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Abstract 
In this research we develop and apply new techniques for handling nonignorable nonresponse. We assume a model 

for the outcome variable under complete response and a model for the response probability, which is allowed to 

depend on the outcome and auxiliary variables. The two models define the model holding for the outcomes 

observed for the responding units. The unknown parameters governing this model are estimated by maximization 

of the corresponding likelihood, and we develop alternative maximization algorithms that utilize the information 

on the population means of some or all the auxiliary variables. We estimate the distribution of the missing 

covariates and use it for imputing the missing values for the nonresponding units and for estimating the population 

total of the outcome. We illustrate our approach using a real data set. 
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1. Introduction 

 
Most of the methods dealing with nonresponse assume that it is missing at random, and that the auxiliary 

(explanatory) variables are observed for both the respondents and the nonrespondents. These assumptions, 

however, are not always met. In this research we consider the often practical situation where the probability to 

respond may depend also on the outcome value after conditioning on the explanatory variables. For example, the 

probability to obtain information on income may depend on the income level as well as socio-demographic 

variables. For this kind of response mechanism, the missing outcome values are not missing at random (NMAR), 

since for the non-responding units the probability of not responding depends on the missing outcomes. We also 

consider the case of ‘unit nonresponse’, where the auxiliary information for the nonrespondents is likewise 

unobserved, except, perhaps, for the population means of some or all of the auxiliary variables. These means are 

often available from administrative or census records.  

 

We assume a model for the outcome variable under complete response (the population model) and a model for the 

response probabilities, and then maximize the likelihood for the model holding for the observed outcomes (the 

sample model). In order to utilize the additional information provided by the known population totals of the 

covariates, we iterate between maximization of the likelihood for estimating the population model parameters that 

feature in the sample model, and solving calibration constraints for estimating the parameters governing the model 

assumed for the response probabilities. The calibration constraints match pseudo probability weighted estimates of 

the totals of the covariates and a pseudo probability weighted estimate of the population mean of the population 

model residuals, with their known population values. See Section 3 for details. 

     

Having estimated the parameters of the response model, we predict the population mean of the outcome values by 

use of Horvitz-Thompson type estimators. When the covariates are observed for all the sampled units, we estimate 

the conditional distribution of the outcome values for the nonrespondents given their respective covariates, using 

relationships developed in Sverchkov and Pfeffermann (2004). We use this distribution for imputing the missing 

sample data, thus providing analysts with a ‘complete’ data set. Combining the observed and imputed values 

enables the computation of another predictor of the outcome population mean. In the case of missing covariate 

information, this is done by first imputing the missing covariate values, again using the results in Sverchkov and 

Pfeffermann (2004). See Section 4. We illustrate the proposed procedure and compare it with other methods 

proposed in the literature in Section 5, using a real data set. Section 6 contains some concluding remarks. 
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2. Existing Approaches 

Let iY  denote the value of an outcome variable Y  associated with unit i  belonging to a sample {1,..., }S n= . We 

assume that the sample is drawn from a finite population {1,..., }U N=  by probability sampling with known first 

order inclusion probabilities Pr( )
i

i Sπ = ∈ . Let 
1

( ,..., )
i i Ki

X X X=  denote the corresponding values of K  

auxiliary variables (covariates). In what follows we assume that the population outcomes are independent 

realizations from distributions with probability density functions (pdf), ( | )
U i i

f Y X , governed by an unknown vector 

parameter θ . Let {1,..., }rR n=  define the subsample of respondents (the subsample with observed covariates and 

outcome values), and { 1, ..., }
c

r
R n n= +  define the subsample of nonrespondents, for which at least the outcomes 

are unobserved. The response process is assumed to be independent between units. The observed sample of 

respondents can be viewed therefore as the result of a two-phase sampling process, where in the first phase the 

sample S  is selected from U with known inclusion probabilities, and in the second phase the sample R  is ‘self 

selected’ with unknown response probabilities Pr( | )
i

q i R i S= ∈ ∈ ; Särndal and Swensson (1987).   

    

In what follows we assume that the sampling process is noninformative such that under complete response,  

( | ) ( | , ) ( | )S i i i i U i if Y X f Y X i S f Y X= ∈ = , where ( | )
S i i

f Y X  is the model holding for sampled unit i  under complete 

response. Most of the approaches proposed in the literature to deal with nonresponse assume (sometimes 

implicitly) that the missing data are 'missing at random' (MAR, see Rubin, 1976 and Little, 1982). This type of 

nonresponse requires that the probability to respond does not depend on the unobserved data, after conditioning on 

the observed data. Under this condition, and if the parameters governing the distribution under full response are 

distinct from the parameters governing the response process, the nonresponse can be ignored for likelihood and 

Bayesian based inference. Notice that in this case,  

( | ) ( | , ) ( | )R i i i i S i if Y X f Y X i R f Y X= ∈ =                                                    (1) 

where ( | )R i if Y X defines the marginal pdf  for responding unit i and ( | )S i if Y X is the corresponding sample pdf 

defined above. There are many approaches for handling MAR nonresponse, see the books by Schafer (1997) and 

Little and Rubin (2002) and the recent article by Qin et al. (2008) for comprehensive accounts. 

     

In this research we focus on situations where the probability to respond may depend on the outcome value even 

after conditioning on the covariates. Suppose first that all the covariates are known for every sampled unit. Define 

by iR  the response indicator such that 1(0)
i

R =  if sampled unit i responds on the outcome (does not respond). A 

possible way to deal with the nonresponse in such situations is by postulating a parametric model for the joint 

distribution of 
i

Y  and 
i

R , given
i

X . Little and Rubin (2002) distinguish between two ways of formulating the 

likelihood in this case. Suppressing for convenience the parameters from the notation,  
 

Selection Models specify,  

( , | ) Pr( | , ) ( | )
i i i i i i S i i

f Y R X R Y X f Y X= ,                                                      (2)                              

where Pr( | , )
i i i

R Y X  models the response process. The missing sample values can be imputed in this case by the 

expectations, ( | ) ( | , 0)C i i i i iR
E Y X E Y X R= =  or by drawing at random from the pdf ( | )C i iR

f Y X  

( | , 0)
i i i

f Y X R= = , thus accounting for the variability of the outcomes around their expectations. In practice, the 

probabilities and densities are replaced by their estimates, obtained by substituting the unknown parameters by 

their sample estimates. An example of the use of selection models is considered by Greenlees et al. (1982). The 

authors assume that the sample model is normal and the probability to respond is logistic. 

      

Selection models allow estimating all the unknown model parameters, but as noted by Little (1994), they are based 

inevitably on strong distributional assumptions. Beaumont (2000) proposes to robustify the model considered by 

Greenlees et al. (1982) by dropping the normality assumption for the regression residuals. A drawback of this 

method is that the probabilities ( 0 | )
i i

P R X= appearing in the full likelihood for the responding and 

nonresponding units cannot actually be calculated, since the sample pdf of |
i

X
i

Y  is not specified. (For the 

nonresponding units the only known information is 0
i

R = ). The author deals with this problem by expanding 

( 1 | , )i i iP R Y X=  around the mean ( | )S i iE Y X , where ( )SE ⋅  is the mean under the sample model, but this amounts 

to assuming a MAR response. Note also that without further assumptions, the missing outcomes have to be 

imputed under this approach by the estimated expectations |ˆ ( )
S i

X
i

E Y , instead of the expectations ˆ ( | )C i iR
E Y X . 
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Pattern-mixture models specify,  

                     ( , | ) ( | , ) Pr( | )
i i i i i i i i

f Y R X f Y X R R X= ,                                                    (3)               

where ( | , )
i i i

f Y X R  defines the pdf under the different patterns of the missing data, ( 0, 1)
i i

R R= = , and 

Pr( | )
i i

R X  models the response probability given the covariates. A major drawback of pattern-mixture models is 

that the model holding for the nonrespondents, ( | , 0)
i i i

f Y X R = , cannot be extracted from the models 

( | , 1)
i i i

f Y X R =  and  Pr( | )
i i

R X  fitted under this approach.  

 

Tang et al. (2003) propose a ‘pseudo-likelihood’ approach that uses the conditional pdf, ( | )
S i i

f X Y  for the 

respondents. Application of this approach requires specification of the sample pdf ( | )
S i i

f Y X and the marginal pdf 

( )
S i

g X . The method does not require a parametric model for the response probability but it assumes that it 

depends only on the outcome. The use of this approach does not enable imputing the missing outcomes from the 

distribution ( | ) ( | , 0)C i i i i iR
f Y X f Y X R= = . 

 

So far we considered methods applicable for the case where the covariates are observed for all the sampled units. 

Qin et al. (2002) propose a method that can be applied when the covariates are only known for the respondents. 

The method assumes a parametric model for Pr( 1| , )
i i i

R X Y=  and known population means of the covariates. The 

authors use an empirical likelihood, addressing the problem of missing covariate information by using the 

unconditional response probability, Pr( 1)iRλ = =  in the likelihood, instead of the conditional probabilities 

Pr( 1 | )
i i

R X= . The method accounts for the known population means of the covariates by adding constraints to 

the likelihood. However, our experience so far shows that the good performance of this procedure depends on 

having sufficient accurate initial values for the response model parameters and the Lagrange multipliers used for 

the constrained maximization procedure.  

      

Chang and Kott (2008) propose an approach for estimating the response probabilities based on the known totals of 

calibration variables. The authors assume a parametric response model that can depend on the outcome value, and 

estimate the unknown parameters governing this model by regressing the Horvitz-Thompson (H-T, 1952) 

estimators of the totals of the calibration variables, with the response probabilities defined by their values under the 

model, against the corresponding known totals. See Remark 5 in Section 3 below. Having estimated the response 

probabilities, the use of this approach allows estimating the population totals of the target variables of interest, but 

it does not allow imputation of the missing outcomes, since no model is assumed for the outcome values.  

 

3. The Respondents Distribution and Parameters Estimation 

3.1 The respondents distribution and its relationship to the sample distribution  
The marginal pdf of the outcome for a responding unit is obtained, similarly to Pfeffermann et al. (1998) as, 

( | )
R i i

f Y X = ( | , , 1)
i i i

f Y X i S R∈ =
Pr( 1 | , , )

Pr( 1| , )

i i i

i i

R Y X i S

R X i S
=

= ∈

= ∈
( )

S i i
f Y X ,                          (4) 

where |Pr( 1 | , ) Pr( 1 | , , ) ( )
i i i i i S i i i

R X i S R Y X i S f Y X dY= ∈ = = ∈∫  and ( | )
S i i

f Y X  is the sample pdf under 

complete response. (As noted before, in this research we assume that the sample pdf and the population pdf are the 

same.) Denote ( , ) Pr( 1 , , )
i i i i i

Y X R Y X i Sπ = = ∈  and ( )iXπ  Pr( 1 , )
i i

R X i S= = ∈ .  

Remark 1. It follows from (4) that the marginal pdf for a responding unit and the corresponding marginal sample 

pdf are the same if ( , ) ( )i i iY X Xπ π= , that is, if the response probability does not depend on the outcome value 

given the covariates. 

Remark 2. As with selection models, the use of the respondents’ model requires modeling the sample pdf, 

( | )
S i i

f Y X  and the response probability, Pr( 1 | , , )
i i i

R Y X i S= ∈ . Notice, however, that the resulting respondents’ 

model can be tested since it relates to the data observed for the responding units.  

      

By (4), if the sample outcomes and the response are independent between the units, and the covariates are only 

known for the respondents, one can estimate the parameters θ  governing the sample model and the parameters γ  

governing the model for the response probabilities by maximizing the respondents’ likelihood, 

 

Resp
1 1

Pr( 1 , , ; ) ( ; )
( | , 1, ; , )

Pr( 1 , ; , )

r r
i i i S i i

i i i
i i

i i

R Y X i S f Y X
L f Y X R i S

R X i S

γ θ
θ γ

θ γ= =

= ∈
= = ∈ =∏ ∏

= ∈
.                     (5) 
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The notable property of the likelihood (5) is that it does not require knowledge of the covariates for nonresponding 

units, or modeling the distribution of the sampled covariates.  

  

3.2 Calibration constraints   
The additional information contained in the population size and the population totals of some or all of the 

covariates is not part of the likelihood in (5). We utilize this information by imposing the following constraints. 

Suppose that the population totals, 
1

( ,..., )pop pop pop

K
X X X=  of all the covariates 1( ,..., )KX X X=  are known. 

The calibration constraints are, 

       
1 1

1
, 1,..., ;

( , ; ) ( , ; )

r r
popki

i k i
i i

i i i i

X
w X k K w N

Y X Y Xπ γ π γ= =

= = =∑ ∑ ,                              (6a) 

where { (1/ ) 1/ Pr( )}
i i

w i Sπ= = ∈ are the base sampling weights.  

When the response model has an intercept, we use the additional constraint,  

                                      
1

( ( | ; ))
0

( , ; )

r
i S i i

i
i

i i

Y E Y X
w

Y X

θ

π γ=

−
=∑ .                                                       (6b) 

 Our experience so far shows that often the response model does not contain all the covariates included in the 

sample model, in which case the estimation of the response model parameters is enhanced by replacing the 

constraint (6b) by the following constraint. Let (1) (2)( , )
i i i

X X X= , where (1)

1
( ,..., )

i i im
X X X= , 

(2)

, 1
( ,..., )

i i m iK
X X X+= . Suppose that 

0

(1) (1) (2) (2)
( | ; )

p

S i i k ki
k

X X
i i

E Y X Xθ θ θθ
=

= +′ ′= ∑  (e.g., the sample model is 

normal), but ( , ; )
i i

Y Xπ γ  (1)( , ; )
i i

Y Xπ γ= . Let ,(1) ,(2)( , )pop pop popX X X= . The alternative constraint (together with 

(6a) but using only the variables in 
(1)X ) is,  

                                  (2) ,(2)

(1)
1

(2) (2)

( , ; )

r
pop

i
i

i i

X
iw X

Y X

θ
θ

π γ=

′
′=∑ .                                                   (6c) 

Notice that the constraints (6a) and (6c) imply, 
(1) (2)

(1) (2)

(1)
1 1

( | , )
( | , )

( , ; )

r n
S i i i

S i i i
i i

i i

E Y X X
E Y X X

Y Xπ γ= =

=∑ ∑ .  

 

Remark 3. The left hand sides of (6a) and (6c) are the familiar H-T estimators of the corresponding totals under 

the following two-phase sampling process: in the first phase a sample S of size n  is sampled with inclusion 

probabilities Pr( ) 1/
i i

i S wπ∈ = = ; in the second phase the sampled units respond with probabilities ( , )
i i

Y Xπ =  

Pr( 1| , , )
i i i

R Y X i S= ∈ . We assume that the weights wi  are known, which is usually the case. 

Remark 4. Instead of the constraints (6a), one could use the following constrains:  

           
1

, 1,...,
( ; , )

r
popki

i k
i

i

X
w X k K

Xπ θ γ=

= =∑ ,    
1

1

( ; , )

r

i
i

i

w N
Xπ θ γ=

=∑ .                            (7)  

A theoretical argument in favor of (7) is that the probabilities ( ; , )
i

Xπ θ γ  ( , ; ) ( | ; )i i i i iY X f Y X dYπ γ θ= ∫  account 

for the net effect of iX  on the response, thus yielding less variable H-T estimators for the covariates totals than the 

use of the probabilities ( , ; )
i i

Y Xπ γ , which account also for the effect of the outcome iY . Note that these 

probabilities depend also on the vector parameter θ , thus providing additional information for it. 
 

3.3 Estimation Algorithm with calibration constraints 
In order to utilize the additional information provided by knowledge of the population means, we estimate the 

response model parameters by solving the equations (6), or the equations (6b) or (6c) and (7), and use the 

following iterative algorithm.  

Let (0)θ̂  denote initial values for the vector θ  indexing the sample pdf ( ; )
S i i

f Y X θ .  

Step j: For given estimate ( )ˆ jθ  from iteration  j, set ( )ˆ jθ θ=  and solve the set of equations (6), or (6b) or (6c) and 

(7) as a function of the unknown parameters γ  governing the model ( , ; )i iY Xπ γ for response  probabilities. This 

step yields estimates ( 1)ˆ jγ + .  

Step j+1: Maximize (5) with respect to θ , with γ  equal to ( 1)ˆ jγ + . This step yields new estimate ( 1)ˆ jθ + . Continue 

the iterations until convergence.  
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We find it convenient to estimate the sample model parameters θ  by maximizing the likelihood (5) with ‘fixed’ 

parameters γ , and estimate the response model parameters γ  by solving the equations (6), or (6b) or (6c) and (7) 

with ‘fixed’ θ , since this simplifies the computation of the estimators.  

 

Remark 5. Another possibility of utilizing known covariate totals is by applying an approach proposed by Chang 

and Kott (2008). By this approach the estimated totals of calibration variables 
1
,...,

q
Z Z , which may contain some 

or all the model covariates are regressed against their known population totals. Thus, in the case that the probability 

to respond depends on the outcome variable and all the covariates, the method requires that 1q K≥ + . The major 

difference between the algorithm described above and this method is that it allows utilizing more than ( 1)K +  

known population totals, resulting in more equations than estimated parameters and hence possibly more stable 

estimators. The authors estimate the unknown parameters by setting the nonlinear regression equations, 

1 ( , ; )

r
popi

i
i

i i

Z
w Z

Y X
ε

π γ=

= +∑ , where popZ denotes the vector of known population totals of the calibration variables, 

and ε  is a vector of errors. See Chang and Kott (2008) for details.  

 

4. Imputation of missing values and estimation of population totals  
 

Denote by,    

ˆ ˆ ˆ ˆˆ( | ) ( | ; , ), ( , ) ( , ; )

ˆ ˆˆˆ ˆˆ( ) ( ; , ), ( | ) ( | ; , )

S i i S i i i i i i

i i S i i S i i

f Y X f Y X Y X Y X

X X E Y X E Y X

θ γ π π γ

π π θ γ θ γ

= =

= =
 ,                               (8) 

the estimated sample pdf, the response probabilities and the estimated expectations, with the estimates of the 

parameters obtained by one of the methods described in Section 3. The estimates in (8) provide several possibilities 

for the imputation of the missing values and the estimation of the population total of the outcome variable.  

     

When the covariates for the nonrespondents are unknown, the population total of the outcome can be estimated 

using the (pseudo) H-T estimator,  

                                                    (1)
1

ˆ ˆ/ ( , )
r

i i i i
i

Y w Y Y Xπ
=

= ∑ .                                                                   (9) 

Alternatively, one can use the estimator,  

                                                     
(2)

1

ˆ ( | )ˆ
ˆ ( )

r
S i i

i
i

i

E Y X
Y w

Xπ=

= ∑ ,                                                                (10) 

which uses the response weights that only condition on the covariates.      

The estimators (9) and (10) only require knowledge of the covariates for the responding units. If the covariates are 

known for all the sampled units, another set of plausible estimates is obtained as,    

                   
*

(3)
1

ˆ
n

i i
i

Y w Y
=

= ∑ ;  *

i i
Y Y=  if i R∈  , * imp

i i
Y Y=  if c

i R∈ .                                     (11) 

The imputed values, imp

i
Y , can be computed either as, 

                                  ( | ) ( | , )C

imp c

i i i i iR
Y E Y X E Y X i R= = ∈ ,                                              (12) 

or by generating at random one or more observations from the pdf ( | )c i iR
f Y X  and taking the average of these 

observations as the imputed value, using multiple imputation techniques. (Rubin, 1987, Schafer and Schenker, 

2000). The pdf ( | )c i iR
f Y X  is the pdf for a nonresponding unit with covariates iX . We emphasize that under 

NMAR nonresponse the imputations of the missing outcomes should be based on the model holding for the 

nonrespondents and not on the sample model that assumes full response or the model holding for the respondents. 

Following Sverchkov and Pfeffermann (2004), the pdf for a nonresponding unit can be computed utilizing the 

relationship,  

   
Pr( 0 | , , ) ( | ) [1 ( , )] ( | )

( | )
Pr( 0 | , ) [1 ( )]

c

i i i S i i i i S i i

i iR
i i i

R Y X i S f Y X Y X f Y X
f Y X

R X i S X

π

π

= ∈ −
= =

= ∈ −
.                           (13)  

In practice, one has to use the estimated pdf, 
ˆˆ[1 ( , )] ( | )ˆ ( | )

ˆ[1 ( )]
c

i i S i i

i iR
i

Y X f Y X
f Y X

X

π

π

−
=

−
, as obtained by replacing the 

unknown parameters by their sample estimates.   

The predictor (3)Ŷ  in (11) assumes that the covariates are known for every unit in the sample. When the covariates 

are only known for the respondents, we may first predict the missing covariates for the nonrespondents from the 
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probability function 
|0

|( ) Pr( 0, )
X i i i i

P x X x R i S= = = ∈ , and then predict the outcome value as described above. 

By Sverchkov and Pfeffermann (2004), the latter probability function can be expressed as, 

       

( 0 | , )
Pr( | 0, ) Pr( | )

( 0 | )

( 0 | , ) Pr( | 1, ) Pr( 1 | )

( 0 | ) Pr( 1| , )

i i i

i i i i i

i

i i i i i i i

i i i i

P R X x i S
X x R i S X x i S

P R i S

P R X x i S X x R i S R i S

P R i S R X x i S

= = ∈
= = ∈ = = ∈

= ∈

= = ∈ = = ∈ = ∈
=

= ∈ = = ∈

.                            (14) 

The use of (14) requires estimating the probability Pr( | 1, )
i i i

X x R i S= = ∈ . Fitting a parametric model with a 

large number of covariates is practically formidable, and we use instead the empirical probability  

|Pr( 1, ) (1/ )i i iX x R i S r= = ∈ =  
i

x R∀ ∈ , (equal probability for each vector covariate observed for the responding 

units). The probability 
|0

( )
X i

P x  can be estimated then as,  

         
|0

1

ˆ[1 ( )]ˆ ˆ( ) Pr( | 0, )
ˆ ˆ( )[ (1/ ( )) ]

i

X i i i i r

ji j

x
P x X x R i S

x x r

π

π π=

−
= = = ∈ =

−∑
, 

i
x R∈ .                     (15) 

The estimator 
|0

ˆ ( )
X i

P x  in (15) is obtained from (14) by estimating ˆ ˆPr( 1| , ) ( )
i i i i

R X x i S xπ= = ∈ = ˆ ˆ( ; , )
i

Xπ θ γ=  

and Pr( 1| )iR i S= ∈
1

ˆ(1/ ( ))r

j i

r

xπ=

=
∑

, guaranteeing P̂r( | 0, ) 1
i i i iX x R i Sx = = ∈ =∑ . Note that the estimator (15) 

assumes that the plausible covariates in the subsample of the nonrespondents is the same as in the subsample of the 

respondents. 

 

 

5. Empirical Study 
 

5.1 Study population and outcome variable 
In this section we study the performance of the proposed approach in imputing the missing covariates and 

outcomes and in estimating the mean population outcome, using a real data set. We compare the results with results 

obtained when ignoring the response process, assuming that the subsample of respondents is a simple random 

sample from the original sample, and with results obtained by some of the other approaches proposed in the 

literature to handle NMAR nonresponse, reviewed in Section 2.  

      

The data used for this study was collected as part of the Household Expenditure Survey carried out by the Israel 

Central Bureau of Statistics in 2005. The survey collects information on socio-demographic characteristics of each 

member of the selected Households (HHs), as well as information on the HH income and expenditure. The initial 

response rate in this survey was 43%, but after many recalls the response rate went up to 90% of the sampled HHs. 

The HHs were sampled with equal probabilities.  

 

Altogether, the sample consists of 7800 HHs. There were 802 dwellings which did not meet the investigation 

criteria (vacant, the occupants have another permanent address, etc.); 678 HHs were not investigated due to 

nonresponse (in all the recalls) and 49 HHs were disqualified at the editing stage, such that the final sample 

consists of 6271 HHs. For the empirical study of this paper we restrict to HHs where the head of the HH is an 

employee, aged 25-64 and born in Israel. We only consider HHs where at least one of its members worked during 

the three months preceding the interview. The head of the HH is the member with the highest income among the 

members of the HH who worked in these three months. The reduced data set consists of 1721 HHs. The target 

outcome variable is the household income per standard person. The number of standard persons in the HH is 

defined as follows: 

 

Persons in HH 1 2 3 4 5 6 7 8 9 10 

Standard persons in HH 1.25 2.00 2.65 3.20 3.75 4.25 4.75 5.20 5.60 Y* 
 

    *Y=5.60+0.4× (No. of persons minus 9) 

 

For the empirical study that follows we selected a single sample of respondents from the original sample of the 

1721 HHs using a logistic model by which the probability to respond depends strongly on both the income and 

some of the covariates. The resulting number of respondents is 729
r

n = .  
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5.2  Sample model and response probabilities 
We assume that the sample distribution of the outcome (under full response) given the covariates is normal; 

2, ~ (0, )
i i i i

Y X N εβ ε ε σ′= +                                                              (16) 

where iY  is the log income per standard person in household i  and [ ]11, ,...,i i iKX X X ′=  is the corresponding 

vector of covariates. As established by Landsman (2008), the model holding for the responding units (Eq. 4) is 

identifiable in this case. The covariates considered for this study include characteristics of the head of the HH: 

Gender, Age, Age
2
, No. of years at school and No. of monthly working hours, and characteristics of the HH: No. of 

earners , HH size and location of the HH. We fitted the sample model (Eq. 16) using all the sample data. The 2
R  

of the model is 0.60. The values of the regression coefficients are sensible. For example, the values of the 

coefficients of the education variables increase monotonically as the level of education increases. The number of 

earners in the household has a strong positive effect on the income, while the size of the household has a strong 

negative effect. The coefficient of Gender (being a female) is negative. Figure 1 compares the distribution of the 

estimated regression residuals with the normal distribution with mean zero and (estimated) standard deviation 

( 2ˆεσ = 0.403).  

 

Figure 1:  Distribution of regression residuals ˆiε  and normal distribution with the same variance.  

The distribution of the residuals is seen to be close to the normal distribution although with somewhat shorter tails. 

The Kolmogorov-Smirnov test rejects the hypothesis of normality of the residuals but this test is not really valid in 

the present case since the test statistic uses the estimated residuals (based on the estimated coefficients) and the 

estimated residuals are not strictly independent. 

 

We selected the respondents using the logistic model, 

0 1 1
]

( )
( 1| , ) [1 i i

i i i

Y X
P R Y X e

γ γ −′− +
= = + .                                                       (17) 

The coefficients 
0 1

( , )γ γ γ′ ′=  were selected so that the probability of response depends strongly on both the income 

and the covariates.  

 

5.3 Methods considered 
We consider the following methods: 

1. The proposed method [Equations (5) (6a) and (6c)]. The results obtained when replacing the constraints (6a) by 

(7) are very similar in the present study and therefore are not shown. 

2. Chang and Kott (2008) method described in Remark 5 of Section 3.3. 

3. A combination of the proposed method with Chang and Kott (2008) method by which the parameters of the 

response model are estimated as in 2. In what follows we refer to this method as PCK. 

4. Tang et al. (2003). 

5. Beaumont (2000). 

 

Remark 6. The last two methods require knowledge of the covariates for all the sample units, while the first 3 

methods only require knowledge of the covariates for the responding units. The method by Tang et al. (2003) 

assumes that the probability to respond depends only on the outcome variable. This method does not permit 

estimation of the outcome distribution for nonresponding units, and hence the imputation of the missing outcomes 

can be carried out only by random draws from the sample distribution. Beaumont (2000) uses the sample 

distribution expectation for imputing the missing outcomes. We include the latter two methods in the present study 

in order to test their robustness to deviations from their underlying conditions.   
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 5.4  Application of proposed approach and other approaches 
We assess the performance of the various approaches by comparing the estimates of the response probabilities, the 

imputations of the missing incomes and the estimates of the sample mean of the income to their known values. The 

imputation of the missing incomes is carried out under two different scenarios: In scenario 1 we use the known 

covariates for the nonrespondents and impute the incomes by drawing at random from the estimated distribution 
2ˆ ˆ ˆ ˆˆ( | ) ( | , 0; , , )c i i i i iR

f Y X f Y X R εβ σ γ= = . In Scenario 2 the covariates for the nonresponding units are taken as 

unknown and the imputation of the missing incomes is carried out by first predicting the missing covariates using 

(15), and then imputing the incomes similarly to Scenario 1.  

      

Table 1 shows the bias (BIAS), mean absolute error (MAE) and RMSE of the estimated response probabilities 

ˆ( , ; )i iY Xπ γ  when estimating the true probabilities ( , ; )
i i

Y Xπ γ . Denoting ˆ[ ( , ; ) ( , ; )]
i i i i i

d Y X Y Xπ γ π γ= − , the 

three measures are defined as: 
1

1 n

i
i

BIAS d
n =

= ∑ ; 
1

1 n

i
i

MAE d
n =

= ∑ ;  
2 1 2

1

1
[ ]

n

i
i

RMSE d
n =

= ∑ .  

 

Table 1: Bias, mean absolute error (MAE) and RMSE of 

estimates of response probabilities under different methods 

 Method BIAS MAE RMSE 

Proposed -0.013 0.047 0.044 

Chang & Kott  0.010 0.081 0.082 

Beaumont -0.020 0.064 0.061 

 

Table 2 compares the percentiles of the estimators ˆ( , ; )i iY Xπ γ  to the percentiles of the true probabilities, 

( , ; )i iY Xπ γ . 
 

Table 2: Percentiles of empirical distribution of true response probabilities and 

of empirical distribution of estimated response probabilities 

 
Nominal levels 

True percentiles 

 (0.05) 

0.13 

(0.1) 

0.17 

(0.25) 

0.26 

(0.5) 

0.40 

(0.75) 

0.58 

(0.90) 

0.71 

(0.95) 

    0.78 

Proposed 0.13 0.17 0.25 0.40 0.56 0.70 0.77 

Chang & Kott 0.12 0.16 0.27 0.41 0.58 0.73 0.79 

Beaumont 0.13 0.16 0.25 0.39 0.55 0.69 0.77 

 

The proposed method is seen to perform much better than the other two methods in terms of the MAE and RMSE 

measures. The percentiles of the empirical distribution of the estimated response probabilities are close to the 

percentiles of the empirical distribution of the true response probabilities under all the three methods. 

 

Next we study the performance of the various approaches in imputing the missing outcomes. For the proposed 

method, PCK and when ignoring the nonresponse we distinguish between the case where the covariates for the 

nonrespondents are known (full covariate information) and the case where the covariates are only observed for the 

responding units (missing covariate information). For the methods of Beaumont (2000) and Tang et al. (2003) we 

only consider the case of full covariate information as assumed by these methods. In order to compare the various 

methods, we generated 300 imputations for each nonresponding unit, and calculated for each of the 300 sets the 

imputation bias (BIAS), mean absolute error (MAE) and RMSE of the imputed values. Let *
iY  denote the imputed 

value for nonresponding unit i as obtained under a given imputation method. The three measures are computed as: 

( )*

1

1 n r

i i

i

BIAS Y Y
n r

−

=

= −
−
∑ , 

*

1

1
| |

n r

i i

i

MAE Y Y
n r

−

=

= −
−
∑ , 

* 2 1/ 2

1

1
[ ( ) ]

n r

i i

i

RMSE Y Y
n r

−

=

= −
−
∑ . Table 3 presents the means 

of the BIAS, MAE and RMSE over the 300 sets of imputed values.  
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Table 3:  Imputation bias, mean absolute error (MAE) and RMSE over  300 imputations 

 

Full Covariates Information  Missing Covariate Information  

Method BIAS MAE RMSE BIAS MAE RMSE 

Proposed      58.57 3750.39 5653.63   134.71 5552.02 7941.52 

PCK    296.22 3823.17 5754.87   428.55 5637.91 8064.12 

Tang et al. -1085.41 3578.52 5462.94 - - - 

Beaumont   -825.78 2590.81 4304.47 - - - 

Ignorable -1081.50 3581.20 5462.17 -2588.25 5087.77 7267.71 

   

Table 3 indicates that the proposed method yields much smaller biases than the other methods. The use of PCK 

also yields small biases, but the biases obtained under the methods of Tang et al. and Beaumont, which as stated in 

Remark 6 are not really applicable under the present model are large, as is also the case when ignoring the 

nonresponse. Notice, however, that the MAE and RMSE measures are actually smaller for the last three methods 

than for the first two methods, indicating a smaller variability of the imputations.  
      

Figures 2-4 compare the true empirical cumulative distribution of the incomes of the nonresponding units with the 

means of the estimated empirical distributions over the 300 imputation sets. 

 
Figure 2:  True empirical cumulative distribution and means of estimated empirical cumulative distributions of the 

incomes over 300 imputation sets. Full covariate information. 
 

 
Figure 3: True empirical cumulative distribution and means of estimated empirical cumulative distributions of the 

incomes over 300 imputation sets. Full covariate information. 
 

 
    Figure 4: True empirical cumulative distribution and means of estimated empirical cumulative distributions of the 

                     incomes over 300 imputation sets. Missing covariate information. 

Section on Survey Research Methods – JSM 2008

98



 

Figures 2-4 illustrate that the use of the methods of Tang et al. and Beaumont yield bad estimators for the 

distribution of the incomes in the subsample of nonresponding units. The same is true of course when ignoring the 

nonresponse. (The graph for Tang et al. in Figure 3 is indistinguishable from the graph obtained when ignoring the 

nonresponse.) On the other hand, the use of the proposed method or the combination of the proposed method and 

Chang and Kott yield satisfactory estimators, even when imputing the missing covariates. 

      

The fact that ignoring the nonresponse yields biased estimates for the income distribution is obvious. By ignoring 

the nonresponse, it is assumed that the distributions of the covariates for the responding and nonresponding units 

and the corresponding income distributions are the same in the two subsamples, which is not the case. Notice that 

even if the distribution of the income given the covariates was the same for the responding and nonresponding 

units, ignoring the nonresponse in the case of missing covariate information would still produce biased estimates 

for the income distribution, unless the distribution of the covariates is also the same in the two subsamples. The 

result that Beaumont’s method yields biased estimates for the income distribution in the case of full covariate 

information can be explained by the fact that the imputations obtained by this method have two sources of bias. 

First, the method imputes the log-income from the estimated sample expectation ( | )
S i i

E Y X , instead of using the 

expectation holding for the nonresponding units. Second, in our application we actually impute iY
e , which requires 

estimating ( | )iY

s i
E e X  under the sample distribution of |

i i
Y X , but the sample distribution is not specified under 

this approach. We therefore used the approximation, ˆ ( | )iY

S i
E e X

ˆ ( | )S i iE Y X
e= , which is wrong. Regarding the method 

of Tang et al., we mentioned before that for the application of this method we imputed the missing outcomes in the 

case of full covariate information by use of the sample distribution. However, since the probability to respond 

depends strongly on the income given the other covariates in the response model, the sample model of |Y Xi i  and 

the model holding for the nonresponding units are different, which results in large imputation bias.  

 

Very often, the main purpose of adjusting for nonresponse is to reduce the bias in estimating the population mean 

of the outcome. In what follows we actually consider estimating the true sample mean, which we know. (When 

sampling with equal probabilities as in the present case, the true sample mean is randomization unbiased for the 

true population mean.) Table 4 shows the percent error when estimating the mean sample income by the estimators 

(1)

ˆ
Y and 

(2)

ˆ
Y  defined by (9) and (10), and the percent relative bias (PRB) and percent relative RMSE (PRRMSE) of 

the estimator 
(3)

ˆ
Y  defined by (11). The estimator 

(3)

ˆ
Y  was computed for each of the 300 imputation sets.  The two 

measures were calculated as, 
300

(3),

(3)
1

ˆ
( )1ˆ

( ) 100
300

l

l

Y Y
PRB Y

Y=

−
= ×∑ , 

300
(3), 2 1/ 2

(3)
1

ˆ
1ˆ

( ) [ ( ) ] 100
300

l

l

Y Y
RRRMSE Y

Y=

−
= ×∑ , 

where 
(3),

ˆ
l

Y  denotes the estimator calculated from imputation set l  and Y is the true sample mean.   

 

Table 4: Percent errors of 
(1)

ˆ
Y  and 

(2)

ˆ
Y , and percent relative Bias and percent relative RMSE 

(in parentheses) of  
(3)

ˆ
Y  when estimating the mean sample income. 

 

(3)

ˆ
Y  

 

 

Method 

 

(1)

ˆ
Y  

 

(2)

ˆ
Y  

Full covariate 

information 

Missing covariate 

information 

Proposed  0.93 -8.73   0.46 (1.08)   1.09 (1.82) 

PCK  2.05 -9.24   2.27 (2.46)   3.53 (3.86) 

Chang & Kott  2.05 - - - 

Tang et al. - - -8.81 (8.84) - 

Beaumont  4.28 - -6.70 (6.70) - 

Ignorable   -21.13  - -8.78 (8.82) -21.16 (21.18) 
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The results in Table 4 show very good performance of the estimators (1)
ˆ

Y  and (3)
ˆ

Y  when using the proposed 

method and PCK, but the first method performs better. The estimator (1)
ˆ

Y  under Beaumont’s approach also has a 

small error but the estimator (3)
ˆ

Y  has a large relative bias under this method for reasons discussed above. The 

estimator (1)
ˆ

Y  using the estimated response probabilities computed by the method of Chang and Kott is likewise 

very accurate. Finally, it is interesting to note that the estimator (2)
ˆ

Y  has a large percentage error in the present 

case. This result is possibly explained by the fact that (2)
ˆ

Y  uses the estimated response probabilities 

2ˆ ˆˆ ˆ( ) ( ; , , )i iX X επ π β σ γ= , which are less accurate than the estimates ˆˆ( , ) ( , ; )i i i iY X Y Xπ π γ=  used for constructing 

the estimator (1)
ˆ

Y . 

 

6. Conclusions 

 
In this article we develop a general approach for estimation and imputation when the nonresponse is not missing at 

random (NMAR). By modeling the sample model under full response and the response process, we are able to 

estimate the distribution of the outcome for the nonresponding units given the corresponding covariates. When the 

covariates for the nonresponding units are known, we use this distribution for the imputation of the missing values. 

Otherwise, we impute the missing covariates as well, again accounting for the response process. Estimating the 

response probabilities allows also estimating population means using Horvitz-Thompson (1952) type estimators. 

We study the performance of our approach using a real data set that has many missing values after the first 

interview, but which are later obtained on subsequent interviews.  

      

The proposed approach is model-dependent and its good performance depends on correct specification of the 

population model and the response process. For any given specification, the goodness of fit of the resulting model 

holding for the responding units can be assessed by use of classical goodness of fit testing procedures, since the 

later model relates to the observed data. 

      

There are still outstanding issues that require further investigation before the approach can be recommended for 

practical applications. We mention in particular variance estimation of the proposed estimators of the finite 

population totals, extension of the method to the case where some of the covariates are fully observed but other 

covariates are only observed for the respondents, establishing the consistency of the parameter estimators under  

the proposed two-step estimation procedure, the development of new model goodness of fit test procedures and 

studying the robustness of the proposed approach to possible model misspecification. 
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