
A Comparison of Variances for Poststratification  
to Estimated Control Totals 

 
Jill A. Dever1 and Richard Valliant1,2 

1Joint Program in Survey Methodology, University of Maryland 

2Institute for Social Research, University of Michigan 

 
Key Words:  estimated-control calibration, sampling frame coverage bias, survey-estimated control totals 
 

1. Introduction 
Calibration estimators, a label first used by Deville 
and Särndal (1992), identify a class of estimators that 
borrow strength from auxiliary information to 
improve the efficiency of survey estimates over more 
traditional weighting methods.  The ( )1g g ≥  
auxiliary variables are assumed to be (linearly) 
related with the set of key survey variables.  This 
association is directly related to the gains in 
efficiency.  These estimators are used in all types of 
surveys throughout the research world. 
 
The poststratified estimator, a well-known and 
widely applied calibration estimator, is sometimes 
used to correct for sampling frame problems such as 
undercoverage (e.g., Kott 2006).  Undercoverage 
occurs when the sampling frame fails to contain all 
units for the population under study.  For example, 
estimates for the Behavioral Risk Factor Surveillance 
System (BRFSS), a nationwide random-digit-dial 
(RDD) telephone survey conducted by the Centers 
for Disease Control and Prevention (CDC), are 
poststratified (i.e., calibrated) to population counts 
that include households with and without land-line 
telephone service (CDC 2006). 
 
A primary assumption with calibration is that the 
control totals, to which the auxiliary sample estimates 
are calibrated, are either true population values 
known without error, or are taken from an 
independent, highly precise survey that is much 
larger than the survey requiring calibration.  In some 
cases, however, these controls are estimates obtained 
from other surveys which possess a non-negligible 
sampling variance.  For example, there are efforts to 
calibrate Web panel surveys to separate, higher-
quality reference surveys that are not much larger 
than the panel surveys themselves (e.g., Krotki 2007; 
Terhanian, et al. 2000). 
 
Calibration variance estimators have been developed 
for traditional or fixed-control calibration.  Many 
researchers apply these formulae even though the 
controls are estimated.  The tacit assumption is that 
any additional variance (and bias) associated with 
these controls is negligible and can be ignored.  

Currently, the validity of this assumption can not be 
checked.  We label the methodology which properly 
accounts for the estimated controls as estimated-
control (EC) calibration. 
 
The goal of our research is to develop and evaluate 
estimators for complex sampling designs under EC 
calibration.  In this paper, we focus specifically on 
the estimated-control poststratified (ECPS) estimator 
of a population total for data collected from a two-
stage design where hn  first-stage sampling units are 
selected with replacement from within H  design 
strata.  Through theoretical development (section 3) 
and a simulation study, we compare the properties for 
variance estimators developed for the ECPS with 
variance estimators chosen under the naïve 
“population control total” assumption.  Both 
linearization and replication variance estimators are 
examined.  Illustrations are given of the effects on 
variances of different levels of precision in the 
estimated controls.  The specifications for the 
simulation study are discussed in section 4, followed 
by a summary of the results (section 5).  We conclude 
the paper with an overview of future research in this 
area.  We begin in section 2 with a brief summary of 
the extensive literature related to sample weight 
calibration, and a definition of the ECPS. 
 

2. Estimated-Control Poststratified Estimator 
The general form of a calibration estimator is best 
described as an expansion or linear weighting 
estimator (Estevao and Särndal 2000).  An estimated 
population total of a variable y is ˆ

∈= ∑y k kk st w y , 
where the calibrated analysis weight (wk) for the kth 
unit in the sample s is a function of the design weight 

1π −
k  and a calibration adjustment factor kg , also 

known as a g-weight (Särndal, Swensson, and 
Wretman 1992).  G-weights are traditionally 
calculated by minimizing a specified function that 
measures the distance between the design and 
calibrated weights.  A model which defined the 
relationship between the outcome variable ( ky ) and 
the auxiliary variables ( k′x ), referred to in the 
literature as either the calibration or prediction 
model, is also required to completely specify the 
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resulting point estimator.  For example, the 
generalized least squares (or chi-square) distance 

function ( )21 1π π− −
∈ −∑ k k k kk g w c  and a linear 

prediction model such that ( )M k kE y ′= x B  and 

( ) 2
M k kVar y c σ=  generates a closed-form solution 

to the calibration equations called a generalized 
regression estimator (GREG) for 1=kc  (Deville and 
Särndal 1992).  The distance function is minimized 
subject to a set of calibration constraints (or 
calibration equations) defined as:  

ˆ=t tx x     (2.1) 

where ˆ
∈= ∑t xx k kk s w , x kk U∈= ∑t x , xk  is a 

vector of length G  containing auxiliary or 
benchmark variable values for element k, tx  is the 
vector of population controls (counts) corresponding 
to the g  auxiliary variables, and t̂x  is the 
corresponding vector of estimated controls.   
 
Poststratification, a well known and widely used 
calibration technique, has been shown to reduce 
errors associated with sampling, nonresponse, and 
coverage (e.g., Särndal, Swensson, and Wretman 
1992; Kott 2006).  The formula for a poststratified 
estimator of a population total for a survey with 100 
percent response is 

1
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where gN  is the number population units in the gth 

poststratum ( 1, ,= …g G ), ˆ
gN  is estimated number 

of population units in poststratum g , and gs  
represents the set of sample units belonging to 
poststratum g.  Though a simplified notation is used, 
ˆygt  is calculated under the particular sampling design 
of the sample survey, hereafter referred to as the 
analytic survey.  Relating the poststratified estimator 
with the calibration equations (2.1), 

1 ˆˆ ππ −
∈ ∈= = =∑ ∑t x

g g
x k k k gk s k sw N , where 

1= =xk kx  if ∈ gk s  (zero otherwise) and tx  

corresponds to the vector of gN ’s.  The 
poststratified estimator is a type of GREG generated 
under a group-mean prediction model with one 
covariate, i.e., the model expectation and variance are 
defined as ( ) β=M k gE y  and ( ) 2σ=M k gVar y  

respectively for ∈ gk U ,  the population units within 
poststratum g . 
 
To facilitate our discussion of EC calibration, we 
label the survey requiring calibration as the analytic 
survey and the source of the control totals as the 
benchmark survey.  Note that more than one 
benchmark survey may be tapped for the control 
totals.  However, for our discussion, we will assume 
only one benchmark survey. 
 
The estimated-control poststratified estimator (ECPS) 
of a population total under the assumption of 
complete response is defined by a slight modification 
to the traditional poststratified estimator (2.2): 
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The subscripts A  and B  are used to denote 
estimation from either the analytic or benchmark 
surveys.  The population values ( gN ) in (2.2) are 
replaced with estimates from the benchmark survey 
( ˆ

BgN ) and are calculated as the sum of the 

benchmark survey weights ( Bkw ) within poststratum 
g .  The calculation of the analytic survey estimates, 
ˆAygt  and ˆ

AgN , remains the same as defined 

previously (i.e., ˆ ˆ=Ayg ygt t  and ˆ ˆ=Ag gN N ); we 
apply the A  subscript to ensure clarity of the 
estimation source.   
 

3. Variance Estimators for the ECPS 
The usual set of variance estimators have been 
developed for traditional calibration and are available 
in software designed to analyze survey data (e.g., R 
2005; SAS 2004; Stata 2004; and SUDAAN 2004).  
Taylor series linearization, a variance technique 
available for any real-valued function with 
continuous first- and second-order partial derivatives, 
is discussed in, for example, Wolter (1985) and 
Binder (1995).  Särndal, Swensson, and Wretman 
(1989, 1992) developed an approximate linearization 
population variance for the GREG of a population 
total as a function of the population residuals from 
the specified prediction model and the g-weights.  
Stukel, Hidiroglou, and Särndal (1996) discuss a g-
weighted GREG variance formula developed by 
Hidiroglou, Fuller, and Hickman (1980) for a 
stratified multi-stage design using the linear 
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substitute (or ultimate cluster) method (Kalton 1979).  
Replication methods, such as balanced repeated 
replication and jackknife, have been discussed for a 
variety of calibration estimators in sources such as 
Valliant 1993, Canty and Davison 1999, and Demnati 
and Rao 2004.  However, limited work has been 
completed on variance estimation for EC calibration.  
Our research will contribute to this very area. 
 
Four estimated-control variance estimators for the 
ECPS that account for the variance in the control 
totals were compared for this study.  They include 
two newly developed linearization estimators, and 
two delete-one jackknife variance estimators.  With 
the delete-one jackknife, replicates are created by 
deleting one primary sampling unit (PSU) and 
adjusting the weights for the remaining PSUs within 
the corresponding design stratum.  This results in a 
total of 1== ∑H

hhR n  replicates calculated by 

summing the number of PSUs per stratum ( hn ) 
across the strata ( 1,...,=h H ).  We additionally 
compare the properties of these estimators with a 
linearization variance estimator and a delete-one 
jackknife under the naïve assumption that the 
estimated controls are population values known 
without error (see, e.g., section 6.6 in Särndal, 
Swensson, and Wretman 1992).   
 
An effective variance estimator will reproduce the 
corresponding population sampling variance in 
expectation.  The approximate (or asymptotic) 
population sampling variance for the ECPS is 
adapted from similar work by Fuller (1998) and has 
the form  

( ) [ ]ˆyECPS B A B A B A B AAV t tr′ ′= + +N V N V V Y V Y  

       B A B A B A′ ′≅ +N V N Y V Y                   (3.1) 
where BN  is  a vector of population counts within 
the G  poststrata; AY  is a G -length vector with 
population components of the form =g yg gy t N ; 

AV  is the (variance-) covariance matrix of the 

estimated components of the vector AY  (i.e., ˆgy ); 

and VB  is the covariance matrix of the G  

benchmark control estimates ( )1
ˆ ˆ, ,B BGN N… . The 

first component, B A B′N V N , is the approximate 
variance for the traditional poststratified estimator 
( ˆyPSt ), i.e., the benchmark estimates are treated as 

fixed.  The later component, A B A′Y V Y , is variance 
associated with the benchmark estimates with the 
analytic estimates are treated as fixed.  The term 

[ ]A Btr V V  is assumed to be of lower order, 

effectively ( ) ( )1 1− −
A BO n O n .   

 
We discuss the estimators for the population 
sampling variance below.  The sample estimators are 
calculated by substituting sample estimates for the 
corresponding variance components. 
 
3.1 Taylor Series Linearization (ECTS) 
We derived a first-order linearization variance 
estimator for the ˆyECPSt  of the following form: 

( ) ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆyECPS B A B A B A B Avar t tr ⎡ ⎤′ ′+ +⎣ ⎦= N V N V V Y V Y  

(3.2) 
where ˆ

BN  is the estimated vector of the G  

benchmark controls, and ˆ AV  is the estimated 
covariance matrix of the estimates 

( )1 1
ˆ ˆ ˆˆ ˆ, ,A Ay A AyG AGt N t N=Y … . Retaining an 

estimate of the positive term ˆ ˆ
A Btr ⎡ ⎤⎣ ⎦V V  in (3.2) 

means that this estimator should be viewed as a 
conservative approximation of (3.1).  We leave this 
term in the formula for comparative purposes.   
 
3.2 Residual Linearization Method (ECRL) 
Another approximate variance estimator is 

( ) ( ) ˆ ˆˆˆ ˆyECPS res yPS A B Avar t var t ′= +Y V Y      (3.3) 

which is derived by substituting the first component 
in (3.1) with the variance estimator for the ˆyPSt  (2.2)
that is a function of the prediction model residuals 
and the g-weights, i.e., ( )ˆres yPSvar t .  The second 

component remains as specified previously.  
 
3.3 Fuller Two-Phase Jackknife Method (ECF2) 
Isaki, Tsay, and Fuller (2004) applied a two-phase 
delete-one jackknife variance estimator developed by 
Fuller (1998) to an EC calibration situation.  The 
premise behind Fuller’s methodology is to take a 
spectral (eigenvalue) decomposition of the 
benchmark covariance matrix ( BV ), develop 
benchmark adjustments that are a function of the 
resulting eigenvalues and eigenvectors, and add the 
adjustments to the controls to create a set of replicate 
controls.  A randomly chosen subset of the R  
replicates is calibrated to the G  constructed replicate 
controls.  Specifically, the benchmark control total 
for the rth variance replicate within the hth design 
stratum is defined as  

( ) ( ) ( )1
ˆ ˆ ˆG

B h gB hr hr g hrgc δ δ=
′= + ∑N N z      (3.4) 
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where N̂B  is the G-length vector of estimated 
controls; hc , in general, is a constant related to the 
chosen replication variance method 
( ( )1= −h h hc n n  specifically for the delete-one 

jackknife); ( )hrδ  is a zero/one indicator that 

identifies the G  (out of R ) randomly chosen 
replicates to receive an adjustment ( ẑg ) for the 

estimated controls, ( ) 1, ,hr R= … ; ( ) 1δ =g hr  if the 

gth component ( 1,...,=g G ) of the benchmark 
covariance decomposition is randomly chosen for the 

assignment; and ˆˆˆ λ=z qg g g , a function of an 

eigenvector ( q̂g ) and the associated eigenvalue ( λ̂g ) 
from the decomposition of the estimated covariance 
matrix, 1

ˆ ˆ ˆG
B g gg=

′= ∑V z z .  Thus, given that 

( ) 1δ =hr  for a particular replicate ( )hr , one 

indicator ( )g hrδ  must also equal one; however, if 

( ) 0hrδ = , then all indicators ( )g hrδ   equal zero. 

 
Fuller (1998) demonstrated that the (delete-one) 
jackknife sample variance of the replicate controls 
reproduces the estimated benchmark covariance 
matrix ( V̂B ).  He further showed that the design-
expectation of the components of the resulting 
jackknife variance estimator are asymptotically 
equivalent to (3.1) in addition to a cross-product term 
that converges to zero with ( )1−

AO n . 

 
3.4 Nadimpalli-Judkins-Chu Jackknife Method 

(ECNJ) 
Nadimpalli, Judkins, and Chu (2004) developed a 
jackknife variance estimator by randomly perturbing 
all instead of a subsample of the replicate controls in 
the following way: 

( ) ( ) ( )ˆ ˆ ˆ
B h h BB hr hrc R diag seε⎡ ⎤⎡ ⎤= + ×⎢ ⎥⎣ ⎦⎣ ⎦

N N N    (3.5) 

where 1h hR Hn=  is related to the estimated 
number of replicates within stratum h ; 

( )ˆ⎡ ⎤
⎣ ⎦NBdiag se  is the diagonal matrix of dimension 

G  containing the estimated standard errors of the 
benchmark controls ( N̂B ); and ( )hrε  is a G -length 

vector of values randomly generated from the 
standard normal distribution for each replicate.  The 
remaining terms are the same as specified for the 
Fuller jackknife method above (section 3.3).  Unlike 

the Fuller methods, the sample variance of the NJC 
replicate controls does not reproduce the covariance 
matrix ( V̂B ); however, in expectation the variance of 

the replicate controls equals ( )ˆ
B BE=V V . 

 
Use of the NJC jackknife method would be plausible 
in two cases – the complete benchmark covariance 
matrix for the controls is unavailable (e.g., estimates 
taken from a previous report), or that the covariance 
terms would reduce the size of the variance estimates, 
and therefore the resulting values defined by (3.5) 
would be conservative estimates.  The diagonal 
covariance matrix for ˆ BN  in NJC would be correct if 
the estimated poststratum counts were actually 
uncorrelated.  However this is unlikely because of the 
multinomial structure of ˆ BN .  Given the setup for the 
NJC method, the expectation of the variance 
estimator will not approximate (3.1); the bias term is 
related to the difference between the design-
expectation of ( )ˆ⎡ ⎤

⎣ ⎦NBdiag se  and VB . 

 
4. Simulation Study 

4.1 Simulation Parameters 
We complement the theoretical evaluation of the six 
variance estimators presented in the previous section 
with an empirical evaluation through a simulation 
study.  The simulation population is a random subset 
of the 2003 National Health Interview Survey (NHIS) 
public-use file containing records for 21,664 adults.  
These records were divided into 25 strata, each 
containing six PSUs.  We selected 1,000 samples of 
size 1,000 to estimate the population totals and 
associated variances for two variables from the 
NHIS: (i) Health insurance coverage (NOTCOV)—
whether a person was without any type of health 
insurance within the last 12 months; and (ii) Medical 
care delayed (PDMED12M)—whether a person 
delayed medical care or not because of cost in last 12 
months.  Samples were selected in two stages – a 
probability proportional to size (with replacement) 
sample of two PSUs per stratum and a simple random 
sample of 20 persons within each sampled PSU.  We 
excluded nonresponse from consideration in our 
current simulation study to minimize extraneous 
factors that might affect our comparisons.  
 
Poststratification may reduce variances slightly but in 
household surveys is mainly used to correct for 
sampling frame undercoverage, as well as other 
problems inherent with surveys.  The 1,000 
simulation samples were selected to mimic a 
sampling frame that suffers from differential 
undercoverage, i.e., telephone survey frames.  The 16 
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poststratification cells were defined by an eight-level 
age variable crossed with gender.  The coverage rates 
for the 16 cells by analysis variable are provided in 
Table 1.  A coverage rate equal to 1.0 would indicate 
full coverage.  Before each sample was selected, the 
frame was designated as a stratified random 
subsample of the full population of 21,664.  For 
example, 90% of the male population less than five 
years of age (age <5, male) were randomly selected 
to be in the frame for NOTCOV.  This process of 
subsetting the population to the frame was 
independently implemented for each sample. 
 
Table 1.  Coverage Rates for 16 Poststratification 
Cells by Analysis Variable 

 

Not covered by 
health insurance 

(NOTCOV) 

Delayed medical 
care in last 12mo 
(PDMED12M) 

Age Male Female Male Female 
<5 0.9 0.9 0.9 0.9 

5–17 0.8 0.8 0.8 0.8 
18–24 0.5 0.5 0.6 0.5 
25–44 0.5 0.5 0.6 0.5 
45–64 0.8 0.8 0.6 0.5 
65–69 0.9 0.9 0.9 0.5 
70–74 0.9 0.9 0.9 0.7 
75 + 0.9 0.9 0.9 0.8 

 
We suspect that the decision for researchers to use 
either a traditional or an EC calibration variance 
estimator depends on the precision of the control 
totals.  We calculated the EC covariance matrix ( ˆ

BN  
using the notation from section 3) from the complete 
NHIS public-use data file (N=92,148) and adjusted 
the values to reflect a sample of size comparable with 
our simulation population (N=21,664).  A few 
example correlations for the covariance matrix ˆ

BN  
are provided in Table 2; the off-diagonal values range 
from -0.05 to 0.75 with a mean value of 0.22.  From 
this revised matrix we calculated four covariance 
matrices for the simulation by dividing the original 
matrix by the adjustment factors 1.0, 3.6, 18, and 72.  
The adjustments reflect approximate effective sample 
sizes of 92,000, 25,500 (=92,000/3.6), 5,100, and 
1,280, respectively. 
 
Table 2.  Estimated Control Total Correlations for 
Males in Age Groups Ranging from 18 to 69 

 18-24 25-44 45-64 65-69 
18–24 1.00 0.37 0.29 0.01 
25–44 0.37 1.00 0.31 0.10 
45-64 0.29 0.31 1.00 0.19 
65-69 0.01 0.10 0.19 1.00 

The simulation was conducted in R (Lumley 2005, R 
Development Core Team 2005) because of its 
extensive capabilities for analyzing survey data and 
efficiency with simulated analyses.  Code was 
developed to calculate the linearization and replicate 
variance estimates for the EC poststratified estimator 
discussed above because such relevant code did not 
exist. 
 
4.2 Evaluation Criteria 
The empirical results for the six variance estimators 
were compared using three measures across the 1,000 
simulation samples: the estimated percent relative 
bias of the variance estimator 

( ) ( )( )21
1000

ˆ 1s var rmseθ⎡ ⎤ −⎢ ⎥⎣ ⎦∑ ; the 95% 

confidence interval coverage rate ( )( 1 / 2
ˆ| |P Z z α−≤  

where )ˆ ˆˆ ( )Z varθ θ θ⎡ ⎤= −⎣ ⎦ ; and the standard 

deviation of the estimated standard errors 

( ) ( ) ( )
2

1
1000 1

ˆ ˆ 1000s ss svar varθ θ
−

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∑ . 

The relative bias and the root mean square error 
(rmse) of our point estimators are calculated as 

( ) ( )1 ˆ1000 ss θ θ θ− −∑  and ( )2ˆ 1000ss θ θ−∑ , 

respectively.  The term θ  refers to total calculated 
from the full population, not total calculated from the 
“covered” frame.    
 

5. Simulation Results 
We first examine the results of our point estimators to 
justify the need for calibration, and move on to a 
comparison of empirical results for our set of 
variance estimators. 
 
5.1 Point Estimator 
To justify the need for calibration, we initially 
evaluated the Horvitz-Thompson (HT) estimates 
( 1

k ks yπ −∑ ) for our analysis variables which are 
known to be design-unbiased under pristine 
conditions .  The average percent relative bias for the 
HT estimator was approximately 38 percent for 
NOTCOV and slightly higher for PDMED12M at 41 
percent.  These large values also show that some 
correction is needed to adjust for the non-negligible 
levels of bias.  The percent relative bias for the 
poststratified estimator was much lower – values 
range from 1.3 to 2.6 percent for both analysis 
variables.  Minor fluctuations in the levels were 
detected as the efficiency of the benchmark 
covariance changed for both point estimators. 
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Figure 1. Percent Relative Bias of Five Variance Estimators by Efficiency of Benchmark Survey 
Estimates for Total Number Not Covered by Health Insurance in Last 12 Months. 
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5.2 Variance Estimators 
Adding to the discussion in Section 3, the empirical 
results for the ideal variance estimator should show a 
percent relative bias either near zero or somewhat 
positive for a conservative measure.  Figure 1 shows 
the percent relative bias (y axis) for the five of the six 
variance estimators using the NOTCOV variable and 
benchmark estimates with increasing levels of 
efficiency (left to right on the x axis).  A similar 
pattern is shown for the variable PDMED12M.  We 
focus on the general pattern in the data as shown in 
Figure 1 instead of displaying pages of tabular 
results. 
 
The traditional poststratified variance estimator 
(Naïve) assumes that the benchmark estimates are 
true population values and is represented by a blue 
diamond in Figure 1.  We also included the delete-
one jackknife in the simulation, again assuming that 
ˆ BN  was constant.  The empirical results for the two 

naïve variance estimators (linearization and 
jackknife) were so similar that they are represented 
by a single line.  When the efficiency of the 
benchmark estimates is low (represented as an 
effective sample size of 1,280), the benchmark 
estimates make a substantial contribution to the 
variance, and the estimator severely underestimates 
the true variance by as much as 50 percent.  The 
relative bias improves with the increased efficiency 
of the benchmark survey estimates because they 
make up a smaller proportion of the variance of θ̂ .   
 

A pattern similar to the Naïve estimators is seen with 
the Nadimpalli-Judkins-Chu jackknife method 
(ECNJ).  However, the ECNJ is a noticeable 
improvement over the Naïve estimators by reducing 
the underestimate in some cases by as much as 25 
percent. 
 
The Taylor Series Linearization (ECTS), the Residual 
Linearization Method (ECRL), and the Fuller Two-
Phase Jackknife Method (ECF2) are all similar and 
produced the lowest levels of relative bias.  Any 
differences resulting from simulation variation were 
negligible. 
 
When the precision of the control totals is high 
(represented here as an effective sample size of 
92,000), the difference between the methods is 
negligible.  One could argue by a visual examination 
of Figure 1 that a slight decrease in the precision 
(effective size of 25,000) is also negligible.  This 
suggests that a relative threshold could be identified 
to determine when the new EC calibration techniques 
are required instead of using traditional methods 
already available. 
 
The patterns exhibited for the percent relative bias 
are reflected in the coverage rates for the 95 percent 
confidence interval for the estimated totals (Figure 
2).  The coverage rates for the Naïve and ECNJ 
estimators are much lower than the desired rate (95 
percent), approaching 80 and 86 percent, respectively 
as the effective size of the benchmark survey 
decreases.  These levels again improve as the 
efficiency of the benchmark estimates improves.  
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Figure 2. Coverage Rates for 95 Percent Confidence Intervals of Five Variance Estimators by Efficiency of 
Benchmark Survey Estimates for Total Number Not Covered by Health Insurance in Last 12 Months. 
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However, the coverage rates for the remaining 
variance estimators which account for the complete 
benchmark covariance matrix are much higher.  The 
coverage rates for the ECTS, ECRL, and ECF2 
methods range from levels slightly below 93 to 96 
percent with the lower levels occurring when the 
contribution of the benchmark estimates to the 
overall variance is much lower than from the analytic 
survey. 
 
Again, we see that the coverage rates by variance 
estimator are comparable when the precision of the 
benchmark controls is relatively high.  Differences 
may be detected if the point estimates exhibited 
higher levels of bias than shown in our simulation 
study. 
 
The discussion so far indicates that there is minimal 
difference between the ECTS, ECRL, and ECF2 
methods.  We finally look to the standard deviation 
of the estimated standard errors in an attempt to 
distinguish the estimators.  Table 3 contains the 
percent relative difference of the standard deviations 
for the ECRL, ECF2, and ECNJ from the ECTS 
value for the NOTCOV variable.  Again, a similar 
pattern is reflected for the PDMED12M variable.  
The variation in the Fuller two-phase (ECF2) 
estimates is larger than in the estimates from the 
linearization methods (ECTS and ECRL), and is 
slightly lower than the variation in the ECNJ 
estimates.  In our simulation study, we made one 
random adjustment to the benchmark controls per 
replicate as shown in (3.4).  One way to stabilize 
ECF2 may be to use multiple random assignments for 
each sample, compute ECF2 from each assignment, 

and average those values.  This proved too 
computationally demanding for our simulation study 
but may warrant further examination. 
 
Table 3.  Percent Relative Difference of the Standard 
Deviations for the ECRL, ECF2, and ECNJ Estimates 
from the ECTS Value for NOTCOV 

Effective Size of Benchmark Survey Variance 
Estimators 1,280 5,100 25,500 92,000 

ECRL -1.1% 0.3% -1.1% -3.1%
ECF2 14.3% 7.4% 2.0% 0.5%
ECNJ 15.1% 7.6% 2.3% 0.6%

 
6. Conclusions and Future Work 

The theoretical and analytical work discussed in this 
paper support the need for a new methodology to 
address calibration using estimated control totals, i.e., 
estimated-control (EC) calibration.  Traditional 
variance estimators severely underestimate the 
population sampling variance resulting in, for 
example, incorrect decisions for hypothesis tests and 
sub-optimal sample allocations when the design is 
optimized in the future.   
 
Currently, the linearization variance estimators 
developed under our research shows the most 
promise for EC calibration.  However, the 
applicability of replication methods is cited for 
public-use files released without sampling design 
information to further protect data confidentiality and 
respondent privacy.  Hence, the Fuller two-phase 
method presented here is widely applicable. 
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Our future research will include an examination of 
bias in the point estimators, a generalization to linear 
calibration, and adaptation to other statistics 
including a ratio-estimated mean.  We additionally 
are investigating whether threshold values are 
identifiable which determine (1) when there is 
negligible difference between traditional and 
estimated-control variance estimation to suggest 
when the extra effort is not needed, and (2) when the 
benchmark controls are too imprecise to use in a 
calibration model. We also plan to investigate the 
theoretical implications for measurement errors in the 
analytic as well as the benchmark survey, and 
methods to improve the benchmark estimates which 
includes for example, collapsing cells to create an 
“optimal” set of poststratification cells.  
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