form 

 )]2/(])ˆ)[(ˆ('')ˆ)(ˆ(')[ˆexp(ˆˆ 2

kkkkkkkkkkkkkk ffhfhB πλπλλπλλπλ −−+−−−≈∑    (5) 

The method selects the model using a forward search algorithm which minimizes the standardized bias 

estimate ii vB ˆ/ˆ  for  2,1,ˆ =iiτ   where iν̂  are variance estimates of iB̂ .  

 

In the simple case where the sample is drawn under simple random sampling, Nnk /== ππ . 

Skinner and Shlomo (2008) address the estimation of disclosure risk measures under complex survey 

designs with stratification, clustering and survey weights. In this case, while the method assumes that 

all individuals within cell k are selected independently using Bernoulli sampling, i.e.  
1

( 1| ) (1 ) kF

k k k k k
P f F F π π −= = − , this may not be the case when sampling clusters (households). In 

practice, key variables typically include variables such as age, sex and occupation,   and tend to cut 

across clusters. Therefore the above assumption holds in practice in most household surveys and does 

not cause bias in the estimation of the risk measures. Inclusion probabilities may vary across strata, the 

most common stratification is on geographies. Strata indicators should always be included in the key 

variables to take into account differential inclusion probabilities. Under complex sampling, the }{ kλ  

can be estimated consistently using pseudo-maximum likelihood estimation (Rao and Thomas, 2003), 

where the estimating equation in (3) is modified as:  

                    0)]exp(ˆ[ =′−∑ kkk

k

xxF β                                                                                     (6) 

and kF̂  is obtained by summing the survey weights in cell k: ∑
∈

=
ki

ik wF̂ . 

The resulting estimates }ˆ{ kλ are plugged into   expressions in (4)  and kπ   is   replaced by the estimate 

ˆˆ /
k k k

f Fπ = . Note that the risk measures in (4) only depend on sample uniques and the value of ˆ
k

π  

in this case is simply the reciprocal of the survey weight. The test criteria B̂  is also adapted to the 

pseudo-maximum likelihood method.  
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The probabilistic model presented as well as other  probabilistic methods (see Bethlehem,  Keller, and 

Pannekoek, 1990,  Benedetti,  Capobianchi, and Franconi, 1998, Rinott and Shlomo 2006, 2007a) 

assume that there is no measurement error in the way the data is recorded. Besides typical errors in data 

capture, key variables can also purposely be misclassified as a means of masking the data, for example  

through record swapping or PRAM. Skinner and Shlomo (2007) adapt the estimation of risk measures 

to take into account measurement errors.  Denote the cross-classified key variables by X and assume 

that X in the microdata has undergone some misclassification or perturbation error denoted by the 

value X% . Assume that the values of  X  in the population are fixed and suppose the values of X%  for 

the records in the microdata are determined independently by a misclassification matrix M,   

    )|
~

( jXkXPM kj ===                                                                                            (7)                  

The per-record disclosure risk measure of a match with a sample unique under measurement error is:  

              

k

j

kjkjj

kkkk

FMMF

MM 1

)1/(

)1(
≤

−

−

∑ π

π
                                                                                         (8) 

Under assumptions of small sampling fractions and small misclassification errors, the measure can be 

approximated by: ∑
j

kjjkk MFM /   or  kkk FM
~

/  where   kF
~

 is the population count with kX =
~

. 

Aggregating the per-record disclosure risk measures, the global risk measure is:   

             ∑ ==
k

kkkk FMfI
~

/)1(2τ                                                                                              (9)    

Note that to calculate the measure only the diagonal of the misclassification matrix needs to be known, 

i.e. the probabilities of not being perturbed. Population counts are generally not known so the estimate 

in (9) can be obtained by probabilistic modeling on the misclassified sample: 

            ( )kkkk

k

k fFEMfI
~

|
~

/1ˆ)1
~

(ˆ
2 ∑ ==τ                                                                               (10) 

 

3.  Statistical Disclosure Limitation Methods for Sample Microdata 

Depending on the outcome of the individual and global risk measures, SDL methods may need to be 

applied.  Thresholds are set for releasing the microdata depending on the mode of access. SDL 

techniques for microdata include perturbative methods which alter the data and non-perturbative 

methods which limit the amount of information released without actually altering the data. Examples of 

non-perturbative SDC techniques are global recoding, suppression of values or variables and sub-

sampling records (see Willenborg and De Waal, 2001). Perturbative methods for continuous variables 

include adding random noise (Kim, 1986, Fuller, 1993, Brand, 2002, Yancey, Winkler and Creecy, 

2002), micro-aggregation (replacing values with their average within groups of records) (Defays and 

Nanopoulos, 1992, Anwar 1993, Domingo-Ferrer and Mateo-Sanz, 2002), rounding to a pre-selected 

rounding base, and rank swapping (swapping values between pairs of records within small groups) 

(Dalenius and Reiss, 1982, Fienberg and McIntyre, 2005). Perturbative methods for categorical 

variables include record swapping (typically swapping geography variables) and a more general post-

randomization probability mechanism (PRAM) where categories of variables are changed or not 

changed according to a prescribed probability matrix and a stochastic selection process (Gouweleeuw, 

et al. 1998). For more information on these methods see also: Willenborg and De Waal, 2001, 

Gomatam and Karr, 2003, Domingo-Ferrer, Mateo-Sanz, and Torra, 2001, and references therein. 

With non-perturbative SDL methods, the logical consistency of the records remain unchanged. 

Perturbative methods, however, alter the data, and therefore we can expect consistent records to start 

failing edit rules due to the perturbation. Edit rules, or edits for short, describe either logical 

relationships that have to hold true, such as “a two-year old person cannot be married” or “the profit 

and the costs of an enterprise should sum up to its turnover”, or relationships that have to hold true in 

most cases, such as “a 12-year old girl cannot be a mother”. Shlomo and De Waal, 2008 discuss 

methods for perturbing sample microdata which preserve the logical consistencies and minimize 

information loss. The following is a brief summary of some of the methods:   

 

3.1    Additive noise  
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Additive noise is an SDL method that is carried out on continuous variables. In its basic form random 

noise is generated independently and identically distributed with a positive variance and a mean of 

zero. The random noise is then added to the original variable. Adding random noise will not change the 

mean of the variable for large datasets but will introduce more variance. This will impact on the ability 

to make statistical inferences. Researchers may have suitable methodology to correct for this type of 

measurement error but it is good practice to minimize these errors through better implementation of the 

method.  

 

Additive noise should be generated within small  homogenous sub-groups (for example, percentiles of 

the continuous variable) in order to use different initiating perturbation variance for each sub-group. 

Generating noise in sub-groups also causes less edit failures with respect to relationships in the data. A 

better technique is to add correlated random noise to the continuous variable thereby ensuring that not 

only means are preserved but also the exact variance. A simple method for generating correlated 

random noise for a continuous variable z is as follows:  

 

Procedure 1 (univariate): Define a parameter δ  which takes a value greater than 0 and less than 

equal to 1. When 1=δ  we obtain the case of fully modeled synthetic data. The parameter δ controls 

the amount of random noise added to the variable z. After selecting a δ , calculate: )1( 2
1 δ−=d  

and 
2

2 δ=d . Now, generate random noise ε  independently for each record with a mean of 

µµ
2

11

d

d−
=′  and the original variance of the variable 

2σ . Typically, a Normal Distribution  is used 

to generate the random noise. Calculate the perturbed variable iz′  for each record i in the sample 

microdata (i=1,..,n) as a linear combination: iii dzdz ε×+×=′
21 . Note that 

)()](
1

[)()(
2

1
21 zEzE

d

d
dzEdzE =

−
+=′  and  

)()()()1()( 22 zVarzVarzVarzVar =+−=′ δδ  since the random noise is generated 

independently to the original variable z. 

 

An additional problem when adding random noise is that there may be several variables to perturb at 

once, and these variables may be connected through an edit constraint of additivity. If we were to 

perturb each variable separately, this edit constraint would not be guaranteed. One procedure to 

preserve additivity would be to perturb two of the variables and obtain the third from aggregating the 

perturbed variables. However, this method will not preserve the total, mean and variance of the 

aggregated variable and in general, it is not good practice to compound effects of perturbation (i.e., 

aggregate perturbed variables) since this causes unnecessary information loss.  

 

We propose  Procedure 1 in a multivariate setting where we add correlated noise to the variables 

simultaneously. The method not only preserves the means of each of the three variables and their co-

variance matrix, but also preserves the edit constraint of additivity.  

 

Procedure 1 (multivariate): Consider three variables yx,  and z  where zyx =+ . This procedure 

generates random noise that a priori preserves additivity and therefore combining the random noise to 

the original variables will also ensure additivity. In addition, means and the covariance structure are 

preserved. The technique is as follows: 

Generate multivariate random noise: )Σ,µ(~),,( ′N
T

zyx εεε , where the superscript T denotes the 

transpose. In order to preserve sub-totals and limit the amount of noise, the random noise should be 

generated within percentiles (note that we drop the index for percentiles). The vector µ′  contains the 

corrected means of each of the three variables yx,  and z  based on the noise parameter δ : 

)µ
1

,µ
1

,µ
1

()µ,µ,µ(µ
2

1

2

1

2

1T

zyxzyx
d

d

d

d

d

d −−−
=′′′=′ . The matrix Σ  is the original covariance 

matrix. For each separate variable, calculate the linear combination of the original variable and the 
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random noise as previously described. For example, for record i: ziii dzdz ε×+×=′
21 . The mean 

vector and the covariance matrix remain the same before and after the perturbation, and the additivity is 

exactly preserved. 

 

3.2     Micro-aggregation 

Micro-aggregation is another SDL technique for continuous variables. Records are grouped together in 

small groupings of size p. For each individual in a group k, the value of the variable is replaced with 

the group average. This method can be carried out for both a univariate or multivariate setting where 

the latter can be implemented through sophisticated computer algorithms. Replacing values of variables 

with their average in a small group will not generally initiate inconsistencies in the data, such as the 

relationship between variables, although there may be problems at the boundaries of such edits. When 

carrying out micro-aggregation simultaneously on several variables within a group, additivity 

constraints  will also be preserved since the sum of the means of two variables will equal the mean of 

the total variable in a grouping. The focus therefore for minimizing information loss is on the 

preservation of variances.  

 

Micro-aggregation preserves the mean (and the overall total) of a variable z but will lead to a decrease 

in the variance. This is because the total variance can be decomposed into a “within” group variance 

and a “between” group variance. When implementing micro-aggregation and replacing values by the 

average of their group, only the “between” variance remains. In practice, there may be little decrease in 

the variance since the size of the groups  is small.  In order to minimize information loss due to a 

decrease in the variance, we generate random noise according to the magnitude of the difference 

between the total variance and the “between” variance, and add it to the micro-aggregated variable. 

Besides raising the variance back to its original level, this method will also result in extra protection 

against the risk of re-identification since micro-aggregation in some cases can easily be deciphered (see 

Winkler, 2002). The combination of micro-aggregation and additive random noise is discussed in 

Oganian and Karr, 2006. When adding random noise to several micro-aggregated variables that are 

connected through an additivity constraint, we can apply a straight-forward linear programming 

technique to preserve the additivity.    

 

3.3    Unbiased Random Rounding  
Rounding to a predefined base is a form of adding noise, although in this case the exact value of the 

noise is known a priori and is controlled via the rounding base. As in micro-aggregation, it is unlikely 

that inconsistencies will result when rounding the data. However, rounding continuous variables 

separately may cause additivity edit failures since the sum of rounded variables will not necessarily 

equal their rounded total. In addition, summing rounded values will not equal their rounded total and 

large discrepancies can occur. We demonstrate a method for preserving totals when carrying out an 

unbiased random rounding procedure on a continuous variable.  

 

Rounding procedures are relatively easy to implement. In this example, we describe a one-dimensional 

random rounding procedure for a variable which not only has the property that it is stochastic and 

unbiased, but also preserves the overall total (and hence the mean) of the variable being rounded. 

Moreover, the strategy that we propose reduces the extra variance induced by the rounding. The 

algorithm is as follows: 

Let m be the value to be rounded and let )(mFloor  be the largest multiple k of the base b such that 

mbk < . In addition, define the residual of m according to the rounding base b by 

)()( mFloormmres −= . For an unbiased random rounding procedure, m is rounded up to 

))(( bmFloor +  with probability bmres )(  and rounded down to )(mFloor  with probability 

))(1( bmres− . If m is already a multiple of b, it remains unchanged. The expected value of the 

rounded value is the original value. The rounding is usually implemented “with replacement” in the 

sense that each value is rounded independently, i.e. a random uniform number u between 0 and 1 is 

generated for each value. If bmresu )(<  then the entry is rounded up, otherwise it is rounded 

down. In order to preserve the exact total of the variable being rounded, we define a simple algorithm 

for selecting “without replacement” the values that are rounded up and the values that are rounded 
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down: for those entries having )(mres , randomly select a fraction of bmres )(  of the values and 

round upwards, the rest of the values round downwards. Repeat this process for all )(mres . As 

mentioned, similar to the case of simple random sampling with and without replacement, this selection 

strategy reduces the additional variance caused by the rounding. 

 

The rounding procedure should be carried out within sub-groups in order to benchmark important 

totals. This may, however, distort the overall total across the entire dataset. Users are typically more 

interested in smaller sub-groups for analysis and therefore preserving totals for sub-groups is generally 

more desirable than the overall total. Reshuffling algorithms can be applied for changing the direction 

of the rounding for some of the values across the records in order to preserve additivity constraints  and 

the overall totals.   
 

3.4   Protecting Categorical Variables by PRAM 
As presented in Shlomo and De Waal (2008), we examine the use of a technique called the Post-

randomization Method (PRAM) (Gouweleeuw, et al., 1998) to perturb categorical variables. This can 

be seen as a general case of a more common technique based on record swapping. Willenborg and De 

Waal (2001) describe the process as follows:  

Let P  be a LL ×  transition matrix containing conditional probabilities 

) iscategory  original| iscategory  perturbed( ijppij =  for a categorical variable with L  

categories, t  the vector of frequencies and v  the vector of relative frequencies: ntv =  , where n is 

the number of records in the micro-data set. In each record of the data set, the category of the variable 

is changed or not changed according to the prescribed transition probabilities in the matrix P  and the 

result of a draw of a random multinomial variate u with parameters pij (j=1,…,L). If the j-th category is 

selected, category i is moved to category j. When i = j, no change occurs. Let 
*t  be the vector of the 

perturbed frequencies. 
*t  is a random variable and tPtt =)|(E *

. Assuming that the transition 

probability matrix P  has an inverse 
1−P , this can be used to obtain an unbiased moment estimator of 

the original data: 
1*ˆ −= Ptt . In order to ensure that the transition probability matrix has an inverse and 

to control the amount of perturbation, the matrix P  is chosen to be dominant on the main diagonal, i.e. 

each entry on the main diagonal is over 0.5.  

 

We can place the condition of invariance on the transition matrix P , i.e. ttP = . This releases the 

users of the perturbed file of the extra effort to obtain unbiased moment estimates of the original data, 

since 
*t  itself will be an unbiased estimate of t . To obtain an invariant transition matrix, we calculate 

a matrix Q   by transposing matrix P , multiplying each column j  by jv  and then normalizing its 

rows so that the sum of each row equals one. The invariant matrix is obtained by PQR = . The 

property of invariance means that the vector of the original frequencies v  is an eigenvector of R . The 

invariant matrix R  may distort the desired probabilities on the diagonal, so we define a parameter α  

and calculate IRR )1(* αα −+=  where I  is the identity matrix. 
*R  will also be invariant and the 

amount of perturbation is controlled by the value of α . The property of invariance means that the 

expected values of the marginal distribution of the variable being perturbed are preserved. In order to 

obtain the exact marginal distribution and reduce the additional variance caused by the perturbation, we 

propose using a “without” replacement selection strategy to choose values to perturb based on the 

expectations calculated from the transition probabilities (see Section III.C for the case of random 

rounding). This method was used to perturb the Sample of Anonymized Records (SARs) of the 2001 

UK Census (Gross, Guiblin and Merrett, 2004).  

 

As in most perturbative SDL methods, joint distributions between perturbed and unperturbed variables 

are distorted, in particular for variables that are highly correlated with each other. If no controls are 

taken into account in the perturbation process, edit failures may occur resulting in inconsistent and 

“silly” combinations. Controlling the perturbation can be carried as follows:  

1. Before applying PRAM, the variable to be perturbed is divided into subgroups, Gg ,...,1= . The 

transition (and invariant) probability matrix is developed for each subgroup g, gR . The transition 

matrices for each subgroup are placed on the main diagonal of the overall final transition matrix 
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where the off diagonal probabilities are all zero, i.e. the variable is only perturbed within the 

subgroup and the difference in the variable between the original value and the perturbed value will 

not exceed a specified level. An example of this is perturbing age within broad age bands.  

2. The variable to be perturbed may be highly correlated with other variables. Those variables should 

be compounded into one single variable. PRAM should be carried out on the compounded variable. 

Alternatively, the variable to be perturbed is carried out within subgroups defined by the second 

highly correlated variable. An example of this is when age is perturbed within groupings defined 

by marital status.  

 

The control variables in the perturbation process will minimize the amount of edit failures, but they 

will not eliminate all edit failures, especially edit failures that are out of scope of the variables that are 

being perturbed. Remaining edit failures need to be manually or automatically corrected through edit 

and imputation processes depending on the amount and  types of edit failures.  

 

 4.  Information Loss Measures 
The utility of microdata that has undergone SDL techniques is based on whether statistical inference 

can be carried out  and the same analysis and conclusions drawn on the perturbed data compared to the 

original data. This depends on user requirements and the types of analysis. In general, microdata is 

multi-purposed and used by many different users. Therefore, we use proxy measures to assess the 

utility based on assessing distortions to distributions and the impact on bias, variance and other 

statistical analysis tools (Chi-squared statistic, R
2
 goodness of fit, rankings, etc.). Shlomo, 2007 and 

Shlomo and Young, 2006 describe the use of such measures for assessing information loss in  

perturbed statistical data. A brief summary of some useful proxy measures are the following: 
 

4.1   Distance Metrics   
Distance metrics are used to measure distortions to distributions as a result of applying SDL methods. 

We apply these measures on distributions calculated from the perturbed microdata. Some useful 

metrics for aggregated data were presented in Gomatam and Karr, 2003.  

Let D   represent a frequency distribution produced from the microdata and let  )(cD   be the   

frequency in cell c.  Two useful distance metrics are:     

� Average Absolute Distance per Cell:  

      c

c

origpertpertorig ncDcDDDAAD /|)()(|),( ∑ −=                                                   (11)    

       where cn  is the number of cells in the distribution   

� Kolmogorov-Smirnov Two- Sample Test Statistic:  

For unweighted data, the empirical distribution of the original values is defined as: 

c

c

orig ntcItD /)()( ≤=∑  and similarly )(tD pert  where I is the indicator function. The 

KS statistic is defined as: 

|))()((|max),( jorigjpert
j

pertorig tDtDDDKS −=                                                    (12) 

where the }{ jt values are the  cn  jointly ordered original and perturbed values of  D. 

The AAD is  intuitive and describes the average absolute difference per cell of the distribution.  The KS 

two-sample test assumes independence of the two samples and  therefore the  test itself is  invalid. 

However, it is  still useful to use the KS statistic as a  relevant distance metric.   

.     

4.2   Impact on Measures of Association 
Tests for independence are often carried out on joint frequency distributions between categorical 

variables that span a table calculated from the microdata. The test for independence for a two-way table 

is based on a Pearson Chi-Squared Statistic ∑∑
−

=
i j ij

ijij

e

eo
2

2
)(

χ  where ijo  is the observed 

count and nnne jiij /)( .. ×=  is the expected count for row i and column j. If the row and column are 

independent then   
2χ  has an asymptotic chi-square distribution with (R-1)(C-1)and for large values 

Section on Survey Research Methods – JSM 2008

236



 9

the test rejects the null hypothesis in favor of the alternative hypothesis of association. We use the 

measure of association, Cramer’s V:   
)1(),1min(

/2

−−
=

CR

n
CV

χ
 and define the information loss 

measure by the  percent relative difference between the original and perturbed table: 

          
)(

)()(
100),(

orig

origpert

origpert
DCV

DCVDCV
DDRCV

−
×=                                                  (13) 

For multiple dimensions, log-linear modeling is often used to examine associations. A similar  measure 

to (13) can be calculated taking the relative difference in the deviance obtained from a model based on 

the  original and perturbed microdata.  
 

4.3   Impact on a Regression Analysis 

For continuous variables, we assess the impact on the correlation and in particular the  
2R  of a 

regression (or ANOVA) analysis. For example, in an ANOVA, we test whether a continuous dependent 

variable has the same means within groupings defined by categorical explanatory variables. The 

goodness of fit criterion 
2R  is based on a decomposition of the variance of the mean of the dependent 

variable. By perturbing the statistical data, the groupings may lose their homogeneity, the “between” 

variance becomes smaller, and the “within” variance becomes larger. In other words, the proportions 

within each of the groupings shrink towards the overall mean. On the other hand, the “between” 

variance may become artificially larger showing more association than in the original distributions.   

 

We define information loss based on the “between” variance of a proportion:   Let )(cP
k

orig  be a target 

proportion k for a cell c, i.e.  
)(

)(
)(

cD

cD
cP

orig

k

origk

orig =  and let 

∑

∑
=

c

orig

c

k

orig

k

orig
cD

cD

P
)(

)(

 be the overall   

proportion.  The “between” variance is defined as:         ∑ −
−

=
c

k

orig

k

orig

c

k

orig PcP
n

PBV
2))((

1

1
)(   

and the information loss measure is:    

      
)(

)()(
100),(

k

orig

k

orig

k

pertk

orig

k

pert
PBV

PBVPBV
PPBVR

−
×=                                                           (14) 

In addition, we can assess the impact on the regression coefficient for a model based on a continuous 

variable where the independent variable is also continuous and has undergone different methods of 

perturbation such as additive noise, micro-aggregation and rounding.  
 

3. Example 
We present an example of how a Statistical Agency might assess disclosure limitation strategies 

through a disclosure risk-data utility analysis.  We use a population from the 1995 Israel Census  

sample composed of all individuals aged 15 and over living in 20% of the households in Israel at the 

time of the Census, N=753,711. We draw a 100/1=π  sample of individuals, n=7,537.  

 

The MRP needs to assess the disclosure risk and consider SDL techniques. Initial recoding of key 

variables is carried out. The key variables for assessing disclosure risk are the following: 

Locality Code (single codes for large localities above 10,000 inhabitants and single combined code  for 

smaller localities)  – 85 categories; Sex – 2 categories; Age groups -  15 categories; Occupation -11 

categories, Income groups -  17 categories (K=476,850). 

 

In addition to the initial key, the MRP might consider further perturbation of the geography variable. 

We examine 2 techniques: recoding and collapsing the large locality codes according to a larger 

geographical area and locality size (30 categories) and invariant PRAM (a  general case of record 

swapping) on the large locality codes with 0.70 on the diagonal of the misclassification matrix. Table 1 
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presents a comparison of these two techniques. The true risk based on ∑ ==
k

kk FfI /1)1(2τ  are 

given in the column headings in parenthesis. The true disclosure risk for PRAM is calculated by 

summing kF/1 across sample uniques that were not perturbed. The estimates 2τ̂  in Table 1 are similar 

to the true values. The asymptotically normal test statistic based on (5) is given in parenthesis. Note 

that to estimate the disclosure risk for PRAM we used the formula in (10). The distance metrics AAD 

and KS for the recoded localities are calculated by imputing the average across the recoded cells. For 

example, if 10 localities were recoded into a single cell, each locality would receive 1/10 of the total in 

the cell.  

 

Table 1: Comparison of SDL techniques: Recoding and PRAM 

 Original     Key 

 

( =2τ 1025.7) 

Recoded localities  

(30 categories)  

( =2τ 571.5) 

PRAM 

 (70% on the 

diagonal) 

( =2τ 714.7) 

Disclosure Risk 

     
2τ̂          (test statistic) 

     Sample uniques 

     SU/ˆ
2τ  

1015.5  (1.94) 

4005 

25.3% 

599.9   (1.32) 

3376 

17.8% 

729.5  (1.42) 

3479 

20.9%  

Utility 

AAD  across 85 localities 0 7.22  3.88 

KS   across 85 localities 0 1.53 0.46 

RCV for localities (85)×occupation 

(11)     (true=0.1370) 

0 -0.33 -0.08 

BVR for average income between 

localities (85)  (true=3.082*10
9

) 

0 -0.44 -0.09 

  

As can be seen in Table 1, recoding causes significantly more information loss  compared to PRAM, 

even with 30% of the localities misclassified. The disclosure risk however is more effectively reduced 

with recoding than with PRAM. The MRP might consider reducing the disclosure risk further by 

combining the techniques, for example, by identifying those records that remain unique after the 

recoding and implementing PRAM on the high-risk records only. Note that both methods give negative 

values for RCV and BVR which reflect a loss of association and more heterogeneity as a result of  the 

SDL techniques.   

After deciding on key variables, MRPs might consider taking further action by perturbing sensitive 

variables, such as income. In our example, income was also used as a key variable so disclosure risk 

would need to be reassessed if perturbation is carried out on the income variable. We carried out three 

improved techniques for perturbing income from wages for those records with non-zero income (3,249 

out of the 7,537 individuals in the sample): correlated additive noise, controlled random rounding to 

base 10 and micro-aggregation (size of groups=10) with additive noise. All three techniques preserve 

the mean and its variance of the original variable. Results are given in Table 2. 

 

Table 2 shows conflicting results for the two distance metrics. While micro-aggregation with additive 

noise has more perturbation per cell compared to the other methods, correlated noise has more distance 

between the empirical distributions based on the original and perturbed variable. The controlled 

random rounding has the  smallest distance metrics and not surprisingly the lowest amount of records 

that switch out of their original income group. Table 2 also shows that the utility in the data with 

respect to some common statistical analysis tools is preserved and this is due to the improvements in 

the implementation of the SDL techniques which aim to preserve sufficient statistics.  
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Table 2: Information loss measures for income from wages after perturbation for individuals 

with non-zero income 

 Correlated 

Noise 

Controlled 

Random 

Rounding  

Base 10 

Micro-aggregation 

and Additive Noise 

Utility 

AAD across 17 income groups   17.50 2.00 23.25 

KS across 17 income groups   1.05  0.66 0.87 

RCV for income groups 

(17)×occupation (11) (true=0.1736) 

0.01 0 0 

BVR average income between localities 

(85)  (true=3.082*10
9

) 

-0.01 0 0.01 

Percentage of records  switching income 

groups 

17.4% 0.8% 12.5% 

 

4. Discussion 
In this paper, we focus on how a Statistical Agency might carry out a disclosure risk-data utility 

analysis to inform decisions about the release of sample microdata. The main conclusions of the paper 

are: (1) the need for a reliable method for objectively assessing disclosure risk; (2) SDL techniques  

should be optimized and combined to ensure utility in the perturbed microdata.  

 

Statistical Agencies generally release same sets of microdata on a yearly basis but the disclosure risk-

data utility analysis need not be repeated every year if no significant changes are applied to the 

microdata. Therefore, it is recommended that time and resources be spent at least once on an in-depth 

analysis for ensuring high quality microdata with tolerable risk thresholds for each mode of access.  

 

Distributing different sets of the same microdata may be a cause for concern since different versions of 

the microdata can be linked and the original data disclosed. MRPs must ensure strict licensing rules and 

guidelines to ensure that this does not occur. In the future, it is likely that microdata will be distributed 

via remote access and Statistical Agencies will have more control of who receives the microdata.  
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