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Abstract

The basic requirements of second-order unbiasedness
and non-negativity of the mean squared prediction error
(MSPE) of an empirical best predictor (EBP) have led
to different complex analytical adjustments to the naive
parametric bootstrap technique for small area estimation.
In this paper, we show a way to recover the basic simplic-
ity in the parametric bootstrap method, i.e. replacement
of laborious analytical calculations by computer-oriented
simple techniques, without sacrificing the basic require-
ments in an MSPE estimator. The method works for a
general class of mixed models and different techniques of
parameter estimation.

Keywords: Bootstrap; Mean Squared Prediction Errors;
General Linear Mixed Model.

1 Introduction

The use of an empirical best prediction (EBP) method
is now common in solving a variety of small-area prob-
lems dealing with both discrete and continuous data. An
EBP typically uses two or more levels of modeling to
combine information from different relevant sources and
to account for different sources of errors. The readers
are referred to Rao (2003) and Jiang and Lahiri (2006)
for a comprehensive review on small area estimation and
EBP methods. Computation of an EBP is reasonably
straightforward and is now available in many standard
packages. However, a reliable mean squared prediction
error (MSPE) estimation of an EBP that accounts for all
sources of variation is a highly non-trivial problem. In
a pioneering paper, Prasad and Rao (1990) proposed a
Taylor linearization method to obtain a second-order (or
nearly) unbiased estimator of the MSPE of an empirical
best linear unbiased predictor (EBLUP) when the vari-
ance components are estimated by a simple method-of-
moments. Following the work of Prasad and Rao (1990),
several methods, which include methods based on higher-
order asymptotic expansions, computationally oriented
methods, and hybrid methods, have been proposed to ob-
tain second-order unbiased MSPE estimators of an EBP.
In recent years, computationally oriented methods, es-
pecially the parametric bootstrap method, have received
considerable attention due to their simplicity and flexibil-
ity in solving real life problems with complex modeling.

An early application of the parametric bootstrap
method to obtain a second-order unbiased MSPE esti-

mators can be found in Butar (1997). The parametric
bootstrap method has been pursued in different direc-
tions by a number of researchers, including Booth and
Hobert (1998), Butar and Lahiri (2003), Pfeffermann and
Glickman (2004), Pfeffermann and Tiller (2005), Hall
and Maiti (2006a,b), and others. These methods rely on
certain MSPE decomposition formulae, like the Kackar-
Harville identity (see Kackar and Harville, 1984), and/or
complex multi-stage corrections, which often use asymp-
totic approximations. As a result, the main attraction of
the bootstrap method, as originally envisioned by Efron
(1979), i.e. the replacement of an “old-fashioned” an-
alytical approach by a user-friendly computer-oriented
method, is lost. The basic dual requirements of second-
order unbiasedness and non-negativity of the MSPE es-
timator necessitate such complex approaches.

A completely non-parametric bootstrap method for the
MSPE estimation has not been very widespread in small
area estimation. This is mainly because a naive resam-
pling method that uses a simple random sample from the
data fails to capture the complex dependency structures
present in a typical small area model. Laird and Louis
(1987) suggested a nonparametric bootstrap method for
a simple random effects model to approximate a hier-
archical Bayes solution; however, they did not use their
nonparametric bootstrap to obtain a second-order MSPE
estimator. Recently, Pfeffermann and Tiller (2005) and
Hall and Maiti (2006a) pursued certain promising non-
parametric bootstrap approaches. For a state-space
model fitting using the Kalman filter, Pfeffermann and
Tiller (2005) derived a useful representation of the model,
which they used for a non-parametric bootstrap MSPE
estimation. In the context of a nested error regression
model, Hall and Maiti (2006a) noted that the MSPE is
essentially a function of the first few moments of the
sampling and random effects distributions, and used a
moment matching approach to obtain a non-parametric
bootstrap MSPE estimator. In small area studies and
several other fields of application, reasonable multi-level
parametric models are generally available and trustwor-
thy; hence the need for completely nonparametric ap-
proaches is not dire. However, small area studies often
require models with non-normal (but known) probability
densities for the sampling and the random effects distri-
butions that can adequately capture complex correlation
structures in the data.

The traditional unconditional MSPE estimator aver-
ages over the marginal distribution of the study vari-
able(s) and hence does not distinguish different areas even
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though the small area model does not hold equally well
for different areas. In the small area context, the im-
portance of using a suitable conditional mean squared
prediction error that is area specific with respect to the
study variable cannot be overstated. Fuller (1990) and
Booth and Hobert (1998) brought out this aspect quite
elegantly and advocated for a conditional mean squared
prediction error.

In the context of the Small Area Poverty and Income
Estimation (SAIPE) project of the U.S. Census Bureau,
Bell (1999) noticed that the jackknife estimator of Jiang,
Lahiri and Wan (2002) could produce negative estimates
of MSPE of EBLUP. In fact, this problem can be observed
in some Taylor linearization and bootstrap methods as
well. This situation, however, is not very frequent; and
occurs when the bias-correction term that appears in a
second-order MSPE formula produces unduly large con-
tribution to the MSPE formula. Chen and Lahiri (2002,
2007) and Hall and Maiti (2006a,b) addressed this issue.

The effect of estimation of high dimensional hyperpa-
rameters is relatively less studied in small area estimation
problems with the exception of Chatterjee, Lahiri and Li
(2007), although Jiang (1996) considered a similar prob-
lem in the linear mixed model context. Since the sample
size for a small area is typically small, the effect of es-
timating a finite, but high dimensional, parameter can
be quite significant in terms of the prediction accuracy.
This is not reflected in the standard asymptotic setting
that treats the hyper-parameter dimension as fixed. A
better approach is to consider an asymptotic framework
that assumes the parameter dimension to be a function
of the sample size.

In this paper, we assume a fully parametric model
(FPM), where the probability distributions at the both
levels of a two-level model are known, up to finite di-
mensional parameters. The FPM covers most hierar-
chal models studied in the small area estimation, in-
cluding linear mixed models (LMM), longitudinal mod-
els, analysis of variance models, generalized linear mixed
models (GLMM), hierarchical generalized linear models
(HGLM), state-space models of certain time series, kreig-
ing models for spatial processes, nested error regression
models, and point process models.

We obtain second-order unbiased, non-negative, con-
ditional and unconditional MSPE estimators, and allow
the hyperparameter dimension to grow with the sample
size, thus bringing in the dimension asymptotic effect of
estimating the hyperparameters. We retain the basic sim-
plicity of the bootstrap methodology by replacing labori-
ous analytical calculations by computer-oriented simple
techniques, without sacrificing the theoretical properties
of the MSPE estimators. We use a double bootstrap
strategy as in Booth and Hobert (1998) and Hall and
Maiti (2006b). However, apart from being applicable to
a much broader collection of problems, our methodology
is not driven by stepwise calibration ideas, and we have a
one-step (conditional or unconditional) MSPE estimator.
In each scenario, our resampling technique and the MSPE

estimate formula is exactly the same for all situations; we
do not require problem specific corrections.

The outline of the paper is as follows. In section 2, we
state our model and discuss different special cases that
have been considered in the small area literature. We also
introduce an EBP in this section. In section 3, we propose
our conditional and unconditional parametric bootstrap
MSPE estimators of the proposed EBP, and discuss their
properties. We present results from a Monte Carlo sim-
ulation study in section 4. To save space, we omit the
proof of our main result.

2 A General Fully Parametric Model

In this section, we describe a general fully parametric
model (FPM) and the associated EBP. Let Yi be the vec-
tor of observations for the ith area (i = 1, · · · , n), n being
the total number of small areas. The dimension of Yi

can be arbitrary, and may or may not depend on n and
i. Each element of Yi is an observation, though all ob-
servations are not necessarily independent. If ni is the
dimension of Yi, we define N =

∑n
i=1 ni, the total num-

ber of observations.
We propose the following two-level model:

Level 1: Yi|θi ∼ fi(·; θi, ξ), i = 1, . . . , n;
Level 2: θi ∼ gi(·; ξ), i = 1, . . . , n.

We assume ξ ∈ Ξ ⊆ Rd, where the parameter space Ξ
is an open set in Rd. Without loss of generality, we shall
assume that both Level 1 and Level 2 can be described
by a common vector of parameters ξ (if necessary, we
simply define ξ to be the super-collection of all Level 1
and Level 2 unknown parameters.) Similarly, there is
no loss of generality in considering the same parameters
ξ appearing in all the distributions irrespective of i. In
many applications, ξ is naturally split in two parts, with
one part contributing to the mean of the Yi’s or θi’s (the
location parameters), while others (the variance compo-
nents) contribute to the variances and covariances. Our
set-up unifies the two components, thus allowing for very
general models with multiple sources of heteroscedastic-
ity, non-linear structures and dependencies.

The dimension of θi is arbitrary and can also depend on
n and i. Although in the rest of this paper we concentrate
on the case where θi is a scalar, the extension to the multi-
dimensional case is obvious. We make occasional remarks
to elucidate some of the technical points that arise for the
MSPE estimation when θi is multi-dimensional.

We assume that the pairs {(Yi, θi), i = 1, . . . , n} are in-
dependent. Since there is no restriction on the dimension
of Yi’s, the independence of the observations across dif-
ferent areas is not a strong assumption in most small area
applications, and is a matter of nomenclature. However,
our assumption rules out spatial models that assume cor-
relations across the areas. The above model covers the
following important models:
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1. The Fay-Herriot Model: In order to estimate the
per-capita income of small places (population less
than 1000), Fay and Herriot (1979) used the follow-
ing two-level model:

Level 1 (sampling model): Yi|θi
ind∼ N(θi, Di),

Level 2 (linking model): θi
ind∼ N(xT

i β,A),

where i = 1, · · · , n. Here “ind” stands for indepen-
dent random variables, and N(µ, σ2) denotes the
Normal distribution with mean µ and variance σ2.
In the Fay-Herriot model, Level 1 is used to account
for the sampling variability of the regular survey es-
timates Yi of true small area means. Level 2 links
the true small area means θi to a vector of p known
auxiliary variables xi, often obtained from various
administrative and census records. The parameters
ξ = (β A) of the linking model are generally un-
known and are estimated from the available data.
The sampling variabilities Di are assumed to be
known. In practice, Di’s are estimated using the gen-
eralized variance function (see Wolter 1985, Chapter
5) method that uses some external information from
the survey.

For the Fay-Herriot model, the dimension of Yi is 1
and so does not depend on n or i. Here ξ = (β,A)T

so that d = p + 1. The parameter ξ is involved in
Level 2 but not in Level 1. Several MSPE estimation
methods, for example, Datta, Rao, Smith (2005), Pf-
effermann and Glickman (2004), Chen, Lahiri, Rao
(2007) are exclusively devised for the Fay-Herriot
model.

2. The Longitudinal Linear Mixed Normal
Model: This covers a wide variety of mixed models,
including the Fay-Herriot model, nested error regres-
sion model (Battese et al. 1988), multi-level mod-
els (Moura and Holt, 1999) and time series model
(Rao and Yu, 1994; Datta, Lahiri and Maiti, 2002;
Pfeffermann and Tiller, 2005). Let Xi and Zi be
ni × p and ni × ki matrices of known constants. Let
N =

∑n
i=1 ni and K =

∑m
i=1 ki. Then the model

is described as follows:

Level 1:Yi | Ui
ind∼ Nni

(Xiβ + ZiUi, Ri),

Level 2: Ui
ind∼ Nki(0, Gi),

i = 1, . . . , n, where β is a p × 1 column vector of
unknown regression coefficients; Ri = Ri(ψ) and
Gi = Gi(ψ) are respectively ni × ni and ki × ki

matrices which possibly depend on ψ, a s × 1 vec-
tor of unknown variance components. In this case
ξ = (β, ψ)′ so that d = p + s. The dimension of Yi

depends on n and i. Butar and Lahiri (2003) (see
also Butar, 1997) developed a parametric bootstrap
for this model.

3. The Das-Jiang-Rao (2005) Model: This model
includes the mixed ANOVA and the longitudinal

models as special cases and can be described as

Yn = Xβ + Zvq + en,

where Yn ∈ Rn is a vector of observed responses;
Xn×p and Zn×q are known matrices; vq and en are
independent random variables with dispersion ma-
trices Dq(ψ) and Rn(ψ) respectively. Here β ∈ Rp

and ψ ∈ Rk are fixed parameters.

4. A conditionally independent two-level model

Hall and Maiti (2006b) developed their parametric
bootstrap method for the following model:

Level 1: Yij |θi
ind∼ f(·;ψ(θi), ηi),

Level 2: θi ∼ g(·;hi(β), ξ),

j = 1, · · · , ni, i = 1, · · · , n, where hi(β) is a known
mean function involving known and fixed covariates
Xi = (Xi1, . . . , Xini

) and ψ(·) is a known link func-
tion; f and g represent two densities not necessarily
normal. The model allows for nonlinear and non-
normal mixed effects models. However, their model
has no dependency structure in Level 1. Special cases
of this model include certain cases of generalized lin-
ear mixed models, including the Fay-Herriot and the
nested error regression model.

5. Multivariate unbalanced generalized linear
mixed models

This model has the following structure:

Level 1: Yi|θi ∼ f(·;ψ(θi), ξ),
Level 2: θi ∼ g(·;xT

i β, σ
2
i ),

i = 1, · · · , n, where the density g(·) is a Normal
density with mean xT

i β and variance determined
by σ2

i . The Level 1 density or mass function f(·)
is supported in Rni , and depends on θi through
the function ψ(θi). Examples of such models are
multivariate logistic-Normal, multivariate Poisson-
Normal and multivariate negative binomial-Normal
models. A typical logistic-Normal model would be
as follows:

The observed data from the ith small area is
Yi = (Yi1, . . . , Yini), where Yij follows Binomial
(mi, pi) with known mi’s, and log (pi/(1− pi))’s
have a Normal distribution N(xT

i β, σ
2
i ). Here β

and σ2
n1, . . . , σ

2
nn are the parameters. One multi-

variate generalization of this model useful in appli-
cations where sampling stage (perhaps spatial) de-
pendency of Ynij ’s across j need to be captured is
given by Yi following a Multinomial (mi, pi) dis-
tribution with known mi’s, and a probability vec-
tor pi = (pi1, . . . , pini). Here U = (log(pi1/(1 −
pi1)), . . . , log(pini/(1 − pini))) follows a ni-variate
Normal distribution with mean Xiβ and dispersion
matrix Σ(ψ), which depends on an unknown hyper-
parameter ψ.
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6. Multivariate unbalanced hierarchical general-
ized linear models

Same as above, except G(·) is conjugate, instead of
being Normal. This model has been studied exten-
sively by Lee and Nelder (1996), and others.

We write Yn = (Yn1 . . . Ynn) to denote all the observed
data. The marginal distribution of Yi is written as

mi(·; ξ) =
∫
fi(·; t, ξ)gi(t; ξ)dt.

Since we assume independence, the likelihood of ξ can
be written as

L(ξ;Yn) =
n∏

i=1

mi(Yi; ξ).

We assume that the estimator ξ̂ of ξ is obtained by
minimizing the contrast function∑

Ψi(ξ;Yi).

This covers the classical maximum likelihood (ML) and
residual maximum likelihood (REML) estimator (Jiang
1996), various method-of-moments estimators as devel-
oped in Fay and Herriot (1979), Pfefferman and Nathan
(1981), Prasad and Rao (1990), Jiang (1998); decision
theoretic estimators like the Bayesian or minimax esti-
mators; and robust or otherwise estimators obtained by
solving appropriate estimating equations or minimizing
functions. We assume the functions Ψi(·;Yi) have suffi-
cient conditions to ensure that ξ̂ = ξ + dn−1/2Tn, where
Tn = OP (1) is a random variate that converges weakly to
a Normal distribution and has sufficient moments. This
is accomplished, for example, when Ψi(·;Yi) has three
continuous derivatives with respect to ξ (see Chatter-
jee and Bose, 2005, for details), or EΨi(·;Yi) is convex
(see Niemiro, 1992, Bose, 1998, and Bose and Chatter-
jee, 2003). The latter case allows for non-smooth Ψi(·;Yi)
functions, as long as their expectations are convex func-
tions of ξ.

The conditional distribution of θi given Yi (or the entire
data Yn, owing to the independence of Ynj ’s) is given by

πi(·;Yi, ξ) = [mi(Yi; ξ)]
−1
fi(Yi; ·, ξ)gi(·; ξ).

The mean of this conditional distribution, is given by

θπi ≡ θπi(Yi, ξ) =
∫
tπi(t;Yi, ξ)dt.

We are interested in predicting θi for some fixed i. Note
that under the squared error loss, θπi(Yi; ξ) is the best
predictor (BP) of θi. However, this is not a statistic since
ξ is unknown, and empirical best predictor (EBP) θ̂πi =
θπi(Yi, ξ̂) is used as a predictor.

3 The MSPE estimation technique

The conditional mean squared prediction error (CMSPE)
of θπi(Yi, ξ̂) is defined as the conditional expectation

CMSPE ≡ CMSPE(Yi, ξ) =

E
[{
θi − θπi(Yi, ξ̂)

}2

| Yi

]
,

If θi ∈ Rqi (i.e., multivariate), then we define the above
as the qi × qi matrix

CMSPE ≡ CMSPE(Yi, ξ) =

E
[{
θi − θπi(Yi, ξ̂)

}{
θi − θπi(Yi, ξ̂)

}T

| Yi

]
,

The mean squared prediction error (MSPE) of θπi(Yi, ξ̂)
is defined as

MSPE ≡MSPE(ξ) = E
[
θi − θπi(Yi, ξ̂)

]2

,

where E denotes expectation with respect to the joint
distribution of Yn and θn. If θi ∈ Rqi (i.e., multivariate),
then we define the above as the qi × qi matrix

MSPE ≡MSPE(ξ) =

E
[
θi − θπi(Yi, ξ̂)

] [
θi − θπi(Yi, ξ̂)

]T

.

It can be easily seen that the MSPE is the expectation of
CMSPE. We consider the case qi ≡ 1 for simplicity. The
pointwise estimation for the matrix case follows along
identical lines.

Our two-level parametric bootstrap algorithm for gen-
erating resamples is given below:

1. Resample Y∗
n = (Y ∗

n1, . . . , Y
∗
nn) using the following

two-level model:

Level 1∗: Y ∗
i |θ∗i ∼ fi(·; θ∗i , ξ̂);

Level 2∗: θ∗i ∼ gi(·; ξ̂),

i = 1, . . . , n. The expectation at this step, which is
conditional on Yn, is denoted by E∗. Recall that fi

is a density or mass function on Rni , where ni is the
dimension of Yi.

2. Obtain ξ̂∗ = ξ̂(Y∗
n), the estimator of ξ based on the

resample Y∗
n, using the same technique used to ob-

tain ξ̂(Yn).

3. Resample Y∗∗
n = (Y ∗∗

n1 , . . . , Y
∗∗
nn) from Y∗

n using the
following two-level model:

Level 1∗∗: Y ∗∗
i |θ∗∗i ∼ fi(·; θ∗∗i , ξ̂∗);

Level 2∗∗: θ∗∗i ∼ gi(·; ξ̂∗),

i = 1, . . . , n. The expectation at this step, which is
conditional on Yn and Y∗

n, is denoted by E∗∗.
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4. We define ξ̂∗∗ = ξ̂(Y∗∗
n ) and

M1a = E∗
[
θ∗i − θπi(Yi, ξ̂

∗)
]2

,

M2a = E∗E∗∗
[
θ∗∗i − θπi(Yi, ξ̂

∗∗)
]2

,

M3a = E∗
[
θ∗i − θπi(Y ∗

i , ξ̂
∗)

]2

,

M4a = E∗E∗∗
[
θ∗∗i − θπi(Y ∗∗

i , ξ̂∗∗)
]2

.

The conditional and unconditional MSPE estimators are
given by:

M̂SPEa = H(M1a,M2a −M1a),

and

M̃SPEa = H(M3a,M4a −M3a)

respectively.
We consider four different choices for the function

h(·, ·). These are

H1(x, b) = (x− b) I{x>b},

H2(x, b) = (x− b) I{b≤0}

+x exp {−b/(x+ b)} I{b>0},

H3(x, b) =
(
x+ n−1 tan−1 {−nb}

)
I{b≤0}

+x2
(
x+ n−1 tan−1 {nb}

)
I{b>0},

H4(x, b) = 2x/ (1 + exp {2b/x}) .

The first function H1 is a straightforward and a natural
choice. The functions H2 and H3 are formula (2.17) and
(2.18) from the MSPE calibration considered by Hall and
Maiti (2006b). The function H4 seems to work well both
when M2a−M1a (or M4a−M3a) is positive and negative,
and is simple. The graphs of all the four functions are
reasonably close in the region of M2a ≈ M1a (or M4a ≈
M3a). However, H4 seems to perform marginally better
than H2 and H3 in simulations, and it is always positive,
and reasonably close to the intuitive formula H1.

Theorem 3.1 The MSPE estimators M̂SPEa =
H4(M1a,M2a − M1a) and M̃SPEa = H4(M3a,M4a −
M3a) are always positive, and have the following second
order accuracy properties:

(Conditional) :

E
[
M̂SPEa − CMSPE(Yi, ξ)

]
= o(d2n−1)

(Unconditional) :

EM̃SPEa −MSPE(ξ) = o(d2n−1)

Further, they also satisfy

(Conditional) :

E
[
M̂SPEa − CMSPE(Yi, ξ)

]2

= O(d2n−1)

(Unconditional) :

E
[
M̃SPEa −MSPE(ξ)

]2

= O(d2n−1)

Similar statements hold when function H1, H2, or H3

are used.

4 Simulation Study

In this section, we present results from Monte Carlo
simulations to compare the finite-sample performances
of the proposed conditional MSPE estimators. In or-
der to compare the MSPE estimators proposed in this
paper, we adopt the simulation framework of Pfeffer-
mann and Glickmann (2004) and Datta, Rao, Smith
(2005). Thus, we consider the Fay-Herriot model with
m = 15, xT

i β = 0, ψ = 1, and consider the following pat-
tern for the Di’s: 2.0, 0.6, 0.5, 0.4 and 0.2 [this is pattern
(b) of Datta et al., 2005]. We consider five groups of small
areas with three areas in each group having the same Di’s
values. We discuss results only for our conditional MSPE
estimators, although we use an unconditional criterion for
comparison of estimators and use unconditional MSPE
estimators from literature as competitors. The perfor-
mance of the unconditional MSPE estimators (denoted
by M̃SPE) is similar and is not reported.

Our simulations, not reported here, tend to suggest
that H2 has an overestimation problem when Di’s are
small, and H3 can have an underestimation problem for
largerDi values, when compared toH1 andH4. Based on
these observations, we consider M̂SPEa usingH1 andH4

for the our simulation example. For the purpose compar-
ison, we include the following alternative MSPE estima-
tors in our study: (i) a naive MSPE estimator (denoted
by “N”), (ii) the Prasad-Rao MSPE estimator (PR), (iii)
a naive parametric bootstrap MSPE estimator (NB), (iv)
the Fay-Herriot MSPE MSPE estimator (FH) and (v) a
parametric bootstrap MSPE estimator (BL) due to Butar
and Lahiri (2003) or Pfeffermann and Glickmann (2004) .
The naive MSPE estimator (NB) corresponds to plugging
in β̂ and Â in the formula for the conditional variance of
θi given Yi. This is available in all the FPM cases. The
naive parametric bootstrap MSPE estimator (NB) is sim-
plyM1a, , which can be computed in all cases of the FPM.
Neither of these methods are second-order unbiased, but
they are available in very wide ranging FPM cases, and
can yield conditional MSPE estimators. Both the Prasad-
Rao (PR) and the Fay-Herriot (FH) MSPE formula are
based on asymptotic Taylor series based approximations.
For the PR method, the PR method-of-moments estima-
tor for β and A are used. For the FH method, we use the
Fay-Herriot method of estimating β and A described in
Datta, Rao and Smith (2005). The parametric bootstrap
method due to Butar and Lahiri (2003) and Pfefferman
and Glickmann (2004) contains corrective terms on the
naive parametric bootstrap formula, to make it second
order accurate.

We study three different combinations of the random
effects vi and sampling error ei distributions: (i) the ran-
dom effects and sampling errors are Normal random vari-
ables; (ii) the random effects are Normal random vari-
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ables, while the sampling errors follow a Double expo-
nential distribution; and (iii) the random effects are Nor-
mal random variables, while the sampling errors follow a
location shifted exponential distribution.

We generated 50,000 independent set of variates
{vi, ei, i = 1, · · · ,m} for each case with speci-
fied parameters. Simulated values of MSPE and
E[MSPE estimator] were then computed from the
50,000 data sets {Yi = vi + ei, i = 1, · · · ,m} so gen-
erated. For each area, the RB of a MSPE estimator is
calculated as

RB = [E(MSPE estimator)−MSPE]/(MSPE)),

the average being taken over the three areas in each of
the five groups.

Table 4.1 reports the percent average relative biases
(RB) of different MSPE estimators when both the ran-
dom effects and sampling errors are normally distributed.
Table 4.2 reports the case when the random effects are
Normal, but the sampling errors follow a double expo-
nential distribution. Table 4.3 reports the case when the
random effects are Normal, but the errors follow a loca-
tion exponential distribution. For all the cases, the naive
MSPE estimator (N) and the naive parametric bootstrap
MSPE estimator (NB) lead to underestimation. The
amount of underestimation can be as high as about 37%
for the naive MSPE estimator and about 8% for the naive
parametric bootstrap MSPE estimator - this is consistent
with the theory, since they are not second-order unbiased.

For the small areas with small values of Di, the
normality-based Prasad-Rao MSPE estimator (PR) usu-
ally overestimates and the amount of overestimation
could be as high as about 33% even for the normal-normal
case. For the small areas with large Di, the Prasad-Rao
MSPE estimator could severely underestimate the true
MSPE for the non-normal cases; e.g., when the sampling
errors follow a location shifted exponential distribution
and random effects follow normal distribution, for the
group of small areas with the largestDi (2.0), the Prasad-
Rao MSPE estimator underestimates the true MSPE by
about 19%. For the non-normal cases, the normality-
based Butar-Lahiri and the Fay-Herriot MSPE estima-
tors have a tendency for underestimation, the underes-
timation being more severe for the group of small areas
with larger Di values.

The two conditional parametric bootstrap methods
proposed in this paper, namely, M̂SPEa using functions
H1 and H4, perform extremely well for all the Di values,
and all combinations of random effect and error distribu-
tions, with relative bias below ±3% in all but one case.
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Table 4.1: Percent Relative biases of different mean
squared prediction error estimators for the Fay-Herriot
model with m = 15; the random effects and the sampling
errors are normally distributed.
Group N PR NB BL FH M̂SPEp

Di H1 H4

2.0 -22.87 -0.32 -7.02 0.42 -3.03 -0.75 -2.21
0.6 -24.66 6.74 -8.12 -1.05 -1.25 -1.18 -2.16
0.5 -24.54 9.05 -8.05 -1.54 0.51 -1.86 -2.57
0.4 -24.41 12.54 -6.51 -1.92 0.57 0.05 -.42
0.2 -24.53 32.90 -4.21 -0.28 3.44 1.50 1.49

Table 4.2: Percent Relative biases of different mean
squared prediction error estimators for the non-normal
Fay-Herriot model with m = 15; random effects distribu-
tion is normal, but sampling error distribution is double
exponential.
Group N PR NB BL FH M̂SPEp

Di H1 H4

2.0 -35.90 -16.16 -8.04 -13.37 -13.38 -2.33 -3.12
0.6 -31.89 1.51 -7.09 -7.87 -5.55 0.22 -0.15
0.5 -32.14 4.49 -7.41 -8.16 -5.01 -0.29 -0.59
0.4 -32.63 9.04 -7.66 -8.19 -4.55 -0.74 -0.92
0.2 -31.29 46.74 -3.73 -3.15 1.86 2.83 2.65

Table 4.3: Percent Relative biases of different mean
squared prediction error estimators for the non-normal
Fay-Herriot model with m = 15; random effects distribu-
tion is normal, but sampling error distribution is location
shifted exponential.
Group N PR NB BL FH M̂SPEp

Di H1 H4

2.0 -36.89 -18.63 -5.22 -11.55 -16.58 0.46 -0.07
0.6 -32.06 -2.51 -5.71 -7.45 -7.74 2.46 2.02
0.5 -32.70 -1.14 -7.02 -7.89 -7.84 0.97 0.36
0.4 -30.54 5.62 -3.34 -4.00 -3.60 4.99 4.56
0.2 -31.64 25.12 -3.17 -2.09 -0.93 3.97 3.83
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