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Robust Small Area Estimation Under Unit Level Models
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Abstract

Small area estimation has received considerable attention in recent years because of an increasing demand for small area
statistics. Basic area level and unit level models have been studied in the literature to obtain empirical best linear unbiased
predictors for small area means. Although this classical method is useful for estimating the small area means efficiently
under strict model assumptions, it can be highly influenced by the presence of outliers in the data. In this article, the authors
investigate the robustness properties of the classical estimators and propose a resistant method for small area estimation, which
is useful for downweighting any influential observations in the data when estimating the model parameters. Simulations are
carried out to study the behavior of the robust estimators in the presence of outliers, and these estimators are also compared
to the ordinary classical estimators. To estimate the mean squared errors of the robust estimators of small area means, a
parametric bootstrap method is adopted here, which is applicable to the unit level models with block diagonal covariance
structures. Performance of the bootstrap mean squared error estimator is also investigated in the simulation study. The
proposed robust method is also applied to some real life data, referred to as the survey and satellite data, obtained from a
study described in a statistical journal.

Key Words: Best linear unbiased prediction; Bootstrap method; Mean squared error; Mixed model; Robust estimation;
Small area mean.

1. Introduction

Small area estimators have long been used in survey sampling. Demographers commonly use a variety of indirect
methods for small area estimation of population and other characteristics of interest, based on either census or on
administrative records. The demand for small area statistics has greatly increased worldwide in recent years, which
is perhaps due to their growing use in formulating policies and programs, in the allocation of government funds and
in regional planning.

Basic area level and unit level models are widely used to derive empirical best linear unbiased prediction (EBLUP),
empirical Bayes (EB) and hierarchical Bayes (HB) estimators of small area means (or totals) and associated measures
of variability. An extensive account of EBLUP, EB and HB methods for small area estimation can be found in Rao
(2003). The classical EBLUP method is applicable for linear mixed models that cover the area level and unit level
models. On the other hand, EB and HB methods are more generally applicable for generalized linear mixed models
that are used to analyze binary and count data. MSE is used as a measure of variability under the EBLUP and
EB approaches, whereas the HB approach uses the posterior variance as a measure of variability assuming a prior
distribution on the model parameters. Recent review papers on small area estimation include Pfeffermann (2002),
Rao (2003), and Jiang and Lahiri (2006).

Although the classical small area estimators are efficient under strict model assumptions, they can be very
sensitive to outliers or departures from the underlying distributions. The deviations from the underlying distributions
or assumptions refer to the fact that a small proportion of the data may come from an arbitrary distribution rather
than the underlying “true” distribution, which may result in outliers or influential observations in the data. In this
article, we address the non-robustness properties of the classical estimators and propose a robust technique for small
area estimation that can be used to downweight any outliers in the data when fitting the underlying model.

The paper is organized as follows. Section 2 presents the basic small area models. Section 3 reviews some existing
methods for small area estimation and introduces the proposed robust method, which is developed in the framework
of maximum likelihood estimation. A small simulation study was carried out to investigate the performance of
the robust method in the presence of outliers. The simulation results are presented in Section 4. In section 5,
the proposed method of small area estimation is applied to some real life data obtained from a study described in
Battese, Harter and Fuller (1988). Section 6 concludes the paper with some discussion.
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2. Small Area Models

Models that are commonly used to derive small area estimators can be classified into two groups: (i) Area level
models that relate the small area means to area-specific auxiliary variables. Such models are essential if unit level
data are not available. (ii) Unit level models that relate the unit values of the study variable to unit-specific auxiliary
variables with known area means.

2.1 Basic Area Level Model

To define a basic area level model (also referred to as Fay-Herriot model), we assume that 6; = ¢(Y;) for some

function g of the small area mean Y; is related to area-specific auxiliary data z; = (z;1, ... . Zip)" by a linear model
O;=2z:B+v;, i=1,...,k (1)
where B = (01,...,0p)" is the p x 1 vector of regression coefficients, and v;’s area-specific random effects assumed

to be independent N(0,02). The variance component o2 is a measure of homogeneity of the areas after accounting
for the covariates z;. To infer about the small area means Y; in model (1), we assume that some direct estimators

}Q/’i of the means Y; are available and that

Qi:g(ﬁ):9i+ei, i=1,...,k (2)

where e;|0; are assumed to be independent N(0,7;) with known sampling variances ;. Combining (1) and (2), we
obtain .
GZ:ZIE,B-F’UZ-F@Z, 221,,k (3)

where design-induced errors e; and model errors v; are assumed to be independent.

Basic area level model was studied by a number of authors for estimating small area means. Fay and Herriot
(1979) used model (3) in the context of estimating per-capita income for small areas in the United States with
population less than 1,000. They used #; = logY;, where Y; is the per-capita income in the ith area. Recently,
National Research Council (2000) used model (3) to find model-based small area (county) estimates of poor school-
age children in the United States. In this application, #; = logY; was chosen, where Y; represents the true poverty
count of the ith small area. For further applications, the reader is referred to Rao (2003, Chapter 7). Various
extensions of the basic area level model have been studied to deal with correlated sampling errors arising from
spatial dependence of the model errors v;, and time series and cross-sectional data. They are reviewed in Rao (2003,
Chapter 8).

2.2 Basic Unit Level Model

In the basic unit level model, unit-specific auxiliary variables x;; = (zij1,...,%i;jp)" are related to the unit level
variable of interest, y;;, through a nested error linear regression model

yij:xﬁjﬂ—i—w—&-eij, 1=1,...,k, 7=1,...,n; (4)

where n; is the number of sampled units observed in the ith area consisting of N; units. The total number of sampled
units observed in all k& areas is ng = Zle n;. The area-specific random effects v; are assumed to be independent
N(0,02), and independent of the random errors e;;, which are assumed to be independent N (0, c2).

When the population size N; is large, the ith small area mean Y; may be written as

Y; ~ pi = XiB + v, (5)

where X; is the vector of known means of the x;; for the ith area. Here y; is a linear combination of fixed effects 3
and realized value of area-specific random effect v;. In this paper, the focus is on ;.

Battese, Harter, and Fuller (1988) used model (4) to estimate mean acreage under a crop for counties (small
areas) in Towa using sample survey data in conjunction with satellite information. In their application, N; ranged
from 394 to 965 and n; from 1 to 6. Rao and Choudhry (1995) used model (4) in a slightly modified form to study
the population of unincorporated tax filers from the province of Nova Scotia, Canada. Their proposed model was
Yij = Bo + Bz +vi + CCllj/ Qeij, where y;; and x;; represent the total wages and salaries and gross business income
for the jth firm in the sth small area. This model was used to estimate the small area totals Y; or the means Y;.
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3. Robust Estimators
Models (3) and (4) in Section 2 are special cases of the general linear mixed model
y=XB+7Zv +e, (6)

where y is the vector of observed data, X is the design matrix for the fixed effects and Z is the design matrix for the
random effects. The vector of random effects v and the vector of random errors e are assumed to be independently
normally distributed with means 0 and covariance matrices G and R, respectively, depending on some vector 6 of
variance components. The variance-covariance matrix of y is obtained as V = V(0) = R + ZGZ".

In small area problems, we are generally interested in estimating a linear combination, u = 1!3 + m'v, of the
regression coefficients 3 and the realized values of the random effects v, for some specified vectors 1 and m of
constants. The function p is estimated as i = ltB + m'V, where B and v are some suitable estimators of 8 and v,
respectively.

3.1 BLUP Estimator
For known 0, Henderson (1975) obtained the best linear unbiased prediction (BLUP) estimator of =13+ m'v as

fir =t(0,y) =13+ m'v, (7)

where 8 = B(G) = (X!VIX)"IX!*V~ly is the generalized least squares estimator, also referred to as the best
linear unbiased estimator (BLUE), of 3, and v = v(0) = GZ!V~1(y — X3) is the BLUP estimator of the vector v
of random effects.

The BLUP estimator ¢(6,y) in (7) depends on the variance components 6, which are unknown in practice.
Replacing 6 by an estimator 6, we obtain iy = t(0,y) = 1!3 + m®V, which is referred to as the empirical best
linear unbiased predictor (EBLUP) of the small area mean u, where 3 = 3(0) and v = v(0). Standard procedures
for estimating the variance components 8 include maximum likelihood (ML) and restricted maximum likelihood
(REML) method of estimation. These methods have been discussed in detail by Searle, Casella and McCulloch
(1992).

To calculate the mean squared error (MSE) of the EBLUP estimator (8, y), Kackar and Harville (1984) showed
that

MSE[t(8,y)] = MSE[t(8,y)] + E[t(6,y) — t(8,y)], 8)
under normality. An expression for MSE[¢(0,y)] can be found in Henderson (1975). It can be shown (see Rao 2003)
that
MSE[t(8,y)] = 91(0) + 92(6), (9)
where g1(0) = m!(G — GZ!'V~1ZG)m and ¢2(0) = d!(X!'V~1X)~1d, with d’ =1’ — b'X and b' = m'GZ!V~1.
The second term in (8) is generally intractable, and it is necessary to obtain an approximation to this term.

Kackar and Harville (1984) proposed a Taylor series approximation. Prasad and Rao (1990) considered a further
approximation to this term under some general conditions. It can be shown that

E[t(8,y) — 1(0,y)]" = gs(0), (10)

where g5(8) = tr[(Ob?/00)V (dbt /00)'V (8)] with V(8) being the asymptotic covariance matrix of .
Combining (9) with (10), a second-order approximation to the MSE of £(0,y) is obtained as

MSE[(0,y)] ~ g1(0) + 92(6) + g5(0). (11)

Here the terms g2(0) and g¢3(0), due to estimating B and 0 respectively, are of lower order than the leading term
91(0). Prasad and Rao (1990), and Datta and Lahiri (2000) obtained a nearly unbiased estimator of MSE[t(8, y)],
for linear mixed models with block diagonal covariance structure (see (21)), using a simple moment estimator of 8
and a REML estimator of 8, respectively. It is given by

mse[t(8,y)] = 91(8) + g2(6) + 29(8), (12)
and E(mse[t(0,y)]) ~ MSE[t(8,y)]. For example, the bias of (12) is of order o(k~') under the basic unit level model

(4) of Section 2.2. Das, Jiang, and Rao (2004) established (12) under ANOVA linear mixed models and REML
estimation of 6.
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3.2 Previously Studied Robust Methods

The classical least squares estimator of 8 and the ML or REML estimator of the variance components @ are generally
sensitive to outliers in the data. To handle these outliers, a number of resistant methods were studied in the literature.
Fellner (1986) studied the basic unit level model (4) and, for known variance components, considered finding robust
estimates of the fixed effects 3 and random effects v by solving the following set of equations simultaneously:

X'RV2@(RV:(y-XB-Zv)) = 0 (13)
ZIRVPOR Yy - XB - Zv)) - GTV2O(G V) = o0, (14)
where W (u) = [ty (u1), ¥p(us2), . ..]t with ¢, being the Huber’s psi function ) (u) = wmin(1,/lul); b > 0 is a tuning

constant. The common choice of b is 1.345. The choice b = oo leads to the classical best linear unbiased estimator
of B and the BLUP estimator of v.

For estimating the variance components 8 = (2, 52)* of the unit level model (4), Fellner (1986) suggested robust
versions of the REML estimating equations of Harville (1977) in the form
oy = ol ®(E )P/ le(k = X))
52 = 21W(68)P ed(no—p) — (k= W}

where the tuning constant c¢ is chosen as ¢ = E[¢2(u)] with u being a standard normal distribution and & =
(y — X3 — Z¥). Here p is the dimension of 3, and X is obtained from X\ = tr(D)/62, where D is a matrix formed
by the last k& rows and columns of

X'R1X X'R™1Z

Z'R'X Z'R'Z+GH|C

The estimators 62 and 62 depend on the EBLUP residuals ¥ and hence not efficient in the presence of outliers.
To improve the efficiency of the estimators, we adopt an alternative robust approach where the fixed effects 3 and
the variance components @ are estimated first robustly using the marginal distribution of the response vector y.
Then we consider estimating the random effects v using the robust estimators of 3 and 6. Robust estimators in the
linear mixed model were also investigated by Richardson and Welsh (1995) and Richardson (1997). They, however,
focused on estimating only the fixed effects and the variance components in the mixed model. In the context of small
area estimation, it is also important to find suitable predictors of the area-specific random effects v. Our robust
method for small area estimation is introduced in the next section.

3.3 Proposed Robust Method

For the linear mixed model (6), it is easy to show that the marginal distribution of the response vector y is
multivariate normal with mean X3 and variance-covariance matrix V. = R + ZGZ! depending on 6 of variance
components. The ML estimators of 3 and @ are obtained by solving the normal equations

XV i y-XB8) = 0 (15)
OV _ .0V
(v =XV IV - XB) — (v 89) _— (16)

where 60; is the [th component of 0. If certain components of the fitted vector y = XB are unusually different from
the corresponding observed values y, then we have indication of apparent outliers in the data.

To handle such outliers in the y values, we consider estimating the fixed effects and variance components by
solving the equations

X'VIU2e(r) = 0 (17)
‘Ilt(r)Ul/QV‘la—VV_lUl/QlII(r)—tr v Vg Z o (18)
891 86‘1

with r = U~Y/2(y — X3). Here U is a diagonal matrix with its elements being equal to the diagonal elements of the
covariance matrix V, and K is a diagonal matrix chosen as K = cI with ¢ = E[)2(r)]; the expectation is taken over
a standard normal distribution. Note that for the choice b = oo, the robust estimators reduce to the corresponding
classical ML estimators.

Equations (17) and (18) can be solved iteratively to obtain robust estimators of both 3 and 6. Here we adopt a
Newton-Raphson algorithm for solving these estimating equations. Using first-order Taylor series expansion around
By, the left side of (17) can be approximated as

XVTIUYRR(x(8) = XIVTIUVA8(x(8y)) — XTUTY2D(By)UY2VTIX(8 — Bo)
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where D(3) is a diagonal matrix with its jth diagonal element being equal to (8/9r;)ip(r;). This approximation
leads to an iterative equation of the form

-1
AU = g 1 (X'UTAD(B)UYAVTIX)  XIVIIUY 2w (x(80)). (19)

Similarly, equation (18) can be solved for ; by using the Newton-Raphson algorithm that leads to the iterative
equation

-1
ot = o — (@™ e, (20)
where o o
(6 = \Ilt(r)U1/2V_1—VV_1U1/2\II(r) (v Vg
801 a9l

and & (8{™) = 9% (6,)/06; evaluated at 6, = 8™ . The derivative ' (6;) in (20) can be obtained as

822?) - 23% [\I’t(r)Ul/2V_1} %V‘lUl/Q\II(r)
+ tr <V1(Z;/;Vlg;j K) ,
where
aiel \I!t(r)U1/2V71} _ [aaelqjt(r)] U2V 4 0 (r) {;@UI/Q] vl
—xIﬁ(r)Ul/QV*l%V*l

with OU/96; = I being an identity matrix, and 0¥(r)/d0; = (8/06,)[¢s(r1),¥s(r2),...]" with (9/90;)¢s(r;) =
—(1/2)U; ().
The complete algorithm for the robust estimation of 8 and € can be described as follows:

1. Choose initial values B(O) and 6. Set m = 0.

2. (a) Calculate 8™V from the iterative equation (19).
(b) Calculate 91(m+1) (1=1,2,...) from (20).
(c) Set m=m + 1.

3. Continue step 2 until a convergence is achieved. Declare the estimates at convergence to be the robust
maximum likelihood (RML) estimators 3, and 6j; of B8 and 6, where the subscript M stands for M (or
maximum likelihood type) estimation introduced by Huber (1964).

Based on the robust estimators of 3 and 6, we then consider estimating the random effects v by solving (14),
as suggested by Fellner (1986). We adopt a similar Newton-Raphson algorithm as described earlier for estimating
the random effects. The robust estimators Vs of the random effects v are then used to predict u = I!3 4+ m'v as
fing = tar(Bags Oar, Viar) = 1)8,, + mt¥ ). The predictor fiy is referred to as the robust EBLUP (REBLUP) of p,
and it becomes the ordinary EBLUP for the choice 1(r) = r of Huber’s psi function.

3.4 Asymptotics

A special case of the general linear mixed model (6) that covers many small area models with block diagonal
covariance structure may be defined as

Yl:X1ﬂ+Zlvl+el7 221,,]€ (21)

where the variance-covariance matrix of y; is obtained as V; = V;(0) = R; + ZZ-GZ-Z§.

Robust EBLUP predictor of area-specific parameter p; = 1:3 + miv, is given by juas = 18, + miv,y =
tm (BM, O, Vin). For example, under the basic unit level model (4), the small area mean Y; ~ u; with 1; = X; and
m; = (0,...,0,1,0,...,0)%, where 1 is in the ith position of the vector m,;.

31



Section on Survey Research Methods —JSM 2008

Under suitable regularity conditions, &'/ Q(B M — B) is asymptotically distributed as Gaussian with mean zero
and covariance matrix consistently estimated by Cl_lBl Cl_l, where

k
B, = k1) XIVi'U2QUAVIIX;

with Ql = \Il(rz)\Ilt(rl) and

k
& - i S X0 DU,
i=1
where D, is a diagonal matrix with its jth diagonal element D;; = (9/07;)¢s(7i;).
Also, under regularity conditions, k'/2 (9 M — 0) is asymptotically distributed as Gaussian with mean zero and
covariance matrix consistently estimated by Cz_ 1]§2C2_ ! where matrix B, has its (I, m)th element

k
Bat = k1S 0a00)m:(60,)

i=1
and Cy has its (I,m)th element

k
Cotm =—k""> (0/00,m)mi(61)

i=1

where 7;(6;) has the form

‘ Coatie NTTl/2 _1(9V' 1y71/2 _18V '
n:;(0;) = ¥ (r;,)U, "V, 89V U,/ o(r;) - (V a6, K |-

The matrices ]:3»1, ]:3»2, Cl, and Cy are all evaluated at (BM, [9M).

3.5 Estimation of MSE of Robust Small Area Estimators

Estimation of MSE of small area estimators is a challenging problem even in the case of classical EBLUP estimators.
Several methods have been proposed by a number of authors for the case of EBLUP under the model (21) with
block diagonal covariance structure. Methods studied include a linearization method of Prasad and Rao (1990), a
jackknife method of Jiang, Lahiri and Wan (2002), and a bootstrap method of Hall and Maiti (2006). For a review
of some of these methods see Rao (2003).

Given the complex form of robust estimators of small area means, the corresponding estimators of MSE cannot
be obtained in any closed form. Here we adopt a bootstrap technique to estimate the MSEs of robust small area
estimators under model (21) with block diagonal covariance structure. Initially, we studied the nonparametric
bootstrap method by generating bootstrap samples of residuals from the original data. The results were not so
encouraging, as the bootstrap samples were influenced by the outliers in the original data. Note that in sampling with
replacement, a bootstrap sample may have outliers that can outnumber the “good” data points, and consequently,
prediction for the small area means may not be valid at all.

Similarly to Hall and Maiti (2006), we then investigate a parametric bootstrap method for approximating
MSE(fuinr) = E{tar(Bar, Oar,Virs) — 1 }2. We adopt the following bootstrap algorithm:

1. For given 3,, and 6,7, generate the area-specific random effects v and the random errors e from N (0, G;(6,/))
and N(0,R;(0)s)) respectively to create a bootstrap sample from the model

yi =XiBy +Zivi +e], i=1,.. k. (22)

Compute the corresponding bootstrap population parameter p =ty (,C:)'M, éM, vi) = lfﬁM +miv}

2. Generate B bootstrap samples {y;‘(l), . ,yj(b) ...,y:(B)} from the bootstrap population model (22). Com-
pute the corresponding bootstrap estimates of the population parameter ,u*(b) =ty (BM, éM, v:(b)) as ﬂ:](vl}) =

b) (b . b
tM(,Bﬁw),O( ) A(b)) = lfﬂ( + mtvf?\;, for b = 1,..., B, where 55\/1)7 05\4) and \A/l(?v)[ are the robust bootstrap

estimates of 3, @ and v; for the bth bootstrap sample yi( ),
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3. Obtain a bootstrap estimate of MSE[t, (BM, 9M7 Vin)] as
& .. 2
MSE [tar (B, Oar, Vinr)] Z {tM ﬂM,OM, “(b)) tM(ﬂM70M7V;k(b))}

The proposed bootstrap may be motivated by noting that the focus is on deviations from the working assumption
of normality of v; and e; and that it is natural to use robust parameter estimates for drawing bootstrap samples
since MSE(fi;37) is not sensitive to outliers. Small simulations under the basic unit level model (4) were carried
out to investigate the performance of this bootstrap method in Section 4, and the results were found to be very
encouraging.

4. Simulation Study

4.1 Contamination Distributions

We ran a series of simulations using the basic unit level model (4) with a single auxiliary variable x:
Yij = Bo + Brzij + vi + €ij (23)

fori=1,...,k j=1,...,n with £ = 40 and n = 4. The values z;; of the auxiliary variable were generated from
the normal dlstrlbutlon N (ux, 2) with p, = 1 and 02 = 1. The area-specific random effects v; were generated from
the contamination distribution (1 — ;)N (0,02) + fle(O 0?). This means that a (1 — 1) proportion of the v;’s
were generated from the underlying “true” distribution N(0,02) and the remaining 7; proportion of the random
effects were generated from the “arbitrary” contaminated distribution N(0,02). The choice v; = 0 indicates
no contamination of the distribution. Similarly, the random errors e;; were generated from the contamination
distribution (1 — v2)N(0,02) + 72N (O 0*2). For the underlying distributions, we set 02 = 02 = 1 and for the
contaminated distributions, we set 0*? = 02 = 25 and the proportion of contamination y; = v, = .10. We considered
four possible combinations {(0,0), (0,v), (0,¢e), (v,e)} of contamination, where (0,0) indicates no contamination of
the distributions, (0,v) indicates the contamination only in the distribution of the area-specific random effects v;,
and so on. The regression coefficients were fixed at (8g, 51) = (1,1). We ran four sets of simulations each of size 500.
Also when computing the mean squared error of a small area estimator by the bootstrap method, we used bootstrap
samples of sizes 100, 200 and 500. We chose different sizes of bootstrap samples to study the variability among the
bootstrap estimates of mean squared errors.

Table 1 presents the simulated biases and mean squared errors of the estimators of the regression coefficients
(B0, 81) and the underlying variance components (02,02) obtained from the two robust methods (proposed and
Fellner’s) and the classical generalized least squares method discussed earlier. Here the classical generalized least
squares and the proposed RML method perform almost equally well in the case of no contamination of the data.
This indicates that when there are no outliers in the data, the proposed RML is almost as efficient as the generalized
least squares. On the other hand, Fellner’s approach performed poorly by exhibiting larger biases and mean squared
errors for the estimators of the variance components as compared to the other two methods.

In the presence of outliers in the random effects v;, the classical estimators of the variance component o2 are
heavily influenced by these outliers and produced much larger biases and mean squared errors as compared to
the robust methods. Between the two robust methods, our proposed RML method provides better results for the
estimation of variance components.

In the case of outliers in the random errors e;;, the RML method appears to provide uniformly better results than
the classical least squares and Fellner’s robust approaches. Also when we consider outliers in both the area-specific
random effects v; and the random errors e;;, the RML method still provides almost uniformly better results than
the other two methods. As the RML method provides efficient estimates in almost all situations considered, we
naturally recommend this approach for the estimation of model parameters as well as for the prediction of small
area means.

In the next step, we consider the estimation of small area means u; = By + 51X, + v;, where X; is the known
population mean of the auxiliary variable in the ith area. We chose X; = 1 for each i = 1,...,k, for simplicity.
We considered the same set of simulated samples as used for Table 1. Table 2 presents average simulated absolute
biases and average simulated mean squared errors (averages are taken over the areas) of the estimators of small area
means for both robust and classical methods. In the case of uncontaminated data, classical EBLUP appears to be
the most efficient, as expected. The robust estimators are also seen to be almost as efficient as the EBLUP. Under
contamination of the distribution of random errors e;; only, the two robust methods produced much more efficient
estimators than those obtained from the classical EBLUP. But under contamination of the distribution of random
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Table 1: Simulated biases and mean squared errors (MSEs) of robust and classical estimators.

ML Proposed RML Fellner’s method
Parameter  Bias MSE Bias MSE Bias MSE
No contamination
Go=1 0.000 0.041 0.001 0.043 -0.001 0.043
G1=1 -0.002 0.008 -0.004 0.009 -0.003 0.009
o2 =1 -0.019 0.016 0.016 0.022 0.095 0.035
o2=1 -0.011 0.071 -0.042 0.077 0.152 0.121
Contamination in v
Go =1 -0.003 0.099 -0.005 0.055 -0.006 0.054
G1=1 0.002 0.008 0.001 0.009 0.001 0.008
o2 =1 -0.010 0.017 0.028 0.024 0.109 0.041
o2=1 2.212  7.823 0.379 0.303 0.512 0.453
Contamination in e
Bo=1 -0.010 0.068 -0.010 0.049 -0.010 0.048
G1=1 -0.003 0.025 -0.002 0.013 -0.003 0.012
o2 =1 2.485 7.009 0.522 0.329 0.542 0.345
o2=1 -0.037 0.179 -0.092 0.116 0.166 0.173
Contamination in both v and e
Go =1 0.012 0.128 0.009 0.067 0.011 0.064
6r=1 0.000 0.029 0.004 0.014 0.003 0.013
o2 =1 2.367 6.408 0.600 0.435 0.566 0.380
o2 =1 2.265 8.506 0.420 0.376 0.616 0.623

Table 2: Simulated absolute biases and MSEs of estimators of small area means (averaged over areas).

EBLUP REBLUP Fellner’s method
Contamination Bias MSE Bias MSE Bias MSE
(0,0) .0174  .2066 0165 .2140 .0168 2122
(v,0) .0152  .2290 0151 .2235 .0150 .2229
(0,€e) .0261 .5055 .0216  .2993 .0220 .2950
(v, €) .0310 .6578 .0201 .3226 .0189 .3425

effects v; only, the robust and classical methods gave similar results, which is an interesting finding here. When the
distributions of both v; and e;; are contaminated, the proposed robust method appears to provide the most efficient
estimators of the small area means in terms of both biases and mean squared errors.

In the last step of the simulations, we studied the proposed bootstrap method for estimating the mean squared
errors of the proposed REBLUP estimators of the small area means ;. Table 3 presents the simulated mean squared
errors (actual) and the simulated expected values of the estimated mean squared errors of the small area estimators
i = BOM + BlMXi + 0;p7. We ran the simulations for three different sizes (100,200, 500) of bootstrap samples.
The simulation size is 500 in each case, as used earlier. For each sample generated in the simulation study, we
obtained a set of estimates of model parameters. Using these estimates, we then generated bootstrap samples of size
B (B=200, for example) to approximate the mean squared errors of small area estimates for that particular sampled
data. It appears that the simulated expectation of the estimated mean squared errors are close to the corresponding
simulated mean squared errors under all contamination schemes. It is clear from Table 3 that even the size 100
of bootstrap samples is large enough to provide a good approximation to the simulated expectation. However, the
variability in the bootstrap estimates was found to be less for larger sizes of bootstrap samples, as expected.
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Table 3: Actual (simulated) and estimated MSEs of proposed REBLUP estimators (averaged over areas).

Boot size = 100 Boot size = 200 Boot size = 500

Contamination Actual Estimated Actual Estimated Actual Estimated
(0,0) 2134 .2156 2140 2130 2147 2146
(v,0) .2259 2321 2235 .2290 2245 2292
(O7 e) .2925 .2824 .2993 2854 .2946 2832
(v, e) .3333 .3315 .3226 3315 3345 3294

Table 4: Simulated biases and MSEs of estimators of fixed effects under misspecified ¢ distributions.

ML RML
Parameter  Bias MSE Bias MSE
Go=1 -0.041 0.394 -0.008 0.123
G1=1 0.003 0.090 -0.004 0.024

4.2 t Distributions

Note that in the simulation study presented in Section 4.1, we considered contaminated normal distributions for
both random effects and random error terms. Here we investigate the effects of misspecified errors on the small area
estimates when the area-specific random effects v; and the random errors e;; in (23) both follow a ¢ distribution with
two degrees of freedom. The ¢ distribution is also symmetric and exhibits long tails that can lead to outliers. The
same design as considered earlier is used to generate the data and to compute the small area estimators. The results
are presented in Tables 4 and 5. Table 4 shows that our proposed robust method is substantially better than the
classical method in estimating Gy and ;. Also note that the bootstrap method based on normal residuals produced
expected estimated MSE .518, which is close to the actual (simulated) MSE value of 0.551, as shown in Table 5.

5. Example: Survey and Satellite Data

Battese, Harter and Fuller (1988) presented and analyzed survey and satellite data for corn and soybeans in Towa
counties (small areas). The authors considered the estimation of areas under corn and soybeans for 12 counties in
north-central Towa, based on the 1978 June Enumerative Survey and satellite pixel data. Areas of corn and soybeans
were obtained in 37 sample segments from the 12 counties by interviewing farm operators. The data set contains the
number segments in each county, the number of hectares of corn and soybeans for each sample segment, the number
of pixels classified as corn and soybeans for each sample segment, and the mean number of pixels per segment in
each county classified as corn and soybeans (a segment is about 250 hectares and a pixel is about 0.45 hectares).

Battese, Harter and Fuller (1988) identified one observation in Hardin county to be an influential outlier, and
they simply deleted this observation when predicting the corn and soybeans areas based on the unit level model.
We have particularly chosen this data set to investigate the influence of the outlier on the classical estimates and
also to explore the ability of the robust method to identify and downweight such influential points when estimating
the parameters of interest.

Table 5: Simulated absolute biases and mean squared errors of EBLUP and REBLUP estimators of small area
means (averaged over areas) under misspecified ¢ distributions.

EBLUP REBLUP

Bias MSE Bias MSE
0.0674 1.719 0.0334 0.551
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Table 6: Robust and classical analysis of survey and satellite data (standard errors in parentheses).

Coefficients Classical MLl Proposed RML  Fellner’s method
Intercept (5p) 18.09(31.11) 29.14 (40.07) 35.73
Corn piXGlS (ﬁl) .3657(.0652) ~3576(.0808) .3480
Soybeans pixels (82)  —.0302(679) —.0694 0978) -.0871
o2 280.2(71.55) 225.6(63.04) 229.7
0'12} 47.80(56.51) 102'7(64.57) 154.4

Standardized Residuals from Robust Fit

Residuals

Figure 1: Residual analysis of survey and satellite data from robust method.

The crop hectares for corn in sample segments within counties are expressed as a function of the satellite data
for those sample segments in the form

Yij = Bo + Brw1ij + Pav2ij + vi + ey, (24)

where y;; is the number of hectares of corn in the jth segment of the ith county (¢ = 1,...,k, where k = 12;
Jj =1,...,n;) with n; being the number of sample segments in the ith county, and with z;; and x9;; being the
corresponding number of pixels classified as corn and soybeans, respectively. The random effects, v; (i = 1,...,k),
are assumed to be iid N (0, ¢2) independent of the random errors, e;; (i = 1,...,k;j = 1,...,n;), which are assumed
to be iid N(0,02).

The small area mean hectares of corn per segment in the ith county under model (24) is taken as

wi = Bo + B1X1i + B2 Xai + vs, (25)

where X; and X»; are the population mean number of pixels classified as corn and soybeans per segment, respectively,
in the ith county. These population means are known from the satellite classifications for all segments in the ith

county.
Table 6 presents the robust and classical estimates of the fixed effects parameters (5, 01, 32) and the variance
components (02,02). For given (02,02), the classical estimates of (8y, 31, 32) are obtained as the generalized least

squares estimates. Also we used the ML estimates of (02,02) as the classical estimates. As robust methods, we

used the proposed M estimation and Fellner’s approach for estimating the regression coefficients and the variance
components. It is clear from Table 6 that the two robust methods produce similar estimates for all the model
parameters except for the variance component o2, which is overestimated by the Fellner’s method. On the other
hand, the intercept parameter 3y and the variance component o2 are heavily underestimated by the classical method.
The ML estimate of o2 is overestimated here, which is perhaps due to the large outlier in the data set.

We also studied the standardized residuals r;; = (y;; — Bons — BlMxlij — ﬁng%j)/(&g + 63)1/2 from the robust
fit to investigate if the robust method can detect the outlier and hence downweight this when fitting the model. The
residual plot is shown in Figure 1. As expected, the largest standardized residual (which is less than -3) corresponds
to the outlying observation in the Hardin county.

We also obtained the estimates of the mean hectares of corn per segment using model (25). Results from the
robust and classical methods are given in Table 7. Predictions from these methods are somewhat similar for most
of the counties with a few exceptions. As expected, the largest difference in estimates is observed in the Hardin
county, where the two robust methods give estimates of about 137 hectares corresponding to the estimate of about
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Table 7: Predicted mean hectares of corn per segment (bootstrap MSE estimates in parentheses).

Estimated hectares

County Sample segments EBLUP REBLUP
Cerro Gordo 1 122.2(64.0)  123.7(97.0)
Hamilton 1 123.2(61.09)  125.3(93.4)
Worth 1 113.9(s87.6)  110.3(90.4)
Humboldt 2 1154(618) 1141(735)
Franklin 3 136.1(117.6y  140.8(53.9)
Pocanhontas 3 108.4(59.3y  110.8(52.0)
Winnibago 3 116.8(57.2)  115.2(4g.4
Wright 3 122.6(49.5) 122.7(58.7)
Webster 4 110.9¢71.4y  113.5(39.9)
Hancock 5 1244(532) 1241(400)
Kossuth 5 113.4(106.5y  109.5(37.5)
Hardin 6 131.3(51.0) 136.9(39.3)

131 hectares obtained from the classical method. We also calculated the bootstrap mean squared errors of the
classical EBLUP and the REBLUP estimates of the area means based on 500 bootstrap samples. It is interesting
to note that the REBLUP method gives a nice pattern in the values of the estimates of the mean squared errors in
which larger sample sizes correspond to smaller mean squared errors. But the classical bootstrap method does not
reflect this pattern in general. From a closer look on the generated bootstrap samples, we observed that because
of the small sample size and large estimates of the variance components as used here, the bootstrap samples tend
to have a few outlying points in many situations. The classical bootstrap estimates of the variance components are
generally affected by those outlying points. In some cases, the classical estimates of 02 were found to be close to 0,
which in turn underestimate the mean squared errors. One should, therefore, take extra precaution when using the
classical bootstrap method for approximating the mean squared errors, especially when the sample size is small and
the variance components are large.

6. Discussion

Outliers are common in many real life data, and it is important to adopt suitable robust methods to deal with such
outliers. The proposed REBLUP method of estimation of small area means is a significant development toward this
direction.

In the absence of a suitable analytical approach for estimating the mean squared error of a small area estimator,
in this article we have relied on the bootstrap approach to obtain an estimator of the mean squared error. For
moderate sized bootstrap samples as used in the simulation study, these bootstrap estimates appear to provide good
approximations to the actual mean squared errors. The proposed model based bootstrap technique, however, has a
limitation in the sense that it depends on the working assumption on the distributions of the area-specific effects v;
and the random errors e;;. Although fully nonparametric bootstrap can be used under no contamination of the data,
this technique can be very sensitive to potential outliers in the data, and one should not use this nonparametric
approach without adopting any robust adjustment. As a trade-off between the two approaches, one may consider
a nonparametric weighted bootstrap approach, where the weights are determined by the fitted mixed effects model
using the robust method. The bootstrap samples are then generated from the original sample and the corresponding
weights associated with each data points. Work remains to be done in this direction.

In this paper, we studied outliers in the distributions of the random effects and the random errors, which are
the most common type of outliers in the context of small area estimation. However, if there are outliers in the
auxiliary variables, we can extend the proposed RML method to accommodate such outliers. In this case, the RML
estimating equation (16) for B can be modified as

X'WVIUY2®(r) =0

where W is a diagonal matrix with its diagonal elements being equal to some weight function w(z) obtained such
that the outliers in the auxiliary variables x’s are downweighted when estimating the parameters. When x’s are
continuous, a common choice of the weight function w is a function of the Mahalanobis distance (x—m,)*S; ! (x—m,),
for some robust estimates m, and S, of the location and scale of x, respectively (Sinha 2004). One limitation of such
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weight function is its inability to handle outliers in other-than-continuous variables. When the auxiliary variables
are discrete, alternatively, one can use Mallows weights described in de Jongh, de Wet and Welsh (1988). These
weights are nonparametric in the sense that no assumption is needed for the distribution of the auxiliary variables.

Chambers and Tzavidis (2006) proposed a robust M-quantile approach to small area estimation that is based on
quantile regression without specifying the random effects to explain between small area variation unlike the linear
mixed model (6) studied in our paper. However, they observed that the M-quantile estimators can be significantly
biased. Tzavidis and Chambers (2007) proposed a bias correction to the M-quantile estimator. It would be interesting
to compare our robust method of small area estimation with the bias-adjusted M-quantile method in terms of
efficiency.
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