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Abstract
Under a parametric model for missing data, the EM algorithm is a popular tool for finding the maximum likelihood estimates
(MLE) of the parameters of the model. Imputation, when carefully done, can be used to facilitate the parameter estimation
by applying the complete-sample estimators to the imputed dataset. The basic idea is to generate the imputed values from the
conditional distribution of the missing data given the observed data. Multiple imputation is a Bayesian approach to generate
the imputed values from the conditional distribution.

In this article, parametric fractional imputation is proposed as a parametric approach for generating imputed values. Using
fractional weights, the E-step of the EM algorithm can be approximated by the weighted mean of the imputed data likelihood
where the fractional weights are computed from the current value of the parameter estimates. Some computational efficiency
can be achieved using the idea of importance sampling in the Monte Carlo approximation of the conditional expectation. The
resulting estimator of the specified parameters will be identical to the MLE under missing data if the fractional weights are
adjusted using a calibration step.

The proposed imputation method provides efficient parameter estimates for the model parameters specified and also
provides reasonable estimates for parameters that are not part of the imputation model, for example domain means. Thus,
the proposed imputation method is a useful tool for general-purpose data analysis. Variance estimation is covered and results
from a limited simulation study are presented.

Key Words: EM algorithm, Importance sampling, Monte Carlo EM, Multiple imputation, Observed likelihood, Observed
information.

1. INTRODUCTION

Suppose that y1,y2, · · · ,yn are independent observations of a p-dimensional random variable y from a parametric
distribution with density f (y;θ0) with θ0 ∈ Ω. The MLE of θ0 can be obtained as a solution to the following score
equation:

Sn (θ) ≡
n∑

i=1

si (θ) = 0, (1)

where si (θ) = ∂ ln f (yi; θ) /∂θ and Sn (θ) is the score function.
Given missing data, let (yi,obs,yi,mis) denote the observed part and missing part of yi, respectively. To simplify

the presentation, we assume the response mechanism is Missing-At-Random (MAR) in the sense of Rubin (1976).
Under MAR, the likelihood function is a marginal likelihood obtained by integrating out over the missing part.
Thus, we can write the observed likelihood as

Lobs (θ) =
n∏

i=1

fobs(i) (yobs,i; θ) , (2)

where fobs(i) (yobs,i;θ) =
∫

f (yi,obs,yi,mis;θ) dyi,mis is the marginal density of yi,obs and the subscript i is used in
fobs(i) (·) because the missing pattern can differ from observation to observation.

To compute the MLE that maximizes the observed likelihood (2), we need to solve the observed score equation
for θ, where the observed score equation is

Sobs (θ) ≡
n∑

i=1

si,obs (θ) ≡ ∂

∂θ

n∑

i=1

ln
{
fobs(i) (yobs,i;θ)

}
= 0. (3)

Instead of solving (3), the MLE of θ0 can be obtained by solving

S̄ (θ) ≡ E {Sn (θ) | Yobs} ≡
n∑

i=1

E {si (θ) | yi,obs} = 0, (4)

where Yobs = (y1,obs,y2,obs, · · · ,yn,obs), and S̄ (θ) is called the mean score function. The equivalence of the observed
score function and the mean score function was first proved by Fisher (1925).
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Strictly speaking, the conditional expectation in (4) is evaluated at θ and we should write the mean score equation
as

S̄ (θ) ≡
n∑

i=1

E {si (θ) | yi,obs, θ} = 0. (5)

The EM algorithm, proposed by Dempster el al (1977), computes the solution iteratively by defining θ̂(t+1) to be
the solution to

n∑

i=1

E
{
si (θ) | yi,obs, θ̂(t)

}
= 0, (6)

where θ̂(t) is the estimate of θ obtained at the t-th iteration. To compute the conditional expectation in (6), the
Monte Carlo implementation of the EM (MCEM) algorithm of Wei and Tanner (1990) can be used. The MCEM
method avoids the analytic computation of the conditional expectation (6) by using the Monte Carlo approximation
based on the imputed data. Thus, one can interpret imputation as a Monte Carlo approximation of the conditional
expectation given the observed data. The Monte Carlo methods of approximating the conditional expectation in (4)
can be placed in two classes:

1. Bayesian approach: Generate the imputed values from the posterior predictive distribution of yi,mis given
yi,obs:

f (yi,mis | yi,obs) =
∫

f (yi,mis | θ,yi,obs) f (θ | yi,obs) dθ. (7)

This is essentially the approach used in multiple imputation as proposed by Rubin (1987).

2. Frequentist approach: Generate the imputed values from the conditional distribution f
(
yi,mis | yi,obs, θ̂

)
with

an estimated value θ̂.

The Bayesian approach to imputation has been proposed as a general method of handling missing data be-
cause of the feasibility of Bayesian computational methods and the simplicity of variance estimation. However, the
convergence to a stable posterior predictive distribution (7) is difficult to check and often requires huge computa-
tion (Gelman et al, 1996). Also, the variance estimator used in multiple imputation is not always consistent. For
examples, see Fay (1992), Wang and Robins (1998), and Kim et al (2006).

In the frequentist approach to imputation, the imputed values are generated from the conditional distribution
f

(
yi,mis | yi,obs, θ̂

)
with a particular value θ̂, often the MLE of θ. However, the frequentist approach for imputation

has received less attention than Bayesian imputation. One notable exception is Wang and Robins (1998) who studied
the asymptotic properties of multiple imputation and a (parametric) frequentist imputation procedure. Wang and
Robins (1998) considered the estimated parameter θ̂ to be given, and did not discuss parameter estimation.

We consider a frequentist imputation given a parametric model for the original distribution. We propose an
alternative implementation of the MCEM method using parametric fractional imputation that does not require re-
generation of the imputed values at each iteration. Only the fractional weights are re-computed for each iteration and
we propose a simple method of computing the fractional weights without increasing the size of Monte Carlo samples.
The proposed method uses the calibration technique to obtain the MLE and is computationally very attractive in
many cases.

In Section 2, the parametric fractional imputation method is proposed. Variance estimation is discussed in
Section 3 and the proposed method is extended for general purpose estimation in Section 4. Calibration fractional
imputation is derived in Section 5. Results from a limited simulation study are presented in Section 6.

2. Proposed method

As discussed in Section 1, solving the mean score equation (4) requires an iterative method because the conditional
distribution of yi,mis given yi,obs, denoted by f (yi,mis | yi,obs, θ), is a function of θ. Thus, since we cannot generate
imputed values from the conditional distribution with unknown θ, the iterative procedure generates imputed values
from the conditional distribution with the current value of θ and then updates θ based on the imputed score equation.

To avoid re-generating values from the conditional distribution at each step, we first generate M imputed values
from some known distribution q (yi,mis) whose support includes that of f (yi,mis | yi,obs,θ). Let the generated values
be y∗(1)i,mis, · · · ,y∗(M)

i,mis. Because

E
{
si (θ) | yi,obs, θ̂(t)

}
=

∫
si (θ)

f
(
yi,mis | yi,obs, θ̂(t)

)

q (yi,mis)
q (yi,mis) dyi,mis, (8)
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we can approximate the conditional expectation by

E
{
si (θ) | yi,obs, θ̂(t)

}
.=

1
M

M∑

j=1

s∗(j)i (θ)
f

(
y∗(j)i,mis | yi,obs, θ̂(t)

)

q
(
y∗(j)i,mis

) .

Thus, we propose the following algorithm for the parametric fractional imputation using importance sampling:

[Step 1] Obtain an initial estimator θ̂(0) of θ. Also, generate M imputed values, y∗(1)i,mis, · · · ,y∗(M)
i,mis, from some

density q (yi,mis). Often, q (yi,mis) = f
(
yi,mis | yi,obs, θ̂(0)

)
.

[Step 2] With the current estimate of θ, denoted by θ̂(t), compute the fractional weights as

w∗ij(t) = Ci(t)

f
(
y∗(j)i,mis | yi,obs; θ̂(t)

)

q
(
y∗(j)i,mis

) , (9)

where Ci(t) is chosen to satisfy
∑M

j=1 w∗ij(t) = 1.

[Step 3] Using the fractional weight obtained from Step 2, solve the weighted score equation

θ̂(t+1) ← solution to
n∑

i=1

M∑

j=1

w∗ij(t)s
∗(j)
i (θ) = 0. (10)

[Step 4] Go to Step 2. Stop if θ̂(t) meets the convergence criterion.

The proposed method is computationally attractive because we use a weighted score equation to compute the
parameter estimates. Unlike the MCEM method, the imputed values are not changed for each iteration, only the
fractional weights are changed.

Remark 1 In Step 2, fractional weights can be computed by using the joint density with the current parameter
estimate θ̂(t). Note that

f
(
y∗(j)i,mis | yi,obs, θ̂(t)

)
/q

(
y∗(j)i,mis

)

∑M
j=1 f

(
y∗(j)i,mis | yi,obs, θ̂(t)

)
/q

(
y∗(j)i,mis

) =
f

(
yi,obs,y

∗(j)
i,mis; θ̂(t)

)
/q

(
y∗(j)i,mis

)

∑M
j=1 f

(
yi,obs,y

∗(j)
i,mis; θ̂(t)

)
/q

(
y∗(k)

i,mis

) .

Thus, the fractional weights (9) can be computed as

w∗ij(t) = Ci(t)

f
(
yi,obs,y

∗(j)
i,mis; θ̂(t)

)

q
(
y∗(j)i,mis

) ,

which does not require the density of the conditional distribution. Only the joint density is needed.

Remark 2 The choice of the initial density q (yi,mis) is somewhat arbitrary. If we choose q (yi,mis) = f
(
yi,mis | yi,obs, θ̂(0)

)

where θ̂(0) is an initial parameter estimate of θ, the fractional weight with current parameter estimate θ̂(t) is of the
form

w∗ij(t) = Ci(t)

f
(
yi,obs,y

∗(j)
i,mis; θ̂(t)

)

f
(
yi,obs,y

∗(j)
i,mis; θ̂(0)

) , (11)

where Ci(t) is a normalizing constant. The initial estimate θ̂(0) is not necessarily
√

n-consistent.

Given the M imputed values, y∗(1)i,mis, · · · ,y∗(M)
i,mis, generated from q (yi,mis), the sequence of estimators

{
θ̂(0), θ̂(1), · · ·

}

can be constructed from the parametric fractional imputation using importance sampling. The following theorem
presents some convergence properties of the sequence of the estimators.
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Theorem 1 Assume that the M imputed values are generated from q (yi,mis). Let

Q∗
(
θ | θ̂(t)

)
=

n∑

i=1

M∑

j=1

w∗ij(t) ln f
(
yi,obs,y

∗(j)
i,mis; θ

)
, (12)

where w∗ij(t) = w∗ij
(
θ̂(t)

)
. If

Q∗
(
θ̂(t+1) | θ̂(t)

)
≥ Q∗

(
θ̂(t) | θ̂(t)

)
(13)

then
L∗obs

(
θ̂(t+1)

)
≥ L∗obs

(
θ̂(t)

)
, (14)

where L∗obs (θ) =
∏n

i=1 f∗obs(i) (yi,obs; θ) with

f∗obs(i) (yi,obs;θ) =

∑M
j=1 f

(
yi,obs,y

∗(j)
i,mis; θ

)
/q

(
y∗(j)i,mis

)

∑M
j=1 1/q

(
y∗(j)i,mis

) .

Proof. By the Jensen’s inequality,

ln L∗obs

(
θ̂(t+1)

)
− ln L∗obs

(
θ̂(t)

)
=

n∑

i=1

ln
M∑

j=1

w∗ij(t)
f

(
yi,obs,y

∗(j)
i,mis; θ̂(t+1)

)

f
(
yi,obs,y

∗(j)
i,mis; θ̂(t)

)

≥
n∑

i=1

M∑

j=1

ln w∗ij(t)
f

(
yi,obs,y

∗(j)
i,mis; θ̂(t+1)

)

f
(
yi,obs,y

∗(j)
i,mis; θ̂(t)

)

= Q∗
(
θ̂(t+1) | θ̂(t)

)
−Q∗

(
θ̂(t) | θ̂(t)

)
.

Therefore, (13) implies (14).
Note that L∗obs (θ) is an imputed version of the observed likelihood based on the the M imputed values,

y∗(1)i,mis, · · · ,y∗(M)
i,mis, generated from q (yi,mis). Under fairly general conditions, the solution to the imputed score

equation (10) satisfies (13). Thus, by Theorem 1, the sequence L∗obs

(
θ̂(t)

)
is monotonically increasing. Also, under

the fairly general conditions stated in Wu (1983), the convergence of θ̂(t) follows for fixed M . Theorem 1 does not
hold for the sequence obtained from the MCEM method for fixed M .

3. Variance estimation

To discuss variance estimation, note that
∂

∂θ
S̄ (θ) = −Iobs (θ) , (15)

where

Iobs (θ) = E

{
− ∂

∂θ
Sn (θ) | Yobs, θ

}
+ S̄ (θ)⊗2 − E

{
Sn (θ)⊗2 | Yobs, θ

}
(16)

with Sn (θ) =
∑n

i=1 si (θ) and S⊗2 = SS′. Louis (1982) first proved (15) to estimate the variance of the MLE
obtained by the EM algorithm.

Let θ̂
∗

be the solution to the approximate mean score equation

S̄∗ (θ) ≡
n∑

i=1

M∑

j=1

w∗ij (θ) s∗(j)i (θ) = 0, (17)

where s∗(j)i (θ) = s
(
θ;yi,obs,y

∗(j)
i,mis

)
and

w∗ij (θ) =
f

(
yi,obs,y

∗(j)
i,mis; θ

)
/q

(
y∗(j)i,mis

)

∑M
k=1 f

(
yi,obs,y

∗(k)
i,mis; θ

)
/q

(
y∗(k)

i,mis

) . (18)
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Note that
E

{
S̄∗ (θ) | Yobs

}
= S̄ (θ) (19)

where S̄ (θ) is defined in (5) and the expectation in (19) is over the imputation mechanism. Here, superscript ∗ is
used in θ̂

∗
to emphasize that the solution is obtained from the approximate mean score equation (17), not from the

exact mean score equation (5). An EM-type algorithm such as (10) can be used to find a solution θ̂
∗

to (17). Using
the Taylor linearization,

θ̂
∗ − θ0

∼= −
[
E

{
∂

∂θ
S̄ (θ0)

}]−1

S̄∗ (θ0) .

Thus, we can use the sandwich formula to compute the variance of θ̂
∗

that is the solution to (4). Note that, by (19),

V ar
{
S̄∗ (θ0)

}
= V ar

{
S̄ (θ0)

}
+ V ar

{
S̄∗ (θ0)− S̄ (θ0)

}
. (20)

The first term in the right side of (20) can be estimated by Iobs

(
θ̂
∗)−1

, as suggested by Louis (1982). The observed

information (16) can be easily computed from fractional imputation. That is, we use Îobs(θ̂
∗
) an an estimator of

Iobs (θ0), where

Îobs (θ) =
n∑

i=1

M∑

j=1

w∗ij
{
−∂si

(
θ;yi,obs,y

∗(j)
i,mis

)
/∂θ

}
(21)

+
n∑

i=1

{s̄∗i (θ)}⊗2 −
n∑

i=1

M∑

j=1

w∗ij
{
s∗(j)i (θ)

}⊗2

where s̄∗i (θ) =
∑M

j=1 w∗ijs
∗(j)
i (θ) and w∗ij = w∗ij(θ̂). Thus, the estimator in (21) is based on the Monte Carlo ap-

proximation of the conditional expectation (16) using fractional imputation where the fractional weight corresponds
to the importance weight of importance sampling. Because the Monte Carlo expectation not only approximates the
mean score equation (5) but also approximates the observed information (16), the fractional imputation (FI) method
provides consistent variance estimation for sufficiently large M .

To estimate the second term of (20), we consider the case when y∗(1)i,mis, · · · ,y∗(M)
i,mis are independent samples from

q (yi,mis). In this case, we can express

S̄∗ (θ) =
1
M

M∑

j=1

S̄∗(j) (θ)

where S̄∗(j) (θ) = M
∑n

i=1 w∗ijs
∗(j)
i (θ) and we have

1
M

B (θ) =
1
M

1
M − 1

M∑

j=1

{
S̄∗(j) (θ)− S̄∗ (θ)

}⊗2

to be unbiased for second term of (20). Therefore, the proposed variance estimator is

V̂ (θ̂
∗
) =

[
Iobs

(
θ̂
∗)]−1

+
[
Iobs

(
θ̂
∗)]−1

{
1
M

B(θ̂
∗
)
} [

Iobs

(
θ̂
∗)′]−1

. (22)

Often, the second term in (20) is very small for large M or for an efficient imputation method. In this case, the
second term (22) can be safely omitted in the variance estimation.

4. Extensions

So far, we have considered the case where the parameter of interest is estimated by the maximum likelihood method.
We consider an extension where the parameter of interest is not necessarily estimated from the maximum likelihood
method, but is estimated by solving an estimating equation. Suppose that, under complete response, a parameter
of interest, denoted by η, is estimated as the unique solution to the estimating equation

U (η) ≡
n∑

i=1

u (η;yi) = 0, (23)
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for some function u (η;yi) of η with continuous partial derivatives. Let η̂ be the solution to (23). Under some
regularity conditions, √

n (η̂ − η0) ∼ N
[
0, {g (η0)}−1

V {u (η0;y)} {g (η0)}−1
]

where g (η) = E {∂u (η;y) /∂η} and η0 is a unique solution to E {U (η)} = 0.
Under nonresponse, a consistent estimator of η0 can be obtained as a solution to the following estimating equation

Ū
(
η | θ̂

)
≡

n∑

i=1

E
{
u (η;yi) | yi,obs, θ̂

}
= 0, (24)

where θ̂ is the solution to (5). The estimating equation (24) is called the expected estimating equation. The use
of an expected estimating equation has been discussed by, among others, Wang and Pepe (2000) and Robins and
Wang (2000).

Using the fractional imputation approach discussed in Section 2, we can construct a Monte Carlo approximation
to the estimating equation

η̂∗ ← solution to
n∑

i=1

M∑

j=1

w∗ij(θ̂
∗
) u∗(j)i (η) = 0, (25)

where u∗(j)i (η) = u(η;yi,obs,y
∗(j)
i,mis), w∗ij (θ) is defined in (18), and θ̂

∗
is the solution to (17). Note that we do not

have to update the solution θ̂
∗

iteratively in (25) and only the final estimate θ̂
∗

is needed.
The following theorem presents some asymptotic properties of the estimator that is the solution to (24), or the

solution to (25).

Theorem 2 Let θ̂
∗

be the Monte Carlo approximation of the MLE of θ that is computed by solving the approximated
mean score equation (17). Under some regularity conditions, the solution η̂∗ to (25) satisfies

√
n (η̂∗ − η̃∗) = op (1) (26)

where
E (η̃∗) = η0

and
V ar (η̃∗) = {g (η0)}−1

V ar
{
Ũ∗ (η0,θ0)

} {
g (η0)

′}−1
. (27)

Here, g (η) = E {∑n
i=1 ∂u (η;yi) /∂η} and

Ũ∗ (η,θ) = Ū∗ (η, θ) + K ′S̄∗ (θ) , (28)

where

Ū∗ (η, θ) =
n∑

i=1

M∑

j=1

w∗ij (θ)u∗(j)i (η)

S̄∗ (θ) =
n∑

i=1

M∑

j=1

w∗ij (θ) s∗(j)i (θ)

and
K = [Iobs (θ0)]

−1
E [Smis (θ0)U′ (η0)] . (29)

Here, Iobs (θ) = −E {∂Sobs (θ) /∂θ} and Smis (θ) = Sn (θ)− Sobs (θ).

The result in Theorem 2 can be used to derive a variance estimator for η̂ that is a solution to (25). The crucial
part is to estimate the variance of the linearized term (28). Note that we can write

V ar
{
Ũ∗ (η0, θ0)

}
= V ar

{
Ũ (η0,θ0)

}
+ V ar

{
Ũ∗ (η0,θ0)− Ũ (η0,θ0)

}
, (30)

where
Ũ (η,θ) = p lim

M→∞
Ũ∗ (η, θ)
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If we write

Ũ (η, θ) = Ū (η, θ)−K ′S̄ (θ) =
n∑

i=1

{ūi (η,θ)−K ′s̄i (θ)} =
n∑

i=1

ũi,

a plug-in estimator of V ar
{
Ũ (η0,θ0)

}
is

n

n− 1

n∑

i=1

(
ûi − ¯̂u

) (
ûi − ¯̂u

)′

where
ûi = ūi(η̂, θ̂)− K̂ ′s̄i

(
θ̂
)

.

The terms ūi(η̂, θ̂) and s̄i(θ̂) are easily computed from the fractional imputation with fractional weights. To estimate
the second term of (30), write

Ũ∗ (η,θ) =
1
M

M∑

j=1

Ũ∗(j) (η, θ) ,

where Ũ∗(j) (η, θ) = M
∑n

i=1 w∗ij (θ)
{
u∗(j)i (η)−K ′s∗(j)i (θ)

}
. The second term in (30) can be consistently esti-

mated by
1
M

1
M − 1

M∑

j=1

{
Ũ∗(j)

(
η̂, θ̂

)
− Ũ∗

(
η̂, θ̂

)}⊗2

.

To estimate K term in (29), we need to estimate the two terms in (29) separately. The first term, Iobs (θ), can be
computed using (21), the estimated observed information based on the Louis formula. Now, to estimate the second
term in K, we use

E
{

U (η, θ)Smis (θ) | Yobs, θ̂
}

= E
{

U (η, θ)S′n (θ) | Yobs, θ̂
}
− Ū (η, θ) S̄ (θ)′ .

The first expectation can be estimated by the fractional imputation. That is, we can estimate E
{

U (η, θ) S′n (θ) | Yobs, θ̂
}

by
n∑

i=1

M∑

j=1

w∗iju
∗(j)
i (η̂, θ̂)s∗(j)i (θ̂)′

with u∗(j)i (η,θ) = ui(η,θ;yi,obs,y
∗(j)
i,mis) and s∗(j)i (θ) = si(θ;yi,obs,y

∗(j)
i,mis).

5. Calibration

The proposed estimation method can be viewed as a method of implementing a MCEM algorithm using importance
sampling. The MCEM method is subject to sampling error when approximating the conditional expectation by a
summation. In general, the size M of the Monte Carlo sample needs to be very large for satisfactory approximation.
For moderate size M , there are two situations when the approximation is accurate. The first situation is when there
are only finite number of possible values for yi,mis. In this case, we take the possible values as the imputed values
and compute the conditional probability of y∗i,mis by the following Bayes formula:

p
(
y∗(j)i,mis | yi,obs, θ̂

)
=

f
(
yi,obs,y∗i,mis; θ̂

)

∑Mi

j=1 f
(
yi,obs,y

∗(j)
i,mis; θ̂

) ,

where Mi is the number of possible values of yi,mis and θ̂ is the MLE of θ. The conditional expectation in (6) can
be written

E
{
si (θ) | yi,obs, θ̂(t)

}
=

Mi∑

j=1

s∗(j)i (θ) p
(
y∗(j)i,mis | yi,obs, θ̂(t)

)
. (31)
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Here, the estimated probability p
(
y∗(j)i,mis | yi,obs, θ̂(t)

)
takes the role of the fractional weight. Ibrahim (1990) pro-

posed using (31) in the E-step of the EM algorithm for discrete data.
The approximation is exact when the distribution belongs to the exponential family of the form

f (y; θ) = exp
{
t (y)′ θ + φ (θ) + A (y)

}
. (32)

Under the model (32), the score equation (1) under complete response is equal to
n∑

i=1

{
t (yi) +

∂φ (θ)
∂θ

}
= 0

and the mean score equation (4) can be written
n∑

i=1

{
E [t (yi) | yi,obs,θ] +

∂φ (θ)
∂θ

}
= 0.

Thus, the integration problem in (6) reduces to the problem of computing the integration E {t (yi) | yi,obs, θ}, which
is often a known function of yi,obs and θ. In this case, the implementation of the EM algorithm simplifies.

Define
g (yi,obs, θ) = E {t (yi) | yi,obs, θ} . (33)

Recall that, in the fractional imputation approach, we can express the conditional expectation by a weighted sum-
mation

E
{
t (yi) | yi,obs, θ̂(t)

}
=

Mi∑

j=1

w∗ij(t)t
(
yi,obs,y

∗(j)
i,mis

)
, (34)

where y∗(j)i,mis is the j-th imputed value of yi,mis and w∗ij(t) is the fractional weight which is the conditional probability

of yi,mis = y(j)
mis,i given yobs,i using the current parameter value θ̂(t). Thus, it is proposed that

Mi∑

j=1

w∗ij(t)t
(
yi,obs,y

∗(j)
i,mis

)
= g

(
yi,obs, θ̂(t)

)
(35)

be used as as a constraint for finding the fractional weights. We can use the regression weighting technique or the
empirical likelihood technique to find a solution to (35). Here, Mi need not be large.

Example 1 Suppose that yi = (yi1, yi2)
′ has a bivariate normal distribution:

(
yi1

yi2

)
i.i.d.∼ N

[(
µ1

µ2

)
,

(
σ11 σ12

σ12 σ22

)]
.

Under the bivariate normal distribution, a set of sufficient statistics for the parameter θ = (µ1, µ2, σ11, , σ12, σ22)
′ is∑n

i=1

(
yi1, yi2, y

2
i1, yi1yi2, y

2
i2

)
. Therefore, constraint (35) can be satisfies if

M∑

j=1

w∗ij(t)

{
1, y

∗(j)
i1 ,

(
y
∗(j)
i1

)2
}

=
{

1, E
(
y1i | y2i, θ̂(t)

)
,
{

E
(
y1i | y2i, θ̂(t)

)}2

+ σ̂11·2(t)

}
, for i ∈ AMR

and
M∑

j=1

w∗ij(t)

{
1, y

∗(j)
i2 ,

(
y
∗(j)
i2

)2
}

=
{

1, E
(
y2i | y1i, θ̂(t)

)
,
{

E
(
y2i | y1i, θ̂(t)

)}2

+ σ̂22·1(t)

}
, for i ∈ ARM

where

E
(
y1i | y2i, θ̂

)
= µ̂1 +

σ̂12

σ̂22
(yi2 − µ̂2)

E
(
y2i | y1i, θ̂

)
= µ̂2 +

σ̂12

σ̂11
(yi1 − µ̂1) ,

σ11·2 = σ11 − σ2
12/σ22, and σ22·1 = σ22 − σ2

12/σ11.
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In practice, instead of (35), the fractional weights are computed from

∑

i∈Ac

M∑

j=1

w∗ij(t)t
(
yi,obs,y

∗(j)
i,mis

)
=

∑

i∈Ac

g
(
yi,obs, θ̂(t)

)
, (36)

where Ac is the set of sample indices in a cell c. Imposing fractional weighting constraints in each cell rather than
for each unit reduces the chance of extreme weights.

Variance estimation with fractionally imputed data can be performed using linearization or replication. The
plug-in method discussed in Section 3 is essentially the linearization method.

Assume that, under complete response, let w
[k]
i be the k-th replication weight for unit i. Assume that the

replication variance estimator

V̂n =
L∑

k=1

ck

(
θ̂[k]

n − θ̂n

)2

, (37)

where θ̂n =
∑n

i=1 wiyi and θ̂
[k]
n =

∑n
i=1 w

[k]
i yi, is consistent for the variance of θ̂n.

For replication with the calibration fractional imputation method, we consider the following steps for creating
replicated fractional weights. Here, we assume that the calibration fractional weights are computed from (36).

[Step 1] Compute θ̂
[k]

, the k-th replicate of θ̂, using fractional weights.

[Step 2] Using the θ̂
[k]

computed from Step 1, compute the replicated fractional weights by

∑

i∈Ac

w
[k]
i

M∑

j=1

w
∗[k]
ij t

(
yi,obs,y

∗(j)
i,mis

)
=

∑

i∈Ac

w
[k]
i g

(
yi,obs, θ̂

[k]
)

, (38)

using the regression weighting technique.

Equation (38) is the calibration equation for the replicated fractional weights. In general, Step 1 can be computa-

tionally problematic since θ̂
[k]

is computed from the iterative algorithm (10) for each replication. Thus, we consider

an approximation for θ̂
[k]

using Taylor linearization. Let

S̄[k] (θ) =
n∑

i=1

w
[k]
i s̄i (θ)

where si (θ) = E {si (θ) | yi,obs, θ}. Using (15) and (21), the approximation formula can be implemented as

θ̂
[k] ∼= θ̂ +

[
Î
[k]
obs

(
θ̂
)]−1

S̄[k]
(
θ̂
)

, (39)

where

Î
[k]
obs (θ) =

n∑

i=1

w
[k]
i

M∑

j=1

w∗ij
{
−∂si

(
θ;yi,obs,y

∗(j)
i,mis

)
/∂θ

}
(40)

+
n∑

i=1

w
[k]
i {s̄∗i (θ)}⊗2 −

n∑

i=1

w
[k]
i

M∑

j=1

w∗ij
{
s∗(j)i (θ)

}⊗2

and

S̄[k] (θ) =
n∑

i=1

w
[k]
i

M∑

j=1

w∗ijs
∗(j)
i (θ) .

6. Simulation Study

In a limited simulation study, we generated B = 5, 000 Monte Carlo samples of size n = 200 from a bivariate normal
distribution with µ1 = 0, µ2 = 2, σ11 = 1, σ12 = 1, and σ22 = 2. The probability of both responding is 0.42, the
probability of only y1 responding 0.18, and the probability of only y2 responding 0.28. We considered the following
seven parameters:

Section on Survey Research Methods – JSM 2008

166



1. Five parameters in the bivariate normal distribution:

µ1, µ2, σ11, σ12, σ22

2. Proportion of y1 less than 0.8.

3. Domain mean where the probability of being in the domain is 0.4. (The probability of being in the domain
does not depend on y1 or y2.)

For each parameter, we have computed four estimators:

1. The MLE using the EM algorithm

2. The fractional imputation estimator proposed in Section 2 with M = 100 and M = 10.

3. The calibration fractional imputation estimator proposed in Section 5 with M = 10 using the regression
weighting method.

4. Multiple imputation (MI) with M = 10 imputations.

In fractional imputation, imputed values are generated by a systematic sampling method described in Appendix B,
with M∗ = 1, 000. The basic idea is to generate M∗ initial imputed values and then use a version of systematic
sampling to get the final M imputed values. In the calibration fractional imputation method, the regression fractional
weights are computed by (35). In multiple imputation, the imputed values are generated from the posterior predictive
distribution iteratively using Gibbs sampling.

For variance estimation, we considered the FI estimator (without calibration), the calibration FI estimator, and
multiple imputation. For variance estimation of the fractional imputation, we used the plug-in estimator discussed
in Section 3 and Section 4. For variance estimation of the calibration FI estimator, we used the one-step jackknife
variance estimator discussed in Section 5. For variance estimation of the multiple imputation, we used the variance
formula of Rubin (1987). Table 1 presents the Monte Carlo means and variances of the four estimators. Table 2
presents the Monte Carlo relative biases and t-statistics for the variance estimators. The t-statistic is the statistic
for testing zero bias in the variance estimator.

For point estimation, the calibration FI estimator and the the EM method give the same values for the parameters
specified in the model. The (uncalibrated) fractional imputation estimator shows fairly good efficiency for many
parameters, which suggests that the systematic sampling method used in the fractional imputation is already quite
efficient. Multiple imputation shows less efficiency than the FI estimators for all parameters.

For estimation of the proportion and the domain mean, it is possible for the FI estimator with M = 100 to be
more efficient than the calibration FI estimator with M = 10 because these parameters are not directly considered
in the calibration step. The differences in efficiencies for these two parameters are less than one percent.

For variance estimation of the FI estimators, both linearization and replication methods provide consistent
estimates for the variance of the parameter estimates. Variance estimation for domain estimation is biased under
multiple imputation, as was identified by Kim and Fuller (2004).
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Table 1: Monte Carlo means and variances of the imputed estimators, based on 5,000 samples

Parameter Method Mean Variance
µ1 EM 0.00 0.007247

FI (M=100) 0.00 0.007247
FI (M=10) 0.00 0.007250

Calib. FI (M=10) 0.00 0.007247
MI (M=10) 0.00 0.007538

µ2 EM 2.00 0.01294
FI (M=100) 2.00 0.01294
FI (M=10) 2.00 0.01294

Calib. FI (M=10) 2.00 0.01294
MI (M=10) 2.00 0.01322

σ11 EM 1.00 0.01564
FI (M=100) 1.00 0.01565
FI (M=10) 1.00 0.01575

Calib. FI (M=10) 1.00 0.01564
MI (M=10) 1.00 0.01664

σ12 EM 1.00 0.02196
FI (M=100) 1.00 0.02197
FI (M=10) 1.00 0.02204

Calib. FI (M=10) 1.00 0.02196
MI (M=10) 1.00 0.02291

σ22 EM 1.99 0.05635
FI (M=100) 1.99 0.05636
FI (M=10) 1.99 0.05671

Calib. FI (M=10) 1.99 0.05635
MI (M=10) 2.00 0.05892

Proportion FI (M=100) 0.79 0.001008
FI (M=10) 0.79 0.001012

Calib. FI (M=10) 0.79 0.001011
MI (M=10) 0.79 0.001044

Domain Mean FI (M=100) 2.00 0.02375
FI (M=10) 2.00 0.02375

Calib. FI (M=10) 2.00 0.02375
MI (M=10) 2.00 0.02430
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Table 2: Monte Carlo relative biases and t-statistics of the variance estimators, based on 5,000 samples

Parameter Method Rel. Bias (%) t-statistics
Linearize (for FI with M = 100) -2.27 -1.16

V ar (µ̂1) Linearize (for FI with M = 10) -2.02 -1.03
One-step JK (for calibration FI) 0.79 0.40

MI (M=10) 4.71 2.39
Linearize (for FI with M = 100) -0.49 -0.24

V ar (µ̂2) Linearize (for FI with M = 10) -0.33 -0.16
One-step JK (for calibration FI) 1.67 0.83

MI (M=10) 0.76 0.37
Linearize (for FI with M = 100) -0.05 -0.02

V ar (σ̂11) Linearize (for FI with M = 10) -0.85 -0.43
One-step JK (for calibration FI) 7.19 3.55

MI (M=10) 3.45 1.71
Linearize (for FI with M = 100) -1.45 -0.73

V ar (σ̂12) Linearize (for FI with M = 10) -2.37 -1.19
One-step JK (for calibration FI) 4.31 2.15

MI (M=10) 2.15 1.06
Linearize (for FI with M = 100) -2.85 -1.36

V ar (σ̂22) Linearize (for FI with M = 10) -5.82 -2.76
One-step JK (for calibration FI) -0.56 -0.26

MI (M=10) -2.17 -1.03
Linearize (for FI with M = 100) -2.83 -1.43

V ar (p̂) Linearize (for FI with M = 10) 3.11 1.57
One-step JK (for calibration FI) -0.46 -0.23

MI (M=10) 22.98 11.14
Linearize (for FI with M = 100) 4.95 2.44

V ar (µ̂d) Linearize (for FI with M = 10) 8.48 4.18
One-step JK (for calibration FI) 7.20 3.55

MI (M=10) 33.64 16.50
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