
On Small Area Prediction Interval Problems

Snigdhansu Chatterjee, Parthasarathi Lahiri, Huilin Li
University of Minnesota, University of Maryland, University of Maryland

Abstract

Empirical best linear unbiased prediction (EBLUP)
method uses a linear mixed model in combining informa-
tion from different sources of information. This method is
particularly useful in small area problems. The variabil-
ity of an EBLUP is traditionally measured by the mean
squared prediction error (MSPE), and interval estimates
are generally constructed using estimates of the MSPE.
Such methods have shortcomings like under-coverage or
over-coverage, excessive length and lack of interpretabil-
ity. We propose a parametric bootstrap approach to es-
timate the entire distribution of a suitably centered and
scaled EBLUP. The bootstrap histogram is highly accu-
rate, and differs from the true EBLUP distribution by
only O(d3n−3/2), where d is the number of parameters
and n the number of observations. This result is used to
obtain highly accurate prediction intervals. Simulation
results demonstrate the superiority of this method over
existing techniques of constructing prediction intervals in
linear mixed models.

Keywords: Predictive distribution, prediction interval,
linear mixed model, small area, bootstrap, coverage ac-
curacy.

1 Introduction

Large scale sample surveys are usually designed to pro-
duce reliable estimates of various characteristics of in-
terest for large geographic areas. However, for effective
planning of health, social and other services, and for ap-
portioning government funds, there is a growing demand
to produce similar estimates for smaller geographic areas
and for other sub-populations. To meet this demand, it
is necessary to supplement the survey data with other
relevant information that is often obtained from differ-
ent administrative and census records. In many small
area applications, linear mixed models are now routinely
used in combining information from various sources and
explaining different sources of errors. These models in-
corporate area specific random effects which explain the
“between small area variations”, not otherwise explained
by the fixed effects part of the model.

For a good review on small area and linear mixed model
research, the readers are referred to the book by Rao
(2003), and two recent review papers by Rao (2005) and
Jiang and Lahiri (2006). Several other applications of lin-
ear mixed models may be found in McCulloch and Searle
(2001). Point prediction using the empirical best linear
unbiased predictor (EBLUP) and the associated mean

squared prediction error (MSPE) estimation have been
studied extensively. See Jiang, Lahiri and Wan (2002),
Rao (2005) and Jiang and Lahiri (2006) for a review on
the subject, especially on the latest development on re-
sampling methods for MSPE estimation. However, little
progress has been made outside the basic study of the first
two moments, for example on the properties of quantiles
(central or tail) of predictors, or on the effect of high
dimensionality of the parameters.

For example, research on interval estimates in small
area studies is typically limited to special cases of the
Fay-Herriot model (described in detail in Section 2),
where the traditional estimates are of the form EBLUP±
zα/2

√
mspe. Here mspe is an estimate of the true MSPE

of the EBLUP, and zα/2 is the upper 100(1−α/2)% point
of the standard normal distribution. The coverage prob-
abilities of such intervals may converge to the nominal
level 1 − α; but the intervals are not efficient since they
have either under-coverage or over-coverage problem, de-
pending on the particular choice of the MSPE estimator.
More precisely, the coverage error of such interval is of
order O(n−1) or higher, which is not accurate enough for
most applications of small area studies with small sample
size n.

In this paper we address the problem of approximating
the distribution of a predictor, and applying it to obtain
prediction intervals, in a very general framework of linear
mixed models. We consider the following model from
Das, Jiang and Rao (2004):

Yn = Xβ + Zvq + en, (1.1)

where Yn ∈ Rn is a vector of observed responses; Xn×p

and Zn×q are known matrices; vq and en are indepen-
dent random variables with dispersion matrices Dq(ψ)
and Rn(ψ) respectively. Here β ∈ Rp and ψ ∈ Rk are
fixed parameters.

The mixed ANOVA and the longitudinal models, in-
cluding the Fay-Herriot and the nested error regression
models, are special cases of (1.1). We can consider both
balanced and unbalanced lay-outs in the above frame-
work. In addition, we develop our theory and method-
ology that allow the parameter dimension d = p + k to
grow with sample size n. Dimension dependent asymp-
totics are extremely important in the current context,
since many small areas may have sample sizes comparable
to dimensions of the regression and variance components
parameters; see, for example, Jiang (1996) for their use
and importance in linear mixed models.

We employ a parametric bootstrap method to approx-
imate the distribution of a predictor. We concentrate on
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the empirical best linear predictor (EBLUP), owing to its
wide popularity and use. In Theorem 3.1 we show that
the bootstrap histogram incurs an error of O(d3n−3/2) in
approximating the distribution of a centered and scaled
EBLUP. For estimating the distribution of centered and
scaled estimators, under standard regularity conditions
and fixed d, the normal approximation based on the Cen-
tral Limit Theorem has an error of O(n−1/2), but the
bootstrap can achieve higher order accuracy, with typi-
cal approximation error of O(n−1). Theorem 3.1 may be
seen as an extension of this higher order accuracy phe-
nomenon, in the context of prediction. Although our mo-
tivation and terminology comes from small area context,
our bootstrap methodology and theoretical results are di-
rectly applicable to other usages of linear mixed models.

There are several potential applications of a highly ac-
curate approximation of the entire distribution of the
EBLUP. For example, it may be used to obtain (a) bag-
ging predictors, (b) computing mean squared errors or
other risks, (c) hypothesis testing, (d) calibration of tra-
ditional estimators, and (e) prediction interval construc-
tion. In this paper, we concentrate on the last applica-
tion, since prediction intervals combine features of both
point prediction and hypothesis testing nicely, and have
not been extensively explored in small area or other linear
mixed model contexts.

Prediction intervals are useful in small area studies
in several ways. For example, prediction intervals may
help establish if different counties have similar resources
and needs, or if different ethnic or other sub-population
groups are equally exposed to a particular disease. Our
simultaneous concentration on dimension asymptotic is
also relevant. It has long been recognized that health,
economic activity and other measures of human well-
being depend on a number of exogenous and endogenous
factors, many of which must be measured at the individ-
ual level and incorporated in the model. In statistical
terms, this translates to high dimensionality of β and ψ.

In Section 2, we review a few existing techniques for
predictor distribution approximation and interval esti-
mate construction. We pay special attention to the usage
of resampling in such approximations/constructions. For
prediction intervals, available literature is heavily concen-
trated on special cases of the Fay-Herriot model. Since
traditional intervals perform poorly in terms of coverage
or length or both, many attempts have been made to fine
tune and calibrate them, often using resampling. To the
best of our knowledge, approximation of the entire distri-
bution of a predictor has not been attempted in general
small area problems, and we briefly review the related
research for independent data.

In Section 3, we present our bootstrap algorithm for
model (1.1). Our main result states that the sup-norm
distance between the distribution of EBLUP and its boot-
strap approximation is O(d3n−3/2). A direct corollary is
that the bootstrap prediction interval has coverage accu-
racy of O(d3n−3/2). Note that our proposed prediction
interval is a bootstrap interval, which is different from the

traditional approaches of obtaining asymptotic intervals
first and then calibrating it. Our interval can be cali-
brated one or more times to achieve a coverage accuracy
of O(d5n−5/2) or higher, if needed.

We performed several simulation experiments in order
to study how our percentile bootstrap interval estimate
compares with existing techniques. A sample of these
studies are reported in Section 4. The main message from
the simulations is that the prediction intervals resulting
from the proposed parametric bootstrap perform consid-
erably better than the traditional techniques, which is a
reflection of the high order accuracy theoretically estab-
lished in Section 3. The proofs of all the theorems will
appear in Chatterjee, Lahiri and Li (2007).

2 A review of predictor distribution
approximation and interval construction

2.1 Approximating distributions of predictors

Considerable theoretical research has been carried out in
the prediction of a random variable that is independent
of Yn, and has density ξ(·|β, ψ). In terms of expected
Kullback-Leibler divergence, the naive plug-in predictor
density ξ(·|β̂, ψ̂) performs poorly compared to Bayesian
predictors

∫
ξ(·|β, ψ)dπ(β, ψ|Yn), where π(β, ψ|Yn) de-

notes the posterior density of (β, ψ) with respect to a
suitable prior; see, for example, Aitchison (1975), Mur-
ray (1977), Ng (1980), Komaki (1996, 2001, 2006), and
George et al (2006). Harris (1989) showed that the boot-
strap predictor

ξ∗(·) =
∫
ξ(·|s, t)dL∗(s, t), (2.2)

where L∗ denotes the bootstrap approximation to the dis-
tribution of (β̂, ψ̂), also performs better than the naive
plug-in predictor. Fushiki, Komaki and Aihara (2004)
showed that the bootstrap predictor (2.2) is asymptoti-
cally equivalent to a Bayesian predictor with Hartigan’s
M -prior. The M -prior has certain optimality proper-
ties which may be found in Hartigan (1964, 1998). In
a related work, Fushiki, Komaki, Aihara (2005) showed
that the Harris predictor is related to bagging of Breiman
(1996).

In small area or other linear mixed model contexts, the
random variable of interest depends on Yn, unlike the
framework described above. Also, performance measures
other than expected Kullback-Leibler divergence may be
of interest, for example, the length and coverage of pre-
diction intervals.

2.2 A review of interval estimation techniques

For a general linear mixed model, Jeske and Harville
(1988) proposed a prediction interval for a mixed effect,
but did not include the effect of estimated unknown vari-
ance components on the accuracy of their proposed in-
terval.
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Jiang and Zhang (2002) used a distribution-free
method for constructing prediction intervals for a future
observation under a non-Gaussian linear mixed model,
based on the theory developed by Jiang (1998). This
technique does not employ any area specific information
and can be useful in constructing intervals when there is
no survey data on the response variable. Jiang and Zhang
(2002) proposed another method which can be applied to
the situation when the sample size is large within each
area. This is a technique of first obtaining the EBLUP
for the random effects and the residuals. Then, under
conditions sufficient to imply that the number of times
each random effect is repeated (i.e., number of observa-
tions in each small area) tends to infinity, the empirical
distribution of random effects as well as the residuals con-
verge appropriately. This technique fails when we do not
have large samples for each small area, a situation that
is common in many small area applications.

Recently, Hall and Maiti (2006b) have studied a para-
metric bootstrap for mixed models in several aspects, in-
cluding interval estimation. A review of their approach
towards interval estimation may be found in Rao (2005).
In Section 3, we discuss in detail how their model, results
and asymptotics differ from ours.

Other than the above three papers, research on small
area prediction intervals is largely concentrated on special
cases of the Fay-Herriot model, described below:

1. Conditional on θ = (θ1, . . . , θn)T , Yn =
(Y1, . . . , Yn)T follows a n-variate normal distribution
with mean θ and dispersion matrix D with known
diagonal entries Di > 0 and off-diagonal entries 0.
Here (and in the sequel) all vectors are taken to be
column vectors; for any vector (matrix) a (A), the
notation aT (AT ) denotes its transpose.

2. The variable θ follows a n-variate normal distribu-
tion with mean Xβ for a known n× p matrix X and
unknown but fixed vector β ∈ Rp. The dispersion
matrix is AIn, where the matrix In is the n dimen-
sional identity matrix and A is an unknown constant.

There are several options for constructing interval es-
timates for θi = xT

i β + vi. One may use only the Level
1 model for the observed data, or only the Level 2 model
for the borrowed strength component, or a combination
of both. The interval for θi based only on the Level 1
model is given by ID

i (α) : Yi ± zα/2D
1/2
i . Obviously, for

this interval, the coverage probability is 1− α. However,
it is not efficient, since its average length is too large to
make any reasonable conclusion. This is due to the high
variability of the point predictor Yi.

An interval based only on Level 2 ignores the crucial
area specific data that is modeled in Level 1, and hence
falls short on two counts: it fails to be relevant to the
specific small area under consideration, and it fails to
achieve sufficient coverage accuracy. A simple example
given later in this section demonstrates this latter prop-
erty.

Thus, interval estimation techniques that combine both
levels of the Fay-Herriot model are required. A popular
approach is to employ empirical Bayes methodology. Cox
(1975) proposed the following empirical Bayes interval:

IC
i (α) : (1− B̂i)Yi + B̂ixT

i β̂ ± zα/2D
1/2
i (1− B̂i)1/2

where B̂i and β̂ are estimators of Bi = Di/(A+Di) and β
respectively, and xi is the ith row of X. Under standard
regularity conditions, P(θi ∈ IC

i (α)) = 1 − α + O(n−1),
where P denotes a probability measure induced by the
joint distribution of Level 1 and Level 2. Thus, this pre-
diction interval attains the desired coverage probability
asymptotically, but the coverage error is of order O(n−1),
which is not accurate enough for many small area appli-
cations. This lack of accuracy may partially be due to the
additional variability resulting from estimation of β and
A. Currently, second-order or nearly unbiased MSPE es-
timators are available in several linear mixed models, see
for example, Jiang et al (2002), Datta, Rao and Smith
(2005), Hall and Maiti (2006a). Naive empirical Bayes
intervals constructed using EBLUP, MSPE estimators
and standard normal quantiles typically have an error
of O(n−1) or higher.

For a special case of the Fay-Herriot model with com-
mon mean and equal sampling variances Di = D, Morris
(1983a) incorporated the additional uncertainty due to
the estimation of the hyperparameters. However, Basu,
Ghosh and Mukerjee (2003) showed that the resulting
empirical Bayes interval proposed by Morris (1983a) still
has coverage error of O(n−1). They used analytical cal-
ibration of the Morris’ interval to reduce the coverage
error to o(n−1). They also showed that with suitable an-
alytical approximations in place, an interval due to Carlin
and Louis (1996, p.98), and a new interval, have cover-
age error of the order o(n−1). Datta, Ghosh, Smith and
Lahiri (2002) used similar analytical calibration in a more
general Fay-Herriot model, and obtained a prediction in-
terval with coverage error of O(n−3/2). Morris (1983b)
considered a variation of his (1983a) work with the use
of a hierarchical Bayes type point estimator. Hill (1990)
suggested a general framework, which in the Fay-Herriot
setting, matches with an exact hierarchical Bayes confi-
dence interval. Datta et al. (2002) followed up Hill’s idea
to obtain an interval with coverage error of O(n−1).

Apart from the analytical approaches, calibration us-
ing different bootstrap techniques has been popular. The
methods differ in the generation of the bootstrap samples
and the type of correction made. For a special case of the
Fay-Herriot model where Y1, . . . , Yn are independent and
identically distributed, Laird and Louis (1987) proposed
three different resampling strategies: (a) usual nonpara-
metric bootstrap by sampling with replacement from the
data, (b) a semi-parametric method, assuming density at
the first level of their two level model is known but that at
the second level is unknown, and (c) a parametric boot-
strap. In linear mixed models, the nonparametric and
semi-parametric bootstrap approximation of the distri-
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bution of the EBLUP are generally not consistent. Once
the bootstrap sample (nonparametric, semi-parametric or
parametric) is generated, the next challenge is to find a
method that corrects the empirical Bayes confidence in-
tervals IC

i (α) to achieve better coverage. Laird and Louis
(1987) considered an imitation of the hierarchical Bayes
approach.

Carlin and Gelfand (1990, 1991) point out that the hi-
erarchical Bayesian methods like those of Laird and Louis
(1987) lead to a lengthening of the empirical Bayes inter-
val, which is not the same as a correction. They discuss an
example where increasing the length further exacerbates
the coverage bias. They suggest parametric bootstrap to
calibrate the empirical Bayes interval.

Calibration of intervals has been one of the major uses
of bootstrap for some time, and can lead to considerable
improvement of coverage accuracy. Coupled with use of
bias correction, use of pivotal or nearly pivotal statistics,
and Edgeworth corrections, improvements from calibra-
tion can sometimes be dramatic. See Abramovitch and
Singh (1985), Beran (1990a, 1990b), the book by Efron
and Tibshirani (1993) and references therein for further
details on these issues. On the other hand, calibration
is both time and computational effort intensive, often re-
quiring iterative searches; it typically increases variabil-
ity; the results often lack straightforward interpretability;
and successive calibrating steps typically have diminish-
ing returns in terms of improvement of coverage. It is not
always clear what property of an interval, ie, length, cov-
erage, end points or some other characteristic, ought to
be calibrated, see for example DiCiccio and Efron (1996)
and the discussions of it by Hall and Martin (1996), Lee
and Young (1996); and the interesting example in the
rejoinder. Some calibrating options do not exist for mul-
tivariate confidence or prediction regions. Asymptotic
results suggest calibrated intervals have better coverage
accuracy, but do not consider the variability induced by
the calibration, do not represent performance in finite
samples; or reflect the degree in which the finite sample
results depend on unknown parameters and their esti-
mators. Nevertheless, calibration is an excellent tool to
improve coverage of intervals; though it seems sensible to
use a more accurate interval and little or no calibration;
rather than a less accurate interval with intensive cali-
bration. The bootstrap interval we obtain in Section 3 is
one such highly accurate interval, and requires the same
amount of computational effort as one round of bootstrap
based calibration of Carlin and Gelfand (1990, 1991).

Hall (2006) suggested an application of the nonpara-
metric bootstrap confidence interval based on the gener-
ated θ?

i ’s only. In the small area context, this may be
applicable when the differences between the small areas
are minor, or carried only in the fixed effects. In surveys,
robustness is always an important issue, and the prac-
titioners are always interested in efficient nonparametric
methods. However, due to scarce data at the small area
level, nonparametric estimators tend to under-perform,
often severely. This is because the nonparametric models

typically permit the generation of bootstrap histograms
based on a synthetic model or the regression model, but
do not permit approximation of the conditional distri-
bution of θi given the data Yn. As a result, the non-
parametric bootstrap prediction interval for θi is likely
to underweight the area specific data. Accurate weight-
ing of the area specific data is important for achieving
good coverage properties, as the example below shows.
Hall (2006) also pointed out the importance of paramet-
ric bootstrap in small area estimation and other related
problems.

Example. Consider the following special case of the
Fay-Herriot model where Di ≡ 1, and xT

i β ≡ µ. Thus, at
Level 1, Yi’s given the θi’s are independently distributed
as N(θi, 1) random variables; and at Level 2 the θi’s
are independent, identically distributed as N(µ, τ2) ran-
dom variables. The estimators of µ and τ2 are given
respectively by µ̂ = Ȳ , τ̂2 = max(0, s2 − 1), where
s2 =

∑
(yi − ȳ)2/(n − 1). Assume τ̂2 > 0, a condi-

tion that is satisfied in many problems. The bootstrap
procedure would require us to generate θ∗i

iid∼ N [µ̂, τ̂2]
and Y ∗

i |θ∗i
ind∼ N [θ∗i , 1]. Then we have µ̂∗ = Ȳ ∗, τ̂2

∗
=

max(0, s∗2 − 1) where s∗2 =
∑

(y∗i − ȳ∗)2/(n − 1). An
obvious Level 2 based bootstrap prediction interval for θi

that is not area specific, is given by(
µ̂− t1

√
τ̂2, µ̂+ t2

√
τ̂2

)
, (2.3)

where (t1, t2) are cutoff points satisfying P?(µ̂∗ −
t1

√
τ̂2
∗
≤ θ∗ ≤ µ̂∗ + t2

√
τ̂2
∗
) = 1− α.

It can be shown that interval (2.3) has coverage of
1 − α + O(n−1/2) which makes it consistent, but hardly
accurate enough. The lack of accuracy is due to the use
of the Level 2 distribution only, so that the Level 1 data
Yi plays no special role in the interval construction.

In Bayesian terminology, the Level 2 of the Fay-Herriot
model essentially corresponds to a prior on θi, while the
Level 1 model yields the likelihood. Using only the “prior
knowledge” (Level 2 distribution) does not even yield con-
sistency in general. However, in some instances using the
Level 2 distribution in conjunction with bootstrap can
have a calibration effect that obtains O(n−1/2) consis-
tency, as shown above.

3 Parametric bootstrap prediction interval for
a general linear mixed model

We consider the model:

Yn = Xβ + Zvq + en (3.4)

where X is a known (n× p) matrix; Z is a known (n× q)
matrix; Yn ∈ Rn is the vector of observed data; β ∈
Rp is a fixed but unknown parameter vector; vq ∈ Rq

and en ∈ Rn are random variables following the normal
distributions Nq(0, Dq) and Nn(0, Rn) respectively. The
integer q may depend on n, thus q ≡ qn. Assume the
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sequence {vq} and {en} are independent. The first term
Xβ represents the fixed effects, and the second term Zvq

the random effects. Thus Xβ+Zvq constitutes the signal
component of the observed data, while en is the noise.
The properties of the signal are of interest, which depend
on the unknown parameters β, Dq and Rn. Assume that
the (q × q) matrix Dq and the (n × n) matrix Rn are
known up to a (k×1) vector of unknown parameters, thus
Dq = Dq(ψ) and Rn = Rn(ψ) for a fixed but unknown
ψ = (ψ1, · · · , ψk)T ∈ Rk. Note that the dispersion matrix
of the observed data Yn is given by

Σn = Σn(ψ) = Rn(ψ) + ZDq(ψ)ZT .

We henceforth drop the n from Yn, en, Rn and Σn, and q
from vq and Dq to simplify notations. We take d = p+k,
the dimension of the parameter space. Let θ = (β, ψ)
denote the unknown parameters.

Das, Jiang and Rao (2004) show that several linear
mixed models, including Analysis of Variance (ANOVA)
models and longitudinal models of both balanced and un-
balanced nature are special cases of the the model (3.4).
Unbalanced ANOVA models arise, for example, when
R = σ2

0In; and D = diag(σ2
1Ir1 , . . . , σ

2
k−1Irk−1) where

Ir is the r × r identity matrix. Here ψ is the vector of
variance components ψ = (σ2

0 , . . . , σ
2
k−1). Unbalanced

longitudinal models arise when Σ has a block diagonal
structure.

Let T = cT (Xβ + Zv), where c is a fixed and known
(n×1) vector. The case where c is a n×m matrix obtains
multidimensional predictive quantities, and their treat-
ment is similar to the univariate case described below,
with some minor algebraic variations. We concentrate
on univariate T for easier exposition. The conditional
distribution of T given Y is N(µT , σ

2
T ), where

µT = cT Xβ + cT ZDZT Σ−1(Y −Xβ)
= cTRΣ−1Xβ + cT ZDZT Σ−1Y, (3.5)

σ2
T = cT Z

(
D −DZT Σ−1ZD

)
ZT c. (3.6)

Generally, β and ψ (and hence D and R) are estimated
from the data Y by using the marginal distribution of Y,
given by Nn(Xβ,Σ). The resulting estimates µ̂T and σ̂T

of the mean and variance of T are expressions similar to
(3.5) and (3.6), with β̂ and ψ̂ in place of β and ψ.

For algebraic simplicity, in the rest of this paper we
assume that X is full column rank and use the estimator
β̂ =

(
XT X

)−1
XT Y. This is the ordinary least squares

estimator of β. Using other estimators like the maxi-
mum likelihood estimator or the weighted least squares
estimator, with appropriate conditions on the weights, is
another possibility. This makes little difference in the
asymptotic analysis as long as the weights are smooth
functions of ψ. Estimator ψ̂ of ψ is typically obtained
by maximum likelihood or restricted maximum likelihood
techniques.

Based on the fact that σ−1
T (T −µT ) is a standard Nor-

mal pivot, the traditional approach to interval estimation

for T , reviewed in Section 2, is to take
(
µ̂T ± z

√
mspe

)
for some estimator mspe of MSPE and the appropriate
Normal quantile z. Unfortunately, σ̂−1

T (T − µ̂T ) is not a
pivot, and the traditional approach produces too short or
too long intervals. Let the distribution of σ̂−1

T (T − µ̂T )
be Ln. Recognizing that Ln is not the standard Normal
distribution, we propose to estimate it using parametric
bootstrap.

Define

Y∗ = Xβ̂ + Zv∗ + e∗

where v∗ ∼ Nq(0, D(ψ̂)) and e∗ ∼ Nn(0, R(ψ̂)) are inde-
pendent of each other.

From Y∗, obtain β̂∗ and ψ̂∗ using the same techniques
used to obtain β̂ and ψ̂ earlier. Next, obtain µ̂∗T and σ̂∗T
using β̂∗, ψ̂∗, (3.5) and (3.6). Define T ∗ = cT (Xβ̂+Zv∗).
The distribution of

σ̂−1∗
T (T ∗ − µ̂∗T ),

conditional on the data Y, is the parametric bootstrap
approximation L∗n of Ln. Using this approximation, we
then proceed to obtain the interval estimate for T as
(µ̂T + q1σ̂T , µ̂T + q2σ̂T ), where q1 and q2 are appropri-
ate quantiles of the bootstrap approximation L∗n of Ln.

Our main result is that L∗n approximates Ln up to
O(d3n−3/2) terms. In order to state the assumptions for
our result, let us introduce some terminology and nota-
tion now. For any function f(ψ) : Ra → R, f ′(ψ) denotes
its first derivative written as a a×1 column vector; f ′′(ψ)
denotes the a × a second derivative matrix. For a sym-
metric matrix A, λmax and λmin respectively denote its
maximum and minimum eigenvalue.

The following are the assumptions for our result in this
section:

1. The following relations hold:

||XT c|| = O(1), (3.7)
||XT Σ−1ZDZT c|| = O(1), (3.8)

cT ZDZT c = O(1), (3.9)
cT ZDZT Σ−1ZDZT c = O(1). (3.10)

In addition,

σ2
T = cT Z

(
D −DZT Σ−1ZD

)
ZT c > M > 0,

for some constant M > 0.

2. Assume that

sup
1≤i≤n

p∑
j=1

[
n∑

a=1

XjaΣ1/2
ai

]2

= O(p/n), (3.11)

λmin

[
n−1XT X

]
> M > 0, (3.12)

for some constant M > 0.
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3. The eigenvalues of the matrices D and R lie in
(L−1, L) for some L > 1. The eigenvalues of D(ψ̂)
and R(ψ̂) lie in (L−1/2, 2L). The eigenvalues of Σ
lie in a compact set on the positive half of the real
line. In the representations

D = D1(ψ)DT
1 (ψ), D̂ = D1(ψ)ΛD(ψ̂)DT

1 (ψ),(3.13)

R = R1(ψ)RT
1 (ψ), R̂ = R1(ψ)ΛR(ψ̂)RT

1 (ψ),(3.14)

where ΛR and ΛD are diagonal matrices, the follow-
ing conditions are satisfied: All the entries of the q×q
matrix ΛD = diag(ΛD1, . . . ,ΛDq) and the n×n ma-
trix ΛR = diag(ΛR1, . . . ,ΛRn) have three bounded
continuous derivatives. We denote by Λ′D the k × q
matrix whose (j, i)th entries are given by

((Λ′D))j,i (ψ) =
∂

∂ψj
ΛDi(ψ).

The (j, i)th entry of the k2 × q matrix Λ′′D is

((Λ′′D))j,i (ψ) =
∂2

∂ψj1∂ψj2

ΛDi(ψ).

The (j, i)th entry of the k3 × q matrix Λ(3)
D is

((
Λ(3)

D

))
j,i

(ψ) =
∂3

∂ψj1∂ψj2∂ψj3

ΛDi(ψ),

where j1 + (j2 − 1)k + (j3 − 1)k2 = j, j1, j2, j3 =
1, . . . , k, j = 1, . . . , k3, and i = 1, . . . , q. We define
the k × n matrix Λ′R, the k2 × n matrix Λ′′R and the
k3×n matrix Λ(3)

R along identical lines as above. The
following conditions are assumed:

λmaxΛ′TD (ψ)Λ′D(ψ) = O(1), (3.15)
λmaxΛ′TR (ψ)Λ′R(ψ) = O(1), (3.16)
λmaxΛ′′TD (ψ)Λ′′D(ψ) = O(1), (3.17)
λmaxΛ′′TR (ψ)Λ′′R(ψ) = O(1), (3.18)

λmaxΛ(3)T
D (ψ∗)Λ(3)

D (ψ∗) < M = O(1),(3.19)

λmaxΛ(3)T
R (ψ∗)Λ(3)

R (ψ∗) < M = O(1),(3.20)

for some constantM > 0 for all ψ∗ in a neighborhood
of the true value ψ.

4. Let S = (k/n)1/2 (ψ̂ − ψ). Assume that all the mo-
ments of ||S|| are O(1). Moreover, the following re-
lations are also satisfied:

ESj = O(
√
k/n), (3.21)

ESaSb = O(
√
k/n), (3.22)

ESj(Zv + e)i = O(
√
k/n), (3.23)

ESaSb(Zv + e)i = O(
√
k/n). (3.24)

We now state our main theorem for this section.

Theorem 3.1 Under the Assumptions(1)-(4), if
d2/n→ 0, we have

sup
q∈R

|Ln(q)− L∗n(q)| = OP (d3n−3/2). (3.25)

A direct application of Theorem 3.1 is the following result
on highly accurate prediction intervals.

Theorem 3.2 Under the Assumptions(1)-(4) and
d2/n → 0, for any α ∈ (0, 1), if q1 and q2 are real
numbers such that

L∗n(q2)− L∗n(q1)
= 1− α,

we have

P [µ̂T + q1σ̂T ≤ T ≤ µ̂T + q2σ̂T ] (3.26)
= 1− α+O(d3n−3/2). (3.27)

Since the Fay-Herriot model (described in Section 2) is
an important example, we state the results for it in a
separate corollary below.

Corollary 3.1 In the Fay-Herriot model, assume that
the matrix X is full column rank, the diagonal entries
hii of the projection matrix on the columns of X satisfy
supi hii = O(p/n), the Level 1 variances {Di} lie in a
compact subset of (0,∞), and the estimator Â of A is
positive. Then, for any i ∈ {1, . . . , n}, if θ̂EB

i = (1 −
B̂i)Yi + B̂ixT

i β̂, θ̂EB∗
i = (1− B̂∗

i )Y ∗
i + B̂∗

i x
T
i β̂

∗, we have

P
[
θi ∈

(
θ̂EB

i + qi1D
1/2
i (1− B̂i)1/2,

θ̂EB
i + qi2D

1/2
i (1− B̂i)1/2

)]
= 1− α+O(p3n−3/2); (3.28)

where B̂i = Di/(Â+Di), and (qi1, qi2) satisfy

P∗
[
θ∗i ∈

(
θ̂EB∗

i + qi1D
1/2
i (1− B̂∗

i )1/2,

θ̂EB∗
i + qi2D

1/2
i (1− B̂∗

i )1/2
)]

= 1− α+OP (p3n−3/2).

The notations used in Corollary 3.1 are standard ones,
that is, P∗ is the probability on the resampling scheme
conditional on the data, B̂∗

i = Di/(Â∗ + Di), where β̂∗

and Â∗ are the estimators computed on the bootstrap
data Y∗. Here conditional on the data, θ∗i ∼ N(xT

i β̂, Â),
and Y ∗

i |θ∗i ∼ N(θ∗i , Di) independently. Corollary 3.1 is
easily derived from Theorem 3.2. A slightly different ap-
proach to the same result may be found in the unpub-
lished manuscript Chatterjee and Lahiri (2002). We now
discuss the assumptions leading to our main result The-
orem 3.1, and some additional features of our result.

Remark 1. (On the dimension of the random
effect vector:) Note that the dimension q of the random
effect v is arbitrary which may or may not depend on
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n. Owing to this generalization, our analysis is for T =
cT (Xβ+Zv), rather than the more traditional T̃ = cT1 β+
cT2 v. Since X is full column rank, the fixed effects in T
and T̃ are equivalent.

Remark 2. (On the technical assumptions:) In
the development of all the assumptions above, we have
preferred simplicity over generality. The requirement
d2n−1 → 0 is standard in dimension asymptotics. As-
sumption 1 ensures that both the fixed component and
the variance of the random component of µT are O(1),
and the variance σ2

T is bounded away from zero and in-
finity. By suitably scaling the norm of the vector c this
assumption is satisfied.

Assumption 2 is a standard assumption on the behavior
X. It ensures that the norm of each fixed effects covariate
is of suitable order, and the fixed effects design is not
singular. This assumption can be modified to suit cases
where X is not full column rank, but such generalizations
are routine.

Assumption 3 is on standard differentiability and eigen-
value conditions. Here again, we have tried to adopt sim-
ple conditions rather than the most general ones. Note
that the existence of the representations (3.13) and (3.14)
are not part of the assumptions, and these representations
will be established in the proof of Theorem 3.1.

Also note that the eigenvalues of D(ψ̂) and R(ψ̂) are
estimates of the variance components in typical applica-
tions. Note that we do not allow these to be zero, since
these must always lie in (L−1/2, 2L). However, L may be
arbitrarily large, consequently this assumption does not
limit the applicability of our results.

In Assumption 4 we take all moments of S to exist in
order to achieve simplicity. Our result involves compu-
tation of several terms involving S, and having all the
moments of S available simplifies the algebra. In most
applications, both ψ and ψ̂ lie in a compact set, hence
this is not a strong condition. The other moment con-
ditions on S given by (3.21)-(3.22) are routine. These
hold when ψ̂ is obtained using either maximum likeli-
hood or restricted maximum likelihood formulation, see
Jiang (1998) for related developments.

The conditions (3.23)-(3.24) are interesting, since they
effectively set a limit to the amount of dependency struc-
ture we can have in Σ. In order to visualize this, sup-
pose ψ̂(−i) is the estimator of ψ obtained by using only
those observations that are independent of Yi; and let
S(−i) = (k/n)1/2(ψ̂(−i) − ψ). Then, a sufficient condi-
tion for ESj(Zv + e)i = O((k/n)1/2) is that S − S(−i) =
OP ((k/n)1/2).

This is routinely achieved, and in particular, if Yi is in-
dependent of all but a finite number of observations, we
have S−S(−i) = OP ((k/n)1/2). This is the typical situa-
tion is almost all applications of small area studies. Thus,
the effect of Assumption 4 is to restrict the complexity of
the matrices D and R.

Remark 3. (On the nature of prediction inter-
vals:) A prominent application of the highly accurate ap-
proximation of Ln(·) by L∗n(·) is stated in Theorem 3.2,

that is, in the construction of prediction intervals. Note
that these are bootstrap intervals, as opposed to the tra-
ditional intervals described in Section 2, some of which
are improved with bootstrap corrections.

However, Theorem 3.2 does not describe the nature
of the bootstrap prediction intervals, since the choice of
q1 and q2 can be quite arbitrary. These may be chosen
to ensure either an equal tail property of the interval;
whereby L∗n(q1) = α/2 and L∗n(q2) = 1−α/2; or we may
chose these according to a minimum length of interval
property, that is, we minimize the length σ̂T (q2 − q1).
The simulation experiments reported in Section 4 show
that both equal tailed and minimum length bootstrap
prediction intervals typically achieve the desired coverage
accuracy without the use of elaborate calibrations; and
the minimum length interval is always slightly shorter
than the equal tailed one.

Remark 4. (On multivariate prediction:) Note
that in place of the real valued T studied above, we could
have a vector valued T with little change in methodology.
The algorithmic and algebraic details are similar, and the
main result of high order accuracy of distributional ap-
proximation (3.25) holds. The major difference between
univariate and multivariate prediction is in the construc-
tion of prediction regions. Instead of the two points q1
and q2, we need to obtain probability concentration re-
gions from the bootstrap distribution. Such regions can
be obtained using various data depth notions and shape
features, for example, as in Yeh and Singh (1997). This is
a separate issue from the one addressed in this paper, and
will be handled in a different paper. Note that multidi-
mensional probability concentration regions can be quite
hard to calibrate in practice. Some techniques, such as
calibration of the end points of an interval, are not avail-
able in this case.

Remark 5. (Asymptotics on total sample size n:)
One important feature of Theorem 3.1 is that the asymp-
totic limits are obtained with total sample size n tending
to infinity. The total sample size n is the sum total of all
observations made, counting each repeated measurement
on each individual unit in each small area as a distinct
observation. This allows Theorem 3.1 to be used with
considerable flexibility, for example, when number of in-
dividual units in small areas are large, or when number of
small areas are large, or both. However, requirements of
asymptotic negligibility, as in (3.23)-(3.24), must still be
met. Our assumptions are designed for the more realistic
applications where number of small areas are large.

In general, for linear mixed models asymptotic lim-
its are obtained either when the number of observations
in each small area tends to infinity, or when the num-
ber of small areas tend to infinity, see McCulloch and
Searle (2001) and Rao (2003) for details. Theorem 3.1 is
a breakthrough, owing to the greater flexibility it allows
in asymptotics.

Remark 6. (On area specific properties:) The
area-specific signal for each small area is Ti = xT

i β+ZT
i v,

conditional on the observed ith small area data Yi. Dis-
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tributions of predictors for such area specific signals are
effectively captured by our bootstrap predictive distribu-
tion approximation. Consequently, our bootstrap predic-
tion intervals for Ti are also area specific. Extensions to
compare two or more small areas can be obtained by sim-
ilar techniques, see comment on multidimensional predic-
tion above.

In the prediction interval described in Theorem 3.2, we
have considered unconditional coverage, where probabil-
ities are computed over the joint distribution of Y and
v. This establishes the performance of the area-specific
interval that depends on v conditional on Y, as well as
variability due to observations Y.

Alternatively, one might compute the area-specific
(random) coverage, which is defined as P[Ti ∈ IPi|Yi],
where IPi is the prediction interval. The interval pro-
posed in Theorem 3.2 achieves OP (d2/n) order of area-
specific coverage accuracy, since some smoothing effects
arising from the distribution of Y are absent. This is no
worse (and in some cases, better) than the area-specific
coverage obtained by other techniques in special cases of
the general linear model (3.4).

Remark 7. (On calibration:) Both the uncondi-
tional as well as the area-specific coverage can be im-
proved by calibration. The use of calibration coupled
with resampling is an active topic of research, and some
discussion on this has been presented in Section 2. The
coverage accuracy of the prediction interval of Theo-
rem 3.2 can be improved to O(d5n−5/2) with one round of
calibration, and further still with more calibration. Such
calibration may be done either on the probabilities corre-
sponding to the two end points as in DiCiccio and Efron
(1996), or on the true coverage of the interval. Some of
our simulations, not reported in this paper, suggest that
it is not always beneficial to attempt boosting the theoret-
ical coverage probability, disregarding other properties of
the interval. For example, variability of calibrated inter-
vals are greater than uncalibrated ones, minimum length
property is almost never preserved, and the results are
quite dependent on the parameters and fixed constants
of the problem. Hence, it seems reasonable to work with
a good predictive distribution as in Theorem 3.1, instead
of starting with a naive interval and embarking on intense
iterative calibration.

Remark 8. (The parallel work of Hall and
Maiti (2006b):) Recently, Hall and Maiti (2006b) stud-
ied parametric bootstrap methods for general small area
models, and considering the overlap of the topics stud-
ied in their paper and this one, deserve special mention.
For this comment, we use some notations from Hall and
Maiti (2006b) whenever they are not in conflict with the
notations in the rest of this paper, but use our notations
otherwise.

For a suitable function fi(β) involving co-variates Xi =
(Xi1, . . . , Xini) and parameter β, they consider random
effect Θi ∼ Q(·; fi(β), ξ), and conditional on Θi, the data
Yij are independent observations from R(·;ψ(Θi), ηi), for
j = 1, . . . , ni, i = 1, . . . ,m. Here ψ(·) is a known link

function, ξ and ηi’s are either parameters or known con-
stants, and Q(·) and R(·) are known probability distri-
bution functions. They go on to study calibration of the
mean squared prediction error (MSPE) and interval esti-
mation with parametric bootstrap.

Their model is broad enough to handle nonlinear mixed
effects, which our model (1.1) cannot do. However, their
assumption of Yij ’s being independent means that they
do not consider longitudinal models, or other models with
temporal or spatial dependence. This is essentially the
case R being a multiple of the identity matrix in our
set-up. Our model is broader than Hall and Maiti’s in
including several varieties of dependence structure.

The interval estimate from their Section 2.8 is

Îα = xT
i β̂ ± zα/2Â

1/2 (3.29)

for the Fay-Herriot model. Rao (2005) noted that this
interval does not make use of the area-specific direct es-
timator, unlike the prediction interval proposed by Chat-
terjee and Lahiri (2002). Hall and Maiti (2006b) calibrate
this interval for better coverage accuracy, improving from
their result

P[Θi ∈ Îα] = 1− α+O(m−1). (3.30)

The result (3.30) hold when the probability statement is
on the marginal distribution of random effect Θi, and
estimators β̂ and Â are independent of ith area data
Yi1, . . . , Yini .

Our probability statements in Theorem 3.1 and Theo-
rem 3.2 are, however, on the joint variability of the ran-
dom effects and data (Θi, Yi1, . . . , Yini). Also note that
Theorem 3.2 is obtained as n =

∑m
i=1 ni → ∞, while

(3.30) is obtained as m→∞. Since some of the ni’s can
be large, the speed of convergence towards the asymptotic
limits are different; and m = o(n) if any ni →∞.

Hall and Maiti (2006b) obtain that if Îα is calibrated
once (twice), the coverage accuracy improves to O(m−2)
(O(m−3)). If the interval in (3.27) or (3.28) is calibrated
once (twice), the coverage accuracy improves to O(n−5/2)
(O(n−7/2)) when parameter dimension is fixed.

In summary, Hall and Maiti (2006b) cover a wide rang-
ing independent data framework, with careful MSPE es-
timation and marginal coverage of prediction intervals as
number of small areas increases; while we consider deeper
linear mixed framework allowing for longitudinal depen-
dence, and establish results as total data size increases
on the joint variability of random effects and data, thus
also obtaining area specificity.

4 A simulation example

In this section we compare the performance of our pro-
posed parametric bootstrap with that of the traditional
approaches, using a simulation study. For the sake of
comparability with existing studies, we adopt part of the
simulation framework of Datta, Rao, Smith (2005) for our
study. We consider the Fay-Herriot model with m = 15
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and xT
i β = 0. But, to account for the uncertainty in es-

timation of the common mean that arises in practice, we
still estimate the zero mean.

We consider five groups Gt, (t = 1, · · · , 5) of small
areas with three areas in each group. Within each
group, sampling variances are the same. Specifically,
Dj = c1 j ∈ G1; Dj = c2 j ∈ G2; Dj = c3 j ∈
G3; Dj = c4 j ∈ G4; Dj = c5 j ∈ G5. Let
c = (c1, · · · , c5)′. We consider the following four dif-
ferent patterns of A and Di’s combinations: (a) A =
1; c = (4.0, 0.6, 0.5, 0.4, 0.2)′ [this is pattern (c) of Datta
et al. (2005)]; (b) A = 2; c = (4.0, 0.6, 0.5, 0.4, 0.2)′; (c)
A = 1; c = (8.0, 1.2, 1.0, 0.8, 0.4)′, and (d) A = 2; c =
(8.0, 1.2, 1.0, 0.8, 0.4)′.

We obtain all the results based on 10,000 simulation
runs. The Prasad-Rao method-of-moments, and the
Fay-Herriot method of estimating the variance compo-
nent A are considered. Tables 4.1-4.4 report the simu-
lated coverage probabilities and average lengths of sev-
eral different prediction intervals (with nominal cover-
age 0.95). We consider three prediction intervals of the
type EBLUP ± 1.96

√
mspe, where mspe is an estimator

of the MSPE of EBLUP. The Cox interval, discussed in
Section 2, is obtained by using the Prasad-Rao method-
of-moment estimator of A. The Prasad-Rao (PR) in-
terval estimator is obtained using that estimator of A
along with the Prasad-Rao (1990) MSPE estimator. The
Fay-Herriot (FH) interval estimator is obtained by using
Fay-Herriot method of moments estimator of A [see Fay
and Herriot 1979], and the MSPE estimator of EBLUP
considered by Datta, Rao and Smith (2005). Along with
these three, we report two different parametric bootstrap
prediction intervals. In both the methods, we used Fay-
Herriot method of estimating A, and the ordinary least
squares estimator of β. Whenever the estimate of A is
negative, we truncate it at 1/6, using a truncation rule
suggested by Morris (1983a). The first bootstrap interval
is equal-tailed (PB-ET), and the second is the shortest
length prediction interval (PB-SL). For both cases, we
considered bootstrap sample of size 1000.

The figures in Table 4.1-4.4 are the average coverage
probabilities and average lengths for each prediction in-
terval method for patterns (a)-(d), the average being
taken over all three small areas within each group. It
is clear that the results depend on the patterns of A and
Di’s. The Cox prediction interval method consistently
undercover. The Fay-Herriot method interval improves
on the Cox interval, but is still subject to the undercov-
erage problem. In general, the Prasad-Rao method inter-
val is overly conservative at the expense of large average
length. The extent of the undercoverage for the Fay-
Herriot interval or the overcoverage for the Prasad-Rao
method depends very much on the pattern of A and Di’s.
It appears that the problem is more severe for group G1

where the ratio Di/A is the maximum. Thus, while both
the Prasad-Rao and the Fay-Herriot MSPE estimators
enjoy good theoretical properties, the resulting interval
estimates suffer from coverage problem owing to the en-

forced symmetry and normality assumption. In contrast,
the performances of our parametric bootstrap methods
remain stable over all four different patterns and always
close to the target nominal level. Our minimum length
parametric bootstrap method tends to provide shorter
prediction intervals compared to the equal-tailed equiva-
lents.
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Table 4.1: A = 1, D = (4.0, 0.6, 0.5, 0.4, 0.2), N = 10, 000, BN = 1000
Group Cox FH PR PB-ET PB-SL

G1 83.1 (3.12) 90.4 (3.57) 92.4 (3.82) 96.1 (4.50) 95.7 (4.42)
G2 85.4 (2.14) 93.7 (2.50) 98.0 (3.19) 96.2 (2.83) 95.9 (2.79)
G3 85.8 (2.02) 93.9 (2.36) 98.0 (3.08) 96.0 (2.65) 95.6 (2.61)
G4 86.1 (1.89) 94.3 (2.19) 98.2 (2.93) 96.1 (2.43) 95.7 (2.39)
G5 89.7 (1.12) 95.2 (1.23) 97.3 (1.87) 95.7 (1.28) 95.3 (1.26)

Table 4.2: A = 2, D = (4.0, 0.6, 0.5, 0.4, 0.2), N = 10, 000, BN = 1000
Group Cox FH PR PB-ET PB-SL

G1 88.0 (4.18) 92.7 (4.64) 92.7 (4.73) 96.2 (5.29) 95.9 (5.21)
G2 90.6 (2.51) 94.7 (2.74) 96.1 (2.97) 96.0 (2.92) 95.7 (2.88)
G3 90.7 (2.35) 94.7 (2.55) 96.1 (2.78) 95.9 (2.70) 95.5 (2.67)
G4 91.1 (2.16) 94.9 (2.32) 96.3 (2.55) 96.0 (2.45) 95.8 (2.42)
G5 92.7 (1.18) 94.8 (1.23) 95.6 (1.40) 95.5 (1.26) 95.0 (1.25)

Table 4.3: A = 1, D = (8.0, 1.2, 1.0, 0.8, 0.4), N = 10, 000, BN = 1000
Group Cox FH PR PB-ET PB-SL

G1 78.0 (3.28) 86.7 (3.72) 93.9 (4.51) 94.5 (5.34) 94.3 (5.24)
G2 79.2 (2.45) 91.9 (3.06) 99.3 (5.03) 95.2 (3.84) 94.9 (3.77)
G3 79.5 (2.34) 92.3 (2.95) 99.2 (5.04) 95.1 (3.64) 94.8 (3.58)
G4 80.2 (2.21) 93.4 (2.81) 99.3 (5.03) 95.3 (3.39) 94.9 (3.33)
G5 84.4 (1.43) 96.2 (1.80) 98.5 (4.26) 95.6 (1.93) 95.3 (1.90)

Table 4.4: A = 2, D = (8.0, 1.2, 1.0, 0.8, 0.4), N = 10, 000, BN = 1000
Group Cox FH PR PB-ET PB-SL

G1 81.4 (4.34) 90.3 (5.04) 91.7 (5.35) 96.5 (6.46) 96.2 (6.35)
G2 83.4 (2.96) 93.6 (3.53) 98.1 (4.58) 96.7 (4.11) 96.3 (4.05)
G3 83.8 (2.81) 93.8 (3.33) 98.1 (4.44) 96.5 (3.85) 96.2 (3.79)
G4 84.1 (2.62) 94.3 (3.09) 98.2 (4.27) 96.7 (3.53) 96.4 (3.47)
G5 87.6 (1.56) 95.2 (1.74) 97.3 (2.97) 96.1 (1.87) 95.7 (1.85)
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