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Abstract

We consider the problem of performing a logistic regres-
sion in a secure way across partially overlapping data
bases, owned by multiple parties. The idea is to have
a shared computation for the purposes of model fitting
and assessment using the pooled data, in such a fashion
that no party’s data is directly disclosed to any other
party. We describe the relationship of this problem to
other well-formulated statistical ones such as analysis of
missing data. We then discuss the computational details,
the meaning of secure computation in this context, and
the implications for the protection of privacy, both for
data base owners and for the individuals whose data are
incorporated into the calculations.

KEY WORDS: Logistic Regression, Privacy-Preserving
Data Mining, Secure Multi-Party Computation, EM.

1. Introduction and Background

We address the problem of performing a logistic regres-
sion in a secure way on pooled data collected separately
by several parties (agencies) without actually directly
combining their databases. Specifically, the parties want
to fit a model and make inferences using the pooled data
in a way that no party’s data is disclosed to any other
party. The partitioning of data may occur in several
ways. When the parties have exactly the same variables
but for different data subjects, we call the situation (pure)
horizontally partitioned data. At the other extreme, when
the parties hold disjoint sets of attributes for the same
data subjects we call the situation (pure) vertically parti-
tioned data. Examples of parties are government agencies
or competing business establishments.

In this paper, we consider a structured mixed case.
Attributes are partitioned among parties, but not every
data record is common to all parties. There is a hor-
izontal partitioning component as well: one party may
be the only one holding any attributes for some records.
The assumption that attributes are partitioned is central:
it avoids reconciling possibly different attribute values in
multiple databases. But, it eliminates potentially impor-
tant cases such as “party A holds attributes 1, 2, and 3 for
some of its subjects and 4, 5, and 6 for others, while the
opposite is true for party B.” The analysis we consider
is logistic regression. In the case of categorical predictor
variables we can carry out the analysis directly on the

logistical scale or indirectly via the examination of corre-
sponding log-linear models. Each strategy offers distinct
advantages in specific instances, cf. Bishop et al. (1975.
Reprinted, Springer-Verlag, New York, 2007.), Fienberg
(1980. Reprinted, Springer-Verlag, New York, 2007.),
and the application for horizontal partitioning in Fien-
berg et al. (2006).

In the computer science literature, the problems
we address are termed privacy-preserving data mining
(PPDM). Often the emphasis is on algorithms rather
than full statistical analyses. Examples include the re-
sults of the application of association rules and K-means
clustering. For details, see Clifton et al. (2006) and for a
partial explanation why these are not the same as shared
secure computation, see Fienberg et al. (2006).

The PPDM literature tends to focus on either the hor-
izontal or the vertical partitioned cases. For results con-
cerning horizontally partitioned data, see Fienberg et al.
(2006), Ghosh et al. (2006) (adaptive regression splines),
Karr et al. (2005) (regression) and Karr et al. (2007) (re-
gression, data integration, contingency tables, maximum
likelihood, Bayesian posterior distributions; regression for
vertically partitioned data).

Sanil et al. (2004) and Sanil et al. (2007) treat se-
cure linear regression for vertically partitioned data from
two very different perspectives. Under the often unre-
alistic assumption that the agency holding the response
attribute is willing to share it with the other agencies,
Sanil et al. (2004) apply the algorithm for derivative-free
quadratic optimization due to (Powell, 1964) to solve the
least squares minimization problem directly, yielding the
estimated coefficients β̂. Only limited diagnostic informa-
tion is available, however. Sanil et al. (2007) use a form
of secure matrix multiplication to calculate off-diagonal
blocks of the full-data covariance matrix. These calcula-
tions occur pairwise between agencies, and do entail loss
of information. In Sanil et al. (2007), it is shown how
to minimize this loss. An advantage of this approach is
that rather complete diagnostic information can be ob-
tained with no further loss of privacy. Analyses similar
to ordinary regression (e.g., ridge regression) work in the
same manner. Du and Zhan (2002) and Du et al. (2004)
describe similar, but less complete, approaches.

We do not emphasize data pre-processing in this paper,
but the issues are complex. Measurement error creates
problems of record linkage and resolution of the quanti-
ties to be used in a calculation. To do secure computa-
tion in the sense we describe we require that all data to
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be in the same units, and records must be linked unam-
biguously. Determining which records are common to all
parties without unnecessary revelation of information is
itself a daunting challenge.

The full implementation of our approach will be de-
scribed in a longer paper. Here we provide background
and methodological details, especially those linking our
work to the more traditional statistical and machine
learning literature, and we briefly describe a practical
application.

2. Logistic Regression for Vertically Partitioned
Data Bases

Let Y1, . . . , Yn be independent Bernoulli variables whose
means πi = E(Yi), depend on some covariates xi ∈ Rp+1,
through the relationship

logit(πi) =
p∑

j=0

xijβj = (Xβ)i , (1)

where logit(π) = log[π/(1− π)], X is the associated n×
(p+1) design matrix whose first column is unity, and (a)i

stands for the i-th element of the vector a.
For vertically partitioned data held by K parties, we

have X = [X1, X2, . . . , XK ], where each Xk is an n× pk

matrix, except for X1, which has 1 + p1 columns (one
for the intercept). The parameter β has a similar block
structure. Thus we can rewrite equation (1) as

logit(πi) =
K∑

k=1

(Xkβk)i . (2)

This additivity across parties is crucial. Indeed, virtually
all of the work noted in §1 for horizontally partitioned
data depends on “anonymous” sharing of analysis-specific
sufficient statistics that add over the parties.

We can now write the log-likelihood function, up to an
additive constant, as

l(β) = yt

(
K∑

k=1

Xkβk

)
−

n∑

i=1

log

[
1 + exp

{
K∑

k=1

(Xkβk)i

}]
.

(3)
Here, the superscript t denotes matrix transpose.

We must obtain the maximum likelihood estimator β̂
of β through an iterative procedure. We show below how
to implement a secure Newton-Raphson algorithm to find
roots of the likelihood equations. Karr et al. (2007) de-
scribe a similar approach to numerical maximization of
likelihood functions for horizontally partitioned data. For
simplicity of presentation, we focus on K = 2, and re-
mark, at the end, on how to generalize to a multi-party
scenario.

Let X = [U, V ], and β = [α, γ]. Here, U is an n× (1 +
p1) matrix, and V is an n× p2 matrix, with p1 + p2 = p.
Also, letting xt

i denote the rows of X, we write xt
i =

(ut
i, v

t
i), for i = 1, . . . , n. Let π denote the n-vector whose

elements are πi, i = 1, . . . , n. Differentiating the log-
likelihood with respect to α and γ, we obtain the gradient
∇l(β) = (lα(β), lγ(β)), where

lα(β) = U ty −
n∑

i=1

uiπi = U t(y − π) , (4)

lγ(β) = V ty −
n∑

i=1

viπi = V t(y − π) . (5)

The derivation of the gradient follows from the fact that
∂(Uα)i/∂α = ui, ∂(V γ)i/∂γ = vi and

πi ≡ πi(U, V ) =
exp{(Uα)i + (V γ)i}

1 + exp{(Uα)i + (V γ)i} . (6)

Note that π depends on the full data X = [U, V ], and
thus cannot be calculated locally by any party involved.

The Hessian Hl(β) is the matrix with sub-block matri-
ces lαα(β), lαγ(β), lγα(β), lγγ(β), given by

lαα(β) = −U tDπU lαγ(β) = −V tDπU
lγα(β) = −U tDπV lγγ(β) = −V tDπV

(7)
for a diagonal matrix Dπ = diag

{
πi(1 − πi)

}
. The Hes-

sian results from a direct differentiation of the gradi-
ent and uses the following relationships: ∂πi(X)/∂α =
ut

iπi(1−πi), and ∂πi(X)/∂γ = vt
iπi(1−πi). The Newton-

Raphson algorithm updates an old (current) value of the
parameter, β̂OLD, via

β̂NEW = β̂OLD −H−1
l (β̂OLD)∇l(β̂OLD) . (8)

Over the past twenty years, computer scientists devel-
oped a number of efficient algorithms to securely evalu-
ate a function whose inputs are distributed among several
parties, known as secure multi-party computation (SMC)
protocols (Goldwasser, 1997; Yao, 1982). Specifically, we
will be using the secure summation protocol—a secure
algorithm to compute a sum without sharing distributed
inputs (Benaloh, 1987), and a secure matrix multiplica-
tion—a secure way to multiply two private matrices. We
assume that the parties involved are semi-honest, i.e., (1)
they follow the protocol and (2) they use their true data
values. But parties may retain values from intermediate
computations.

The first party, holding design matrix U , picks an ini-
tial choice α(0). Likewise, the second party, holding de-
sign matrix V , picks an initial choice γ(0). Together they
form β(0) = (α(0), γ(0)). Note, however, that ‘in prin-
ciple’ they don’t need to share their values of the pa-
rameter. But, as alluded below, this may cause some
computational problems. Therefore, in order to facilitate
these, one might consider also the case where the parties
do share their values. Using the two-party secure sum-
mation protocol, they jointly obtain π(0) by (2) or (6).
(Strictly speaking, secure summation is not possible for
two parties, but this is not an issue in the general case.)
Plugging this into expressions (4), (5) and (7), the par-
ties can utilize a secure matrix multiplication (e.g., as in

Section on Survey Research Methods

3507



Sanil et al. (2007)) to have also the gradient ∇(0)
l , and the

Hessian H
(0)
l . To see this, assume that the party hold-

ing data U holds in addition (and without loss of gen-
erality) the response variable y. This party can clearly
compute lα(β) locally. The other party needs either to
obtain the response variable (assuming the first party is
willing to share), or to apply a secure matrix product
to have its part lγ(β). Off-diagonal sub-block matrices
of the Hessian may be computed by applying a secure
matrix product. The inverse may be evaluated by the
following general formula,

A−1 =
[

A11 A12

A21 A22

]
,

where A11 = (A11 − A12A
−1
22 A21)−1, A12 =

−A−1
11 A12(A22 − A21A

−1
11 A12)−1, A21 = −A−1

22 A21(A11 −
A12A

−1
22 A21)−1, and A22 = (A22 −A21A

−1
11 A12)−1. Here,

A is an N ×N matrix partitioned as:

A =
[

A11 A12

A21 A22

]
.

The product H−1
l ∇l is conducted according to the sub-

block matrices of H−1
l and with the aid of a secure ma-

trix product. After completion, each party may update
its own share of the parameter β, and thus obtain the
next point of the Newton-Raphson sequence β(1). Be-
cause of numerical complexities, however, there are sub-
tleties (Karr et al., 2007), e.g., the parties must agree
on the value of the Newton-Raphson iteration. Also the
parties must be willing to share their estimated values of
their components of β. This is a non-trivial assumption
for pure vertically partitioned data and may reveal some
confidential information.

There are possible leakage issues that one needs to ad-
dress. Risk of disclosure may result from the process used
to obtain πi. Although we apply a secure summation
protocol, party holding data V knows the parameter α
corresponding to party holding data U (by assumption).
Therefore, party holding V may gain valuable informa-
tion in the course of the evaluation, especially for sparse
rows ut

i of U . In fact, the algorithm we present in this
section and in the sequel are as much secure as the se-
cure multi-party protocols are. In that respect, the secure
matrix product used to evaluate the gradient may suffer
from loss of privacy since one of the matrices has dimen-
sion one, e.g., V ty. See Sanil et al. (2007) for a proposed
secure matrix product protocol that achieves the goal of
equating the loss of privacy incurred by both parties.

The generalization to multi-party problems (K > 2) is
quite straightforward. One only has to use an appropriate
multi-party secure sum protocol, and to apply the matrix
multiplication protocol to every pair of parties.

3. Logistic Regression in the General Case

We now consider the case described in §1: attributes are
partitioned among parties, but not every data record is

common to all parties. It is natural to put this case into
a missing data framework.

As before, let X = [X1, . . . , XK ] for parties
A1, . . . , AK , but each sub-block matrix Xk may now
contain missing values (for those records that party Ak

does not have in its possession). Therefore, we ex-
pand the covariates xi ∈ Rp+1 as xi = (xoi

i , xmi
i ),

where oi,mi stand for the observed and missing at-
tributes, respectively, and they are both further ex-
panded as xoi

i = (xoi
i (A1), . . . , xoi

i (AK)) and xmi
i =

(xmi
i (A1), . . . , xmi

i (AK)).
We begin with a simplified version of the general case.

We assume that there is no overlapping of variables be-
tween different parties, and that an exact match can be
made using unique identifiers that the parties share. We
have a missing data element and thus choose to view
the problem in a missing data framework, where we can
make distributional assumptions regarding the variables
and then use the EM algorithm to impute missing values.
There are two cleanly identifiable cases; one involves only
continuous covariates and the other only categorical ones.
We commence with the continuous case.

3.1 Continuous Predictors

Following Williams et al. (2005) we presume that the co-
variates xi follow a Gaussian mixture model (GMM) with
two components to the incompleteness, associated with
the mixture parameter and with the Gaussian distribu-
tion parameters which correspond to genuinely missing
data elements, xmi

i . We apply a version of the EM algo-
rithm simultaneously to both components.

Assume, for a moment, that only one party is involved
(or that the parties are willing to share their data). The
formulation of the GMM and the EM algorithm is as
follows. Let φ(· ;µ, Σ) denote the multivariate normal
density with mean vector µ, and variance matrix Σ. Let
the distribution of xi = (xoi

i , xmi
i ) be given by:

f(xi) =
J∑

j=1

πjφ(xi ; µj , Σj), (9)

where µj = (µoi
j , µmi

j ), and Σj is a partitioned matrix
with sub-matrices Σoioi

j , Σoimi
j , Σmioi

j , and Σmimi
j . De-

note by Z the missing component, where Zij = 1 if ob-
servation xi originated from the j’th mixture component.
For θ = {(πj , µj ,Σj) , j = 1, . . . , J}, the complete log-
likelihood is then

lc(θ|X, Z) =
n∑

i=1

J∑

j=1

Zij [log φ(xi ; µj ,Σj) + log πj ] .

(10)
The E-step evaluates the conditional expectation of

lc(θ|X, Z) given the observed data Xo = {xoi
i , i =

1, . . . , n}. Here we simply need the standard calculation
regarding the expectation of normal random variables.
Maximization with respect to the mixture parameter is
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easy, and yields

πj =
1
n

n∑

i=1

α̂ij , where α̂ij =
φ(xoi

i ; µ̂oi
j , Σ̂oioi

j )π̂j∑J
k=1 φ(xoi

i ; µ̂oi

k , Σ̂oioi

k )π̂k

.

(11)
The hats in (11) emphasize the fact that computations
use values of θ from a preceding iteration. The updating
equations for the normal parameters using an EM algo-
rithm given by Williams et al. (2005) are:

µj =
1∑n

i=1 α̂ij

n∑

i=1

α̂ij

[
xoi

i

Êij

]
, (12)

Σj =
1∑n

i=1 α̂ij

n∑

i=1

α̂ijΩij , (13)

where

Ωij =

{([
xoi

i

Êij

]
− µj

) ([
xoi

i

Êij

]
− µj

)t

+

[
0 0

0 V̂ij

]}
,

and Êij , and V̂ij denote, respectively, conditional expec-
tation (the imputed values) and conditional variance of
xmi

i given xoi
i , with respect to the parameters from the

previous iteration (and normal component j).
To incorporate the fact that the parties are unwilling

to (or cannot) share their values we perform a secure
logistic regression in two steps. The first step involves
the generalization of the updating equations to the case
under which K > 1 parties hold private data. In the case
of only two parties A and B, the parameters take the
form:

µj = (µoi
j (A), µoi

j (B), µmi
j (A), µmi

j (B)) , (14)

and Σj is, again, a partitioned matrix with sub-matrices
in an appropriate form, e.g.,

Σoioi
j (A,A), Σoioi

j (A,B),Σoimi
j (A,A), . . . (15)

. . . , Σmimi
j (A,B), Σmimi

j (B,B) .

We must then show how to use secure protocols to evalu-
ate these equations. The second step may use the MLE’s
of θ = {(πj , µj ,Σj) , j = 1, . . . , J}, or the imputed values
together with a standard Newton-Raphson algorithm to
estimate the logistic parameters, through the approach
presented for vertically partitioned data.

Now suppose that K parties, A1, A2, . . . , AK , are in-
volved. By repeating the arguments from the E-step and
M-step, we end up with similar expressions for the pa-
rameters. Expression (11) for πj remains identical. We
only need to take care when analyzing it since xoi

i is de-
composed now into the different parties’ values. The
expressions for µj , and Σj have the same structure, as
one expects. The term Êij may be written as: Êij =
(Êij(A1), . . . , Êij(AK))t, with each component given by:

Êij(Ak) = E
(
xmi

i (Ak)|xoi
i , Zij = 1, θ̂

)
(16)

= µ̂mi
j (Ak) + Σ̂mi,oi

j (Ak, ·)Σ̂−1,oioi
j (·, ·)(xoi

i − µ̂oi
j ) ,

for k = 1, . . . , K. The notation Σ̂mioi
j (Ak, ·) is used to

denote the covariance (under mixture component j) be-
tween xmi

i (Ak) and xoi
i = (xoi

i (A1), . . . , xoi
i (AK)). Other

uses of this notation are to be understood similarly.
The term V̂ij is the (conditional) variance-covariance

matrix of xmi
i given (xoi

i , Zij = 1, θ̂). This matrix is a
partitioned matrix whose blocks may be written as

V̂ij(Ak, Al) = (17)

Σ̂mimi
j (Ak, Al)− Σ̂mioi

j (Ak, ·)Σ̂−1,oioi
j (·, ·)Σ̂oimi

j (·, Al) ,

where k, l = 1, . . . , K.
We now show how to iterate in a secure fashion using

the updating equations. For πj , note that the numerator
involves essentially the sum:

K∑

k,l=1

xoi
i (Ak)tΣ̂−1,oioi(Ak, Al)xoi

i (Al) . (18)

The (sub-)sum over all k = l, whose addends are local to
each party, may be computed by a secure sum protocol.
The sum over k 6= l involves different parties and may be
computed by a secure dot product protocol (Sanil et al.,
2007). Together, we securely find πj for every j.

Consider next the terms Êij(Ak), and V̂ij(Ak, Al). We
may proceed as suggested in Reiter et al. (2004). We
group together records in the database according to miss-
ing data patterns. The parties will only have to share
summary statistics (see (21) and (23) below). Let us as-
sume that the parties are willing to share the values of
µj , and Σj . Assume further that there are no missing
values in the private raw data held separately by the var-
ious parties, that is, xi(Ak) is either xoi

i (Ak) or xmi
i (Ak),

and also µ̂mi
j (Ak) = µ̂j(Ak).

Under the previous assumptions, the V̂ij(Ak, Al), given
by (17), can be computed by each of the participating
parties. The only troublesome term is the second term
on the second line of (16), namely,

Σ̂mi,oi

j (Ak, ·)Σ̂−1,oioi

j (·, ·)(xoi
i − µ̂oi

j ). (19)

While the matrix Σ̂mi,oi

j (Ak, ·)Σ̂−1,oioi

j (·, ·) is shared by
party Ak and the rest, the vector of observed xoi

i is com-
posed of private block vectors and is not available to party
Ak.

Let M be the number of missing data patterns. Let
{I1, . . . , IM} be a partition of {1, . . . , n}, i.e., I1, . . . , IM

are mutually disjoint and ∪M
m=1Im = {1, . . . , n}. Re-

ferring to (12), we only need to care about the missing
components

∑n
i=1 α̂ijÊij . Decomposing the sum over all

observations according to the missing data patterns, for
party k we write

n∑

i=1

α̂ijÊij(Ak) = (20)

M∑
m=1

aj,k,m

∑

i∈Im

α̂ij +
M∑

m=1

bj,k,m

[ ∑

i∈Im

α̂ijx
oi
i

]
,
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where aj,k,m, and bj,k,m are functions of µ̂j , Σ̂j , and are
fixed within any missing pattern Im:

aj,k,m = µ̂mi
j (Ak)− Σ̂mi,oi

j (Ak, ·)Σ̂oi,oi

j (·, ·)−1µ̂oi
j ,

bj,k,m = Σ̂mi,oi

j (Ak, ·)Σ̂oi,oi

j (·, ·)−1 .

All parties know α̂ij , and can calculate it securely.
Therefore, the first addend in (20) poses no disclosure
limitation problem. For the second addend, we assume
that the parties are willing to share a linear combination
of their values:

∑

i∈Im

α̂ijx
oi
i , for every , m = 1, . . . ,M. (21)

This is similar to the table of summary statistics that Re-
iter et al. (2004) consider, where the sum of the observed
is shared. Every party Al computes

∑
i∈Im

α̂ijx
oi
i (Al),

for every j, m and shares it among the other parties. This
reveals nothing to party Ak, with k 6= l, who only gets
to learn a linear combination, say b, of the observed vari-
ables: b =

∑
i∈Im

α̂ijx
oi
i (Al). Note that party Ak knows

α̂ij , but still cannot have xoi
i (Al). However, there may be

concerns for privacy, e.g., when Im is very small for some
m = 1, . . . , M , and xoi

i (Al) is of a particular sparse form.
One other drawback is that the parties need to share the
linear combination every iteration, since α̂ij changes in
every iteration. This may cause serious computational
issues as well as possible risk for privacy; more iterations
leads to an increase in the number of sharing, which, un-
doubtedly, means more information that might be leaked
out.

Consider now the updating of Σ̂j through (13). The
rightmost term that involves V̂ij causes no problem, and
is assumed to be known for every party. The other term
in the curely brackets of (13) may be written as:
(

xoi
i (xoi

i )t xoi
i Êt

ij

Êij(x
oi
i )t ÊijÊ

t
ij

)
−

(
xoi

i

Êij

)
µt

j−µj((x
oi
i )t, Êt

ij)+µjµ
t
j .

Summing up over all i = 1, . . . , n leads to:

1∑n
l=1 α̂lj

n∑

i=1

α̂ij

(
xoi

i (xoi
i )t xoi

i Êt
ij

Êij(xoi
i )t ÊijÊ

t
ij

)
− µjµ

t
j , (22)

the last term, µjµ
t
j , being readily calculated.

The first term in (22) consists essentially of three
sums of matrices,

∑n
i=1 α̂ijx

oi
i (xoi

i )t,
∑n

i=1 α̂ijx
oi
i Êt

ij , and∑n
i=1 α̂ijÊijÊ

t
ij . The first sum decomposes into sums of

the form
∑

i∈Im
α̂ijx

oi
i (Ak)xoi

i (Al)t. This is given by dot
products of the covariates of parties Ak and Al, and may
be securely calculated using the secure dot product pro-
tocol, when k 6= l. When k = l, this quantity is known
only to party Ak. In parallel to the sharing of the linear
combination (21), we assume that the parties are willing
also to share

∑

i∈Im

α̂ijx
oi
i (xoi

i )t , for every m = 1, . . . , M , (23)

The on-diagonal blocks of this matrix are the matrices
that the parties share. The off-diagonal blocks are se-
curely computed as explained above. Consider now the
other two sums mentioned earlier. Note that Êij(Ak) =
aj,k,m+bj,k,mxoi

i . Therefore, the sharing of (21), and (23)
(and the use of a secure dot product) is sufficient in order
to compute

∑n
i=1 α̂ijx

oi
i Êt

ij , and
∑n

i=1 α̂ijÊijÊ
t
ij in a se-

cure fashion. Note, however, that this repeated sharing
may lead to threats for privacy, as already pointed out.
Party Ak may try to use repeated values of α̂ij in order
to guess xoi

i (Al).

3.2 Categorical Predictors

Suppose now that the covariates xi, i = 1, . . . , p are cat-
egorical. We pursue the analysis on the logistical scale
and defer a discussion of the related log-linear model for-
mulation to the full paper. The n × p design matrix
(neglecting the first column of ones) can be regarded as
a p-dimensional contingency table. Let C be the total
number of cells. We index the cells using a single sym-
bol, c = 1, . . . , C. Corresponding to each xi, we may
associate a vector wi of size 1 × C, which maps subject
i into cell c. The elements of wi are all zeros except for
the c’th element which is equal to one.

When missing values appear in the raw data, we no
longer can associate xi with a unique vector wi, and are
only able to form a subset Si of cells where subject i
could lie. This leads to sub-tables of lower-dimension
corresponding to the observed variables xoi

i (See Little
and Rubin (2002, Ch. 14)).

A natural modification of the Gaussian mixture model
in the continuous case is the following. We presume
that the variables wi follow a Multinomial mixture model
(MMM). The distribution of wi is given by:

f(wi) =
J∑

j=1

πjMult(wi ; (1, C, pj)) , (24)

where Mult(wi ; (1, C, pj)) is the multinomial probabil-
ity function corresponding to a single trial with C pos-
sible outcomes of probabilities pj = (pj1, . . . , pjC). Let
θ = {(πj , pj) ; j = 1, . . . , J}. The complete log-likelihood
(see (10)) is:

n∑

i=1

J∑

j=1

C∑
c=1

Zijwic log{pjc}+
n∑

i=1

J∑

j=1

Zij log{πj} , (25)

where we used the fact that wic! = 1 for each i = 1, . . . , n,
c = 1, . . . , C. Details of the E-step and the M-step are
given below.

3.2.1 E-step

The E-step evaluates the conditional expectation (under
previous values of the parameter θ) of the complete log-
likelihood given {Si ; i = 1, . . . n}. Let α̂ij = Eθ̂[Zij |Si].
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Then,

α̂ij =
π̂j

∑
c∈Si

p̂jc∑J
k=1 π̂k

∑
c∈Si

p̂kc

, (26)

and

Eθ̂

[
Zijwic |Si

]
=

{
p̂jc∑

c̃∈Si
p̂jc̃

× α̂ij c ∈ Si

0 c 6∈ Si

.

3.2.2 M-step

Maximization with respect to πj , subject to
∑J

j=1 πj = 1,
yields:

πj =
1
n

n∑

i=1

α̂ij . (27)

Let β̂ij = α̂ij/
∑

c∈Si
p̂jc. Then,

∂

∂pic̃

( n∑

i=1

β̂ij

∑

c∈Si

log{pjc} p̂jc

)
=

n∑

i=1

β̂ij
p̂jc̃

pjc̃
I{c̃∈Si} ,

which leads to

pjc =
p̂jc

∑n
i=1 β̂ijI{c∈Si}∑C

c̃=1 p̂jc̃

∑n
i=1 β̂ijI{c̃∈Si}

. (28)

Note that the updating equations, (27) and (28), de-
pend on the data only through Si, i = 1, . . . , n. We as-
sume that every party knows the missing data pattern of
every observation, i.e., the Si’s are known to every party.
We also assume that each party knows the set of cate-
gories for every variable. Therefore, the analysis can be
executed separately by each of the participating parties.
Parties don’t have to share summary statistics, only what
is needed for every party to learn Si.

Upon convergence, each party fill-in their missing val-
ues by drawing observations from the marginal multino-
mial distribution whose parameters are the π̂j , and a suit-
able subset of the p̂j .

4. An example

We illustrate the approach described above and our se-
cure logistic regression protocol using a restructured ver-
sion of data from the 1993 US Current Population Survey.
Versions of these data have been used previously to illus-
trate several other approaches to confidentiality protec-
tion. There are 48,842 cases with 8 categorical variables,
listed in the Table 1, which, for purely illustrative pur-
poses, we partition in Table 2 among K = 3 agencies,
designated as A, B, and C, whom we presume wish to
jointly, but securely, analyze the data.

Consider m = 3, the third missing data pattern il-
lustrated in Table 2. The entries of the table are
aligned by missing data patterns. Party A wants to im-
pute its missing values for variables x1, x2 and records
{10201, ..., 22481} = I3. Note that α̂5j and α̂6j are known
to both party A and parties (B,C). Party B computes

∑
i∈I3

α̂ij(xi3, xi4, xi5)t and sends it to party A. Like-
wise, party C computes

∑
i∈I3

α̂ij(xi6, xi7)t and sends it
to party C. Party A then computes the elements of µ̂j

corresponding to its variables, and it does not get to see
the observed variables (xi3, xi4, xi5, xi6, xi7) themselves.

5. Simulation

We have simulated a vertically partitioned, partially over-
lapping data of size n = 100 from the Gaussian mixture
model:

f(xi) = π1 φ(xi;µ1, I6) + π2 φ(xi; µ2, I6) ,

where π = (π1, π2)t = (0.25, 0.75)t, µ2 = −µ1 =
(2, 2, 2, 2, 2, 2)t, and I6 is the identity matrix of dimen-
sions 6 × 6. The six attributes were distributed among
K = 3 parties (2 attributes each) according to the fol-
lowing missing pattern: Party A did not record values
for observations (41 − 60), Party B did not record val-
ues for observations (21 − 40), (61 − 80), and Party C
did not record values for observations (1− 20), (61− 80).
This database is similar to Table 2. Initializing the
EM algorithm with parameters π = (0.5, 0.5)t, and
µ2 = −µ1 = (2, 2, 2, 2, 2, 2), we obtained the follow-
ing maximum likelihood estimates π̂1 = (0.27, 0.73),
µ̂1 = −(1.9208, 1.7280, 1.4835, 2.0116, 1.9428, 1.7600)t,
and µ̂2 = (2.1434, 1.9317, 1.9981, 1.9186, 2.1776, 1.9769)t.
These estimates show good agreement with the
true values. We also initialized the EM algo-
rithm with π = (0.1, 0.9)t, and µ2 = −µ1 =
(1, 1, 1, 1, 1, 1)t, and obtained estimates π̂1 = (0.24, 0.76),
µ̂1 = −(1.9260, 1.9113, 1.8845, 2.0219, 1.8883, 1.8353)t,
and µ̂2 = (1.8479, 1.7490, 1.8608, 2.0578, 2.1636, 1.8924)t,
which are again in good agreement with the true values.

We conducted another simulation study to examine
how intensive is the algorithm in terms of CPU time, and
with increasing number of parties. We simulated a Gaus-
sian mixture model of size n = 1, 000, and distributed
the database among p = 45 parties. Figure 1 shows the
time in seconds it took the algorithm to converge as a
function of the number of parties. The algorithm’s time-
to-converge appears to be roughly linear in the number
of parties.

6. Discussion

We presented algorithms which can be used to perform se-
cure logistic regression when the data base is distributed
among K parties. We considered three types of data par-
titioning: horizontally partitioned data, vertically parti-
tioned data and a general case which involves vertically
partitioned, partially overlapping data. We also consid-
ered (separately) continuous predictors and categorical
predictors.

The secure logistic regression protocol is computation-
ally intensive since the secure matrix operations need to
performed at each iteration of the Newton-Raphson al-
gorithm. For example, a linear combination of weighted
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Variable Label Categories

Age (in years) X1 < 25, 25− 55, > 55
Employer Type (Empolyment) X2 Gov, Pvt, SE, Other
Education X3 <HS, HS, Bach, Bach+, Coll
Marital status (Marital) X4 Married, Other
Race X5 White, Non-White
Sex X6 Male, Female
Hours Worked (HrsWorked) X7 < 40, 40, > 40
Annual Salary (Salary) Y < $50K, $50K+

Table 1: Description of the response variable (Y ) and explanatory variables (X1, ..., X7) used for illustration of the
secure logistic regression protocol.

Agency A Agency B Agency C

n X1 X2 X3 X4 X5 X6 X7

1
√ √ √ √ √ • •

...
√ √ √ √ √ • •

9000
√ √ √ √ √ • •

9001...10200
√ √ • • • √ √

10201...22481 • • √ √ √ √ √
22482...48842

√ √ • • • • •
Table 2: An example of an (aligned) concatenated database. Party A records values of x1, x2 and observations
1− 10200, 22482− 48842, Party B records values of x3, x4, x5 of observations 1− 9000, 10201− 22481, and Party C
records values of x6, x7 of observations 9001− 22481.
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Figure 1: Mean CPU time vs. Number of Parties
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sums must be shared at each iteration. Fienberg et al.
(2006) point out that for horizontal case log-linear “se-
cure” computation is more efficient. In the general case,
an EM algorithm precedes the logistic parameter estima-
tion through the Newton-Raphson algorithm. This may
pose further computational issues.

The secure logistic regression protocol is not free from
leakages. Generally speaking, it is as much secure as the
secure multi-party computations are. But these computa-
tions may disclose information. Two parties participating
in such a computation each relinquish information to the
other, in the form, e.g., of vectors orthogonal to their re-
spective databases (Sanil et al., 2007). Furthermore, risk
for privacy may come from other reasons as well. For
example, the assumption that parties are willing to share
their parts of the estimated parameters may reveal infor-
mation. There are other disclosure risks: if the analysis
reveals that attributes held by agency A predict those
held by agency B, then A gains knowledge of attributes
held by B. This is equally true even for linear regression
on pure vertically partitioned data, e.g., see Sanil et al.
(2004). The secure EM protocol is preformed with in
each data missingness pattern identified in the “global”
aligned database. Risks associated with this protocol, as
discussed in Reiter et al. (2004), are applicable in our
setting and need further careful consideration.
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