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Abstract 
In 2007, Judkins, Krenzke, Piesse, Fan, and Haung reported on the performance of a new semi-parametric 
imputation algorithm designed to impute entire questionnaires with minimal human supervision while preserving 
important first- and second-order distributional properties. In this paper, we report on procedures for post-imputation 
variance estimation to be used in conjunction with the semi-parametric imputation algorithm. 
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1.  Review of Past Research and Research Schema 
 
In Judkins et al. (2007), it was demonstrated that semi-parametric multivariate imputation procedures are 
competitive with Bayesian procedures designed for the same purpose. Competitiveness was judged on the basis of 
three criteria: preservation of unusual data features, preservation of multivariate normal data features, and coverage 
of confidence intervals. The tested semi-parametric procedure clearly outperformed the tested Bayesian procedure 
(IVEware: Raghunathan, Solenberger, and Hoewyk, 2002) with respect to the first criterion. The two alternatives 
were tied with respect to the second criterion. The Bayesian procedure was the winner on the third criterion, not 
necessarily because it generated confidence intervals with superior coverage, but because we were unable to provide 
information about the performance of multiple semi-parametric imputation as a technique for post-imputation 
variance estimation. The current paper is meant to fill that gap. 
 
During the time between our 2007 and current year’s presentations, related research was published. Siddique and 
Belin (2008), and Little et al. (2008) both explore the use of multiple semi-parametric imputation as a variance 
estimation technique with favorable results. The current research complements this work by applying the idea of 
replicated imputations to different imputation algorithms. Also, the replication scheme we tested is simpler than 
theirs: we did not include a bootstrap step. 
 
The schema for our research was to apply the 2007 algorithm to simulated datasets multiple times, apply Rubin’s 
formula for multiple-imputation based post-imputation variance estimation (Rubin, 1996), use the estimated 
variances to construct confidence intervals, and then evaluate the results in terms of biases in variance estimates, 
lengths of confidence intervals, and coverage of confidence intervals. 
 
We make no assertion that the semi-parametric procedure we tested is a proper procedure in the sense of Rubin 
(1996) or Schafer (1997). We simply hoped that with appropriate settings of software tuning parameters we could 
achieve reasonable coverage using confidence intervals constructed under the theory appropriate for proper 
imputation. We considered adding a bootstrap step as was done by Siddique and Belin but ran out of time. 
 
In Section 2, we review the semi-parametric algorithm and the history of its development. We also indicate how 
multiple imputations were used to estimate post-imputation variances. In Section 3, we describe the simulation 
framework. In Section 4, we lay out the evaluative criteria we applied. Results are given in Section 5. Section 6 
contains some closing remarks on implications for applications and further research. 
 

2.  A Semi-Parametric Algorithm 
 
The needs of a data publisher are typically different than those of a secondary analyst whose research may involve a 
limited number of variables and who may therefore be willing to invest substantial time and energy on maximum 
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likelihood or optimal Bayesian estimation of model parameters. Typically, the publisher must impute all missing 
data at low expense to support a variety of unforeseeable analyses. In the attempt to meet these goals, we have 
developed software called AutoImpute which blends ideas from Gibbs sampling, data mining, predictive mean 
matching, and hot-deck imputation. AutoImpute was designed to impute entire complex questionnaires with a single 
job submission while preserving questionnaire skip patterns (no pregnant men), other strong bivariate patterns (only 
a few Yiddish-speaking Eskimos), and essential features of all marginal distributions (first- and second-order 
moments, ranges, and discontinuities). 
 
To answer a question that was raised by Xiao Li Meng during our presentation, the conceptual model underpinning 
the automated semi-parametric approach embodied in this software is along the following lines. We believe that 
there are interesting discoveries to be made from the database at hand, but we do not have the resources or 
responsibility for making those discoveries. Instead, our job is to simplify the discovery process for users of the 
published data. We want to rectangularize (i.e., complete) the data while disturbing them as little as possible. The 
value of semi-parametric multivariate imputation was demonstrated strongly for at least some settings in Marker, 
Judkins, and Winglee (2001). 
 
Use of the semi-parametric approach has drastically reduced the time and cost to conduct item imputation (Piesse, 
Judkins, and Fan, 2005). Under simulated strongly informative missing data mechanisms, the analysis of data 
imputed using the semi-parametric algorithm resulted in smaller bias and variance on marginal means and smaller 
bias in correlations than the analysis of complete case data alone (Krenzke, Judkins, and Fan, 2005). As noted 
above, further favorable properties of the algorithm were established by Judkins et al. (2007) in terms of preserving 
odd marginal and conditional features as well as relationships among unordered multinomial variables. 
 
With regard to the history and origins of the software, we three are the primary designers; the original programming 
was by Zizhong Fan in 2004, the current head programmer is Wen-Chau Haung; the underlying hot-deck engine was 
programmed by Katie Hubbell in the early 1990s; the basic idea for cyclical application of hot-decks came to 
David Judkins in 1993 (Judkins, Hubbell, and England, 1993); he was inspired by Joe Schafer’s work in data 
augmentation (Schafer, 1993); who in turn, was inspired by Arthur Kennickell’s 1991 paper. Judkins coined the 
phrase “cyclic n-partition hot-decks” in 1997 (Judkins, 1997). 
 
The algorithm for AutoImpute is described in detail in Judkins et al. (2007). In brief, the algorithm primarily uses 
hot-decks with partitions defined by skip patterns and predicted values of target variables as in predictive mean 
matching (a phrase coined by Little, 1988, for a method first published in Rubin, 1986). Prediction models are linear 
with only main effects. These models are built with a forward search through all variables that are applicable to the 
set of cases to which the target variable applies. Previously imputed values of other variables are used in the models. 
Predicted values can be coarsened at the option of the user in such a way as to divide the total eligible sample into a 
user-specified number of equal-sized groups. 
 
For unbounded continuous variables, the algorithm hot-decks empirical residuals to the model-based predictions in 
order to improve performance at the tails of the distributions of predictor variables. 
 
For unordered multinomial variables, independent models are constructed for all the levels of the target variable. 
Cases are then clustered based on the multivariate prediction vectors, and the clusters are used as partitions to 
 hot-deck the target variable. 
 
A simple hot-deck is used to initialize the process so that all variables can be used to predict all other variables 
defined on comparable sets of cases, regardless of the complexity of the overall missing data pattern. Each variable 
is then re-imputed in turn. After all the variables have been re-imputed once, we say that one sweep through the 
database has been completed. We assess convergence through the R-squared statistics of the prediction models for 
all ordered target variables. When none of the R-squared measures is still increasing, we say that the algorithm has 
converged. We also allow a limit to be placed on the number of sweeps. For the current research, the limit was 
ten sweeps. 
 
To estimate post-imputation variances, multiple imputations were obtained by repeating this entire process. Each of 
the multiple imputations was obtained by re-starting the software with a different pseudo-random number generator 
seed. Since the hot-deck engine at the core of the algorithm randomly matches donors and beggars within cells of 
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the partition, this results in a seemingly reasonable dispersion of results unless the cells of the partition are defined 
too narrowly. 
 
The primary aim of the current research was to determine whether that dispersion could be used to estimate  
post-imputation variances using Rubin’s standard formula (Rubin, 1996) even though the imputation process is not 
proper. A secondary aim was to see whether the number of coarsening groups was related to the quality of the 
confidence intervals produced by the approach. We hypothesized that stronger coarsening might result in better 
actual coverage of nominal confidence intervals at the same time that it might widen those intervals. 
 

3.  Simulation Framework 
 
We returned to three of the four test scenarios in Judkins et al. (2007). One was “strange pop,” another was 
“checkerboard,” and the third was a plain vanilla “bivariate normal.” 
 
In strange pop there are two variables with range restrictions and/or discontinuities, as well as a very unusual 
dependency. It is easiest to describe the pair by construction and by graphs. Let ~ U(-1,1)X . Let ~ N(0,1/ 25)Ye . 
Let 
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Figures 1, 2, and 3 show the marginal distributions of X and Y, and the conditional distribution of Y given X. The 
following are some of the essential features of this population: X is bounded by cliffs; Y has a large concentration 
near zero, with a substantial gap either side of zero in which values are highly unlikely; the conditional distribution 
of Y near the center range of X is flat; and the conditional distribution of Y near the extremes of X is exponential. 
Clearly, we would be surprised to find a pair of variables like this in the survey setting, but this scenario was 
designed to demonstrate the ability of our software to handle the unexpected without human intervention. 
 

 
 
 
Figure 1: Marginal distribution of X in strange pop 
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Figure 2: Marginal distribution of Y in strange pop 
 

 
 
 
Figure 3: Conditional distribution of Y given X in strange pop 
 
For this scenario, we chose the following statistics of interest: 
 

E( ) 0=X , 
E( ) 0=Y , 
E( | [ 0.5,0.5]) 0∈ − =Y X , 
E( | (0.5,0.75]) 1.790∈ =Y X , and 
E( | 0.75) 3.287> =Y X . 

 
Scenario #2 involves one binary variable and two multinomial variables where the cell frequencies follow a 
reversing checkerboard pattern. The full joint distribution for X, Y, and Z is given in Table 1. The corresponding 
 log-linear model involves both two- and three-way interactions. 
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Table 1: Three-Way Table with Checkerboard Pattern
 

X = 1 Y = 1 Y = 2 Y = 3 
Z = 1 0.0067 0.0467 0.0067 
Z = 2 0.0467 0.0067 0.0467 
Z = 3 0.0067 0.0467 0.0067 
Z = 4 0.0467 0.0067 0.0467 

    
X = 2 Y = 1 Y = 2 Y = 3 
Z = 1 0.0367 0.0767 0.0367 
Z = 2 0.0767 0.0367 0.0767 
Z = 3 0.0367 0.0767 0.0367 
Z = 4 0.0767 0.0367 0.0767 

    
 
For this scenario, the chosen statistics of interest were: 
 

Pr( 1) 0.3100= =X , 
Pr( 1) 0.2100= =Z , 
Pr( 1) 0.3333= =Y , 
Pr( 2) 0.3333= =Y , 
Pr( 1 1) 0.0600= ∧ = =X Z , 
Pr( 1 1) 0.1067= ∧ = =X Y , 
Pr( 2 1) 0.1500= ∧ = =X Z , 
Pr( 2 1) 0.2267= ∧ = =X Y , 
Pr( 1 1 1) 0.0067= ∧ = ∧ = =X Z Y , 
Pr( 1 1 2) 0.0467= ∧ = ∧ = =X Z Y , 
Pr( 2 1 1) 0.0367= ∧ = ∧ = =X Z Y , and 
Pr( 2 1 2) 0.0767= ∧ = ∧ = =X Z Y . 

 
Scenario 3 consists of a pair of bivariate normal variables: 
 

~ (60,9)X N  
~ (120 ,1)+Y N X  

 
Note that for the regression of Y on X, the R-squared statistic is 0.5. For this scenario, the statistics of interest were: 
 

E( ) 60=X , 
E( ) 120=Y , and 

| 1/ 3β =Y X . 
 
For all three test scenarios, we generated 500 data sets of 1,000 observations each. We tested two different levels of 
item nonresponse: 30 percent and 90 percent. The 90 percent level was chosen to simulate uses where data are 
missing by design. Missingness was then created for each item independently across observations. The missing data 
mechanism was completely at random (MCAR). 
 
Five multiple imputations were drawn for each of the 500 replicated samples. 
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Variable-specific tuning parameters informed AutoImpute that: X and Y in strange pop were ordered but not 
continuous unbounded variables; X, Y, and Z in checkerboard were unordered multinomial variables; and X and Y in 
the plain vanilla scenario were continuous unbounded variables. For all three scenarios, we varied the number of 
coarsening groups. Other than that, the software was given no human guidance. 
 

4.  Evaluation Criteria 
 
We evaluated the results in terms of: 
 

 Bias of point estimate; 
 Variance of point estimate; 
 Bias of variance estimate; 
 Half-width of nominal 95 percent confidence interval; and 
 Coverage of nominal 95 percent confidence interval. 

 
5.  Results 

 
There are five tables of results for each scenario, corresponding to the five evaluation criteria listed above. Variances 
and biases in variance estimates are multiplied by 10,000 for ease of display. Each table contains results for 
three different settings of the coarsening parameter and two different levels of item nonresponse. 
 
5.1 Strange Pop 
Considering strange pop first, we see in Table 2 that biases in point estimates are negligible for the marginal means 
and for the conditional mean of Y in the central region of X, for all levels of coarsening, if the item nonresponse rate 
is 30 percent. For the conditional means of Y in the mid-high and very high regions of X, bias is negligible only if 
200 groups are used for coarsening of predicted values and if the item nonresponse rate is 30 percent. For 90 percent 
missing data, hardly any of the means are well estimated. 
 
Considering next the variances for strange pop estimated parameters, we see from Table 3 that variances are much 
higher with 90 percent missing data than with 30 percent missing data, as would of course be expected. More 
interestingly, we note that less coarsening of predicted values appears to lead to somewhat lower variances. 
 
We expected to generally underestimate variances since we failed to include a bootstrap step in the imputation 
process, but the data in Table 4 show that the opposite was frequently true. We have no good hypotheses for why 
these positive biases occurred: almost all are statistically significant, considering the variance in the variance 
estimates across the 500 replications. 
 
Turning now to the half-widths of nominal 95 percent confidence intervals in Table 5, we note that they are wider 
for 90 percent missingness than for 30 percent missingness. Also as expected, there is some shortening of  
half-widths with less coarsening. 
 
In conclusion for strange pop, we see from Table 6 that actual coverage of nominal 95 percent confidence intervals 
is generally very poor for 90 percent missing data, while coverage results for 30 percent missing data are mixed. For 
the combination of 30 percent missingness and 200 coarsening groups, the coverage levels are almost perfect. 
 
5.2 Checkerboard 
Tables 7-11 contain parallel results for the checkerboard scenario. Since there were 12 statistics of interest, we 
averaged results to condense displays. We show averaged results for the four targeted marginal means, the 
four targeted two-way means, and the four targeted three-way means. 
 
Although we tested and present performance statistics for all three coarsening levels, the number of coarsening 
groups generally had little effect on the results. This is because the coarsening applies only to predictions of ordinal 
and binary variables, and so only affected the imputation of X in this scenario. 
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Biases in point estimates are generally negligible, although they are higher for marginal means than for higher-order 
means. Variances on estimated parameters and half-widths of confidence intervals rise with the item missing rate, as 
expected. Biases in variance estimates are modest with 30 percent missing data and substantial with 90 percent 
missing data. Biases are generally negative which is not surprising given the lack of a bootstrap step. Actual 
coverage of nominal 95-percent confidence intervals is unacceptable for 90 percent missing data but perhaps 
tolerable for 30 percent missing data, particularly for marginal means. 
 
5.3 Plain Vanilla Bivariate Normal 
Tables 12-15 contain parallel results for the third scenario. Again we tested all three levels of coarsening, but since 
the coarsening for this scenario affected only the hot-decking of empirical residuals and because the true errors are 
homoscedastic, the number of coarsening groups had very little impact on the results. 
 
For this very simple population, the biases in the marginal means are negligible for both levels of missingness, but 
the regression coefficient is strongly attenuated given 90 percent missing data. Variances and half-widths of 
confidence intervals increase with the missing data rate. Biases in variance estimates are modest for 30 percent 
missing data and very large for 90 percent missing data, but as with strange pop, the biases in the variance estimates 
are not always negative. 
 
Actual coverage of confidence intervals on marginal means is good for 30 percent missing data. Coverage for 
confidence intervals on the regression coefficient is not as good given the same level of missingness, but perhaps 
acceptable. Coverage is poor for 90 percent missing data. 
 

6.  Discussion and Further Research 
 
We are moderately encouraged by these results. As long as the missing data rate is not above 30 percent, actual 
coverage of nominal 95 percent confidence intervals was generally good for marginal means and not too bad for 
more complex statistics. On the other hand, coverage was quite poor under some circumstances. This leads us to 
think that users should consider verifying the appropriateness of their tuning parameters through realistic simulation 
studies. 
 
Since many of the biases in variance estimates were positive, poor coverage of confidence intervals for 90 percent 
missing data might be due more to biases in the point estimates than to problems with the variance estimates. This 
suggests that increasing the maximum allowed number of sweeps may be more important than adding a bootstrap 
step or increasing the number of multiple imputations. 
 
Perhaps more than 10 sweeps were needed for the 90 percent item nonresponse rate. We did not monitor how many 
of the imputation runs ended in convergence before reaching the limit of 10 sweeps. However, the fact that biases in 
point estimates of regression coefficients and conditional means were much smaller with 30 percent missing data 
than with 90 percent missing data, suggests that the algorithm might eventually recover from the initial naïve  
hot-deck if allowed to run long enough. Siddique and Belin (2008) make similar observations. 
 
Unfortunately, this sort of simulation study was straining the limits of the computer resources available to us. To 
allow 500 replications of 5 multiple imputations with 10 sweeps per imputation often caused system crashes. We 
will need to either improve the efficiency of the software or get faster computers to resolve the issue. 
 
Nonetheless, we are reasonably comfortable in recommending the use of multiple semi-parametric imputations with 
our system provided that item nonresponse rates are not too high. 
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Table 2: Biases in point estimates for parameters of interest in Scenario 1, Strange Pop 
 

Parameter True value Bias in point estimate 
Number of coarsening groups  5 10 200 
Missing rate  30% 90% 30% 90% 30% 90% 
E( )X  0 0.000 -0.001 0.000 -0.002 0.000 -0.004 
E( )Y  0 -0.002 -0.023 -0.001 -0.020 -0.002 -0.030 
E( | [ 0.5,0.5])∈ −Y X  0 -0.001 -0.017 -0.001 -0.006 -0.001 -0.016 
E( | (0.5,0.75])∈Y X  1.790 0.017 -0.809 -0.110 -0.935 -0.012 -1.296 
E( | 0.75)>Y X  3.287 -0.267 -1.905 -0.041 -1.687 -0.014 -2.488 
        
 

Table 3: Variances on estimated parameters of interest in Scenario 1, Strange Pop 
 

Parameter Variance of point estimate (x10,000) 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
E( )X  3.8 27.7 3.7 27.9 3.7 30.4 
E( )Y  42.0 352.1 41.3 349.0 39.2 390.2 
E( | [ 0.5,0.5])∈ −Y X  8.2 451.7 3.6 517.2 1.8 471.2 
E( | (0.5,0.75])∈Y X  111.3 3,586.7 31.7 2,803.3 18.0 1,616.1 
E( | 0.75)>Y X  87.9 6,387.8 76.7 9,459.1 76.1 2,811.7 
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Table 4: Biases in variance estimates on estimated parameters of interest in Scenario 1, Strange Pop 
 

Parameter Bias in variance estimate (x10,000) 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
E( )X  0.0 -16.8 0.0 -15.1 0.1 -18.8 
E( )Y  0.4 -231.1 0.2 -206.5 2.5 -259.1 
E( | [ 0.5,0.5])∈ −Y X  0.5 225.8 2.1 397.9 1.8 234.9 
E( | (0.5,0.75])∈Y X  37.7 955.6 26.7 2,704.9 11.5 3,190.3 
E( | 0.75)>Y X  17.5 799.9 7.4 786.2 30.9 3,043.1 
       

 
Table 5: Half-widths of nominal 95% confidence intervalson parameters of interest in Scenario 1, Strange Pop 

 
Parameter Half-width of nominal 95% confidence interval 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
E( )X  0.038 0.062 0.038 0.067 0.038 0.064 
E( )Y  0.127 0.206 0.126 0.222 0.127 0.214 
E( | [ 0.5,0.5])∈ −Y X  0.057 0.469 0.046 0.539 0.033 0.487 
E( | (0.5,0.75])∈Y X  0.236 1.210 0.148 1.328 0.092 1.256 
E( | 0.75)>Y X  0.199 1.512 0.178 1.780 0.193 1.386 
       
 
Table 6: Coverage of nominal 95% confidence intervals on parameters of interest in Scenario 1, Strange Pop 

 
Parameter Coverage (%) of nominal 95% confidence interval 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
E( )X  94.4 72.4 94.8 75.4 94.6 72.6 
E( )Y  95.0 70.4 95.0 73.0 95.6 69.0 
E( | [ 0.5,0.5])∈ −Y X  94.6 93.2 97.6 94.4 96.4 92.2 
E( | (0.5,0.75])∈Y X  97.6 72.2 74.8 73.6 95.4 45.2 
E( | 0.75)>Y X  23.0 36.6 91.8 63.2 95.4 8.8 
       
 

Table 7: Average Biases in Point Estimates for Parameters of Interest in Scenario 2, Checkerboard 
 
Parameter Bias in point estimate 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
1-way means 0.002 0.004 0.003 0.004 0.003 0.004 
2-way means 0.001 0.001 0.001 0.001 0.000 0.001 
3-way means 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 8: Average variances on estimated parameters of interest in Scenario 2, Checkerboard 
 

Parameter Variance of point estimate (x10,000) 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
1-way means 2.9 22.2 2.9 22.2 2.9 22.1 
2-way means 1.6 20.4 1.6 20.5 1.6 20.7 
3-way means 0.6 9.6 0.6 9.6 0.6 9.6 
       
 

Table 9: Average biases in variance estimates on estimated parameters of interest in Scenario 2, Checkerboard 
 

Parameter Bias in variance estimate (x10,000) 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
1-way means -0.4 -15.2 -0.4 -15.0 -0.4 -14.8 
2-way means 0.0 0.6 -0.1 1.0 -0.1 0.7 
3-way means 0.0 1.7 0.0 2.1 0.0 2.0 
       
 

Table 10: Average half-widths of nominal 95% confidence intervals on parameters  
of interest in Scenario 2, Checkerboard 

 
Parameter Half-width of nominal 95% confidence interval 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
1-way means 0.031 0.050 0.031 0.050 0.031 0.050 
2-way means 0.024 0.082 0.024 0.083 0.024 0.083 
3-way means 0.014 0.055 0.014 0.056 0.014 0.055 
       
 

Table 11: Average coverage of nominal 95% confidence intervalson parameters  
of interest in Scenario 2, Checkerboard 

 
Parameter Coverage (%) of nominal 95% confidence interval 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
1-way means 92.5 70.4 92.6 69.8 92.7 70.3 
2-way means 93.8 89.3 93.5 89.3 93.3 89.7 
3-way means 90.3 78.2 89.9 78.3 90.1 78.0 
       
 

Table 12: Biases in point estimates for parameters of interest in Scenario 3, Plain Vanilla Bivariate Normal 
 

Parameter True value Bias in point estimate 
Number of coarsening groups  5 10 200 
Missing rate  30% 90% 30% 90% 30% 90% 
E( )X  0 -0.002 -0.021 -0.002 -0.018 -0.001 -0.013 
E( )Y  0 -0.003 -0.008 -0.003 -0.010 -0.002 -0.007 

|Y Xβ  1/3 0.000 -0.142 0.000 -0.156 0.000 -0.240 
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Table 13: Variances on estimated parameters of interest in Scenario 3, Plain Vanilla Bivariate Normal 
 

Parameter Variance of point estimate (x10,000) 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
E( )X  116.6 902.6 115.8 892.2 120.9 925.1 
E( )Y  25.3 214.6 24.6 210.2 24.8 219.1 

|βY X  1.9 125.7 1.9 113.3 2.1 31.3 
       
 

Table 14: Biases in variance estimates on estimated parameters 
of interest in Scenario 3, Plain Vanilla Bivariate Normal 

 
Parameter Bias in variance estimate (x10,000) 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
E( )X  -11.7 -631.0 -11.0 -589.6 -12.7 -594.2 
E( )Y  -1.8 -152.0 -1.3 -139.3 -0.9 -146.2 

|βY X  -0.3 62.2 -0.4 62.2 -0.4 46.9 
       
 

Table 15: Half-widths of nominal 95% confidence intervals on parameters 
of interest in Scenario 3, Plain Vanilla Bivariate Normal 

 
Parameter Half-width of nominal 95% confidence interval 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
E( )X  0.200 0.308 0.200 0.323 0.203 0.337 
E( )Y  0.095 0.147 0.095 0.156 0.096 0.158 

|βY X  0.024 0.243 0.024 0.239 0.025 0.161 
       
 

Table 16: Coverage of nominal 95% confidence intervals on parameters 
of interest in Scenario 3, Plain Vanilla Bivariate Normal 

 
Parameter Coverage (%) of nominal 95% confidence interval 
Number of coarsening groups 5 10 200 
Missing rate 30% 90% 30% 90% 30% 90% 
E( )X  93.8 68.6 92.6 70.0 93.0 72.0 
E( )Y  94.2 66.0 93.2 66.0 93.2 69.0 

|βY X  91.0 80.8 91.4 77.8 89.6 11.2 
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