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Abstract

We review the basic ideas underlying the Rao-Scott correc-
tions to chi-squared tests for contingency tables when the es-
timated cell proportions are derived from survey data (Rao &
Scott, 1981,1984), and look briefly at the impact of this work
in the 25 or so years since it was first published. We also look
at a variant of the corrections that gives improved results when
testing for homogeneity and a useful spin-off of this work to
the analysis of clustered binary data.
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1. Introduction

This talk is about Rao-Scott corrections to chi-squared tests
for cross-classified categorical data in applications where the
data comes from a complex sample survey, rather than from
a simple random sample. This is something that Jon Rao and
I have been working on, off and on, for a long time, starting
way back in 1978 when we were both on sabbatical leave at
the University of Southampton, working on a joint program
organized by Fred Smith and Tim Holt. At various times, that
program also included Gad Nathan, Wayne Fuller, Graham
Kalton, Chris Skinner, and (a very young) Danny Pfefferman
so that it has had a big influence on the development of sur-
vey methodology over the years. I have learnt a tremendous
amount from Jon over the intervening years and it is a great
honour to be asked to speak in this session honoring Jon’s
contributions to Statistics in the year of his 70th birthday. Jon
has made many fundamental contributions to Statistics over
the past 50 years and, as a glance at the current literature will
show immediately, he shows very little sign of slowing down.
I have no doubt that there are many more fundamental contri-
butions to come from him yet.

We start this paper with a brief review of basic methods for
the analysis of cross-classified categorical data in the simple
case when the data comes from a simple random sample and
then look at the complications that result when the data ac-
tually come from a survey with more complex structure. In
Section 4, we outline the methods developed in Rao & Scott
(1981, 1984) to adapt the standard methods to handle this
complexity and trace the growth in the use of these methods
over the past 25 years.

In Section 5, we look at another, much less well-known pa-
per where we introduce an alternative correction for tests of

homogeneity and look at a surprising application of that work
to clustered binary data. Finally, we give a brief glimpse at the
large body of more recent work that has been influenced by
those original Rao-Scott papers.

2. Background Review

Suppose that π = (πt) denotes the T × 1 vector of population
cell proportions when the cells of a multiway table are ordered
in some way. A log-linear model for π takes the form

µ = u(θ)e + Xθ (1)

where µ is the T × 1 vector with components µt = log(πt),
θ is a p-vector of unknown parameters, X is a T × p matrix
of known constants with r(X) = p ≤ T − 1 and XTe = 0.
Here e denotes a T -vector of ones and u(θ) is a normalizing
constant chosen so that

∑
t πt = 1.

We want a representation for π that is as parsimonious as
possible. Thus we are led to check the fit of nested models of
the form

µ = u1(θ1)e + X1θ1 (2)

with θ =
(

θ1

θ2

)
and X = (X1,X2). Clearly, checking

the fit of this model is equivalent to testing the null hypothesis
H0 : θ2 = 0 where θ2 is k × 1.

In the simplest case, and the one for which most of the stan-
dard theory was developed, a random sample of n observa-
tions is drawn from the population and the results classified
according to the cells of the table. Let p̂ denote the resulting
vector of observed proportions. Then the maximum likelihood
estimator, π̂, of π in model (1) is the (unique) solution to

XTπ̂ = XTp̂ (3)

satisfying (1). For some special models (including, of course,
the important case of independence in a two-way table), π̂ can
be found explicitly. When this is not the case, very efficient
algorithms are available for calculating the solution to (1) and
(2) in general.

The standard tests of H0 : θ2 = 0 are based either on the
Pearson chi-squared statistic

X2
P = n

∑
t

(π̂t − π̂∗t )2

π̂∗t
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or on the likelihood-ratio statistic

G2 = 2n
∑

t

π̂tlog

(
π̂t

π̂∗t

)
,

where π̂∗t is the MLE of π under the restricted model (2). X2
P

and G2 are asymptotically equivalent and both have asymp-
totic χ2

k distributions under H0. Details of this standard the-
ory can be found in many places. Good accounts are given in
Bishop, Fienberg & Holland (1975) or Agresti (2007)

Methods for choosing a parsimonious representation based
on these test statistics have proved very successful for making
sense of complex interrelationships among categorical vari-
ables. However, the data for many studies, particularly in the
social sciences, are drawn using more complicated sampling
schemes and there is a natural desire to carry the methods over
to data collected using such more complex sampling methods.
This turns out to be by no means straightforward. We look at
this in more detail in the next section

3. Survey data

Almost all large-scale surveys involve multi-stage sampling
with units in the same PSU positively correlated, stratifica-
tion and variable selection probabilities leading to differential
weighting among units, and many other such complications.
This makes the assumption of independent and identically dis-
tributed observations underlying the standard multinomial the-
ory far from true.

Suppose instead that our sample of n units is actually drawn
from a survey with a more complex design. As in the simple
case above, we let p̂ denote the vector of estimated cell pro-
portions but now p̂ might be extremely complicated in gen-
eral, incorporating design weights, for example, and involving
ratio estimation or post-stratification. All we assume is that
p̂ is a consistent estimator of the population cell proportions,
π, and that a central limit theorem is available for the combi-
nation of design and estimator so that

√
n(p̂ − π) converges

in distribution to a T -variate normal with mean vector 0
¯

and
covariance matrix Vp, say. In the case of simple random sam-
pling without replacement, Vp is equal to the multinomial co-
variance matrix, VM = diag(π)− ππT .

In Rao & Scott (1981, 1984) we showed that, under such
a general sampling scheme, X2

P and G2 are still asymptoti-
cally equivalent but now both are asymptotically distributed
as

∑k
1 δiZ

2
i under H0, where the Zis are independent N(0, 1)

random variables and the δis are the eigenvalues of(
X̃T

2 VMX̃2

)−1 (
X̃T

2 VpX̃2

)
where

X̃2 = X2 −X1

(
XT

1 VMX1

)−1 (
XT

1 VMX2

)
.

The δis are the design effects of particular linear combinations
of the estimated cell proportions and are often known as the
“generalized design effects”.

Provided that we have an estimate, V̂p say, of Cov{p̂},
available, we can calculate estimates of the δis and hence get
approximate percentage points for the asymptotic null distri-
bution of X2

P and G2.

4. Rao-Scott corrections

Let δ̄ =
∑k

1 δ̂i/k be the average of the estimated δis. It is
convenient to define the equivalent sample size, ñ, by setting
ñ = n/δ̄. The corresponding “corrected” test statistics are
then

X2
RS = ñ

∑
t

(π̂t − π̂∗t )2

π̂∗t
or G2

RS = 2ñ
∑

t

π̂tlog

(
π̂t

π̂∗t

)
.

There are several ways of approximating the asymptotic
null distribution of X2

RS or G2
RS . In particular, we could ap-

proximate it by:

• χ2
k (the 1st-order Rao-Scott (RS) correction)

• cχ2
k∗1

, where c =
∑

δ2
i

kδ̄2 > 1 and k∗1 = k/c (the 2nd-order
RS correction).

• kFk∗1 ,k∗2
, where k∗2 = k∗1ν with ν = rank(V̂p). (Note

that typically ν = # of P.S.U.s − # of strata which
may be relatively small even in big surveys).

The first-order approximation matches the first moments
of the distributions, ignoring sampling variation in the esti-
mated covariance matrix, V̂p. The second-order approxima-
tion matches the first two moments, again ignoring sampling
variation in V̂p. The third approximation makes an allowance
for this sampling variation and is the most accurate in general.
In fact, it is good enough for almost all practical purposes (see
Thomas & Rao, 1987, Rao & Thomas, 1989, 2003, Thomas,
Singh and Roberts, 1996, Servy, Hachuel & Wojdyla, 1998).

Why use the first order approximation at all? One reason is
that the other approximations require information on the full
(T − 1)× (T − 1) covariance matrix Vp and this is not always
available, especially when doing secondary analysis from pub-
lished tables. It turns out that, for many models, δ̄ (and hence
the first-order correction which requires no additional infor-
mation) can be calculated using only information on the stan-
dard errors of cell proportions and appropriate marginal pro-
portions, information which should be available as a matter of
course in any well-run survey. (More specifically, this hap-
pens whenever π̂∗ has an explicit form - see Bedrick, 1983,
Rao, 1982, Gross, 1984, Rao & Scott, 1984.) The first-order
correction is slightly conservative, in general, but much less
conservative than the alternative of doing nothing at all.
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Figure 1: Citation counts for Rao & Scott (1981, 1984) by year.

There has been a fair amount of work trying to improve on
the first order correction, while still using only information on
cell and marginal standard errors. For example, see Holt, Scott
& Ewing (1980), Scott & Styan (1985), Rao & Scott (1987),
Shin (1994). However none of this work seems to had much
impact in practice.

There are a number of viable alternatives to the RS tests
(the Wald, Fay’s Jackknife,and Bonferroni inequalities) that
all perform well in appropriate circumstances but the Rao-
Scott tests have the virtues of simplicity and familiarity, in the
sense that experience gained in the standard i.i.d. case can be
carried over directly, and they have turned out to work pretty
well in practice.

4.1 Impact

The plots in Figure 1 show citation counts (taken from the
Web of Science) for the two basic papers, with lowess curves
superimposed. It seems that the corrections are being used
increasingly in recent years.

Basically, the plots indicate the importance of usable soft-
ware. We see that citations of both papers meandered along at
a low level until they took off in the mid- to late-90s. This is
presumably because of their inclusion in major software pack-
ages and in Stata and SAS in particular.

A closer look at recent individual citations is instructive.
The first thing of note is that almost all the applications are in
medicine, health, and biometrics. There are very few in social
science, which was the main motivation for the original work.
This may be partly due to selection bias, since the coverage of
the Web of Science is better for Science and Medicine than for
Social Science (Survey Methodology is not among the jour-
nals covered, for example). However, a more important reason
may be that, as far as I can see, Rao-Scott corrections are not
in SPSS, which is the main package used in Social Science
applications. (It is possible that it is included under another
name.)

The second point of note is that I can find no recent ap-
plications at all that use the first-order correction calculated
just from standard errors for cells and margins. All that clever
work referred to in Section 4 appears to have had very little
lasting impact. I suspect that this means that a lot of analysis
of published data is still being carried by simply ignoring the
effect of the sampling scheme.

5. Another Rao-Scott chi-squared statistic

There is actually another first-order RS correction (Scott &
Rao, 1981), which I want to discuss briefly. Apart from one
small (but practically important) special case, this one has
more or less disappeared into oblivion. I would like to use
this forum to attempt a bit of PR on its behalf.

One reason for its obscurity is that it only applies to the spe-
cial case of testing homogeneity. However, tests of homogene-
ity turn up reasonably often in a survey context, for example
when we want to compare:

• different regions in a regionally stratified survey;

• different national surveys;

• different surveys, supposedly from the same population;

• agreement between interviewers based on Mahalanobis’
interpenetrating subsamples.

In ordinary multinomial theory, of course, testing homo-
geneity and testing independence in a two-way table are iden-
tical. This comes about because the multinomial has the nice
property that, when we condition on the marginal row totals,
cell counts in different rows become independent. This does
not happen with more general survey designs. Formally, we
could just calculate the equivalent sample size ñ, form X2

RS

and proceed as in the general case. However, this makes no
use of the block diagonal structure of the covariance matrix
and we can exploit this structure to get improved results for
testing homogeneity that do not carry across to testing inde-
pendence.
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It is convenient to change notation slightly for this section.
Suppose that we have an r×c table with the rows representing
independent samples. Let πi = (πi1, . . . , πic) be the vector
of category proportions for the ith row and let p̂i be the corre-
sponding vector of sample estimates.

We assume that the p̂is are independent and that
√

ni(p̂i −
πi) converges in distribution to a c-variate normal with mean
vector 0

¯
and (singular) covariance matrix Vi.

The hypothesis of interest is

H0 : πi = π for i = 1, . . . , r

and the usual multinomial Pearson chi-squared statistic has the
form

X2
HP =

r∑
i=1

c∑
j=1

ni(p̂ij − p̂+j)2

p̂+j
,

with p̂+j =
∑

i
nip̂ij∑
i
ni

.

To get the alternative Rao-Scott chi-squared statistic, we
simply replace ni by ñi = ni/δ̄i, where δ̄i is the average gen-
eralized design effect for the ith row:

X2
HRS =

r∑
i=1

c∑
j=1

ñi(p̂ij − p̃+j)2

p+j
,

where p̃+j =
∑

i
ñip̂ij∑
i
ñi

.

Note that we can write δ̄i =
∑c

j=1
var(p̂ij)

pij
. Thus esti-

mating δ̄i only needs the standard errors of the cell propor-
tions which should always be available in a well-run survey
(see Scott & Rao, 1981, for details). (Note also that the
standard RS chi-squared, X2

RS , can be written in exactly the
same form as X2

HRS but with ñi replaced by ˜̃ni = ni/δ̄ with
δ̄ =

∑
i niδ̄i/

∑
i ni. Obviously this also only needs cell stan-

dard errors.)

The asymptotic null distribution of X2
HRS is a linear com-

bination of k = (r − 1)(c − 1) χ2
1 random variables un-

der H0 in general. Equating first moments leads to treating
X2

HRS as a χ2
k random variable as a first order approxima-

tion. If we have estimates of the full covariance matrices Vi

for i = 1, . . . , r, then we can get improved second-order and
F−based approximations as with the usual RS statistic. How-
ever, this is often not necessary since the first order χ2

k cor-
rection is uniformly better for X2

HRS than for the standard
X2

RS . Both statistics have the same asymptotic mean of k but
V ar(X2

RS) ≥ V ar(X2
HRS) ≥ V ar(χ2

k) = 2k. We are still
doing more empirical work here but preliminary results sug-
gest that the second order correction will often add very little
value.

Finally we note that, when c = 2 (i.e. when we are com-
paring proportions from independent surveys), the first order
chi-squared approximation for X2

HRS is actually asymptoti-
cally correct. This is not true of the usual X2

RS statistic.

Figure 2: Citation counts for Rao & Scott (1992) by year.

5.1 A special case

The fact that X2
HRS gives asymptotically correct results w

when comparing proportions from independent surveys is
equivalent to saying that we can treat the “equivalent totals”
{t̃i = ñip̂i} as if they were independent Bin(ñi, pi) random
variables. This trick works with any procedure for handling in-
dependent binomial proportions - logistic regression, Mantel-
Haenszel tests, Cochran-Armitage tests, and so on. Details are
given in Rao & Scott (1992).

Such applications are of limited interest in survey work but
have turned out to be very useful in other fields where clus-
tered binary data arise, particularly medicine and biology (
litters of animals in toxicity studies, repeated measures on the
same individual, twin studies, etc). No new computer pro-
grams are needed to implement this technique and as the plot
in Figure 2 shows, the take-up was much more immediate.

6. Extensions

The basic idea of the RS-corrections has been applied in a
number of other contexts, particularly by Jon Rao and peo-
ple working with him. For example, Roberts, Rao & Kumar
(1987) applied similar techniques to handle logistic regression
with survey data. Rotnitzky & Jewell (1990) treated general-
ized linear models with clustered data and Rao, Scott & Skin-
ner (2000) extended this to handle more general survey data.
Rao & Thomas (1990) tackled problems arising with classi-
fication errors in categorical data. Bellhouse & Rao (2002)
developed corrections to tests for domain means. Problems
with the analysis of multiple response table, where a respon-
dent can answer yes to more than one response category, have
been discussed by Bilder & Loughin (2002) and Decady &
Thomas (2000) and in several other papers by both pairs of
authors. In Wang & Rao (2002) and continuing work by the
same authors, similar methods to develop empirical likelihood
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tests with missing data. It seems that there is a lot of life left
yet in the basic ideas.
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