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1. Introduction 
 Scale score measurements (SSM�s) are very common 
in psychological and social science research.  As an 
example, the Child Behavior Checklist (CBCL) is a 
common SSM for measuring behavior problems in 
children (see Achenbach, 1991a, 1991b for the version of 
the CBCL used in this paper).  It consists of 118 items on 
behavior problems, each scored on a 3-point scale: 1 = not 
true, 2 = sometimes true and 3 = often true of the child.  
The CBCL Total Behavior Problem Score is an empirical 
measure of child behavior computed as a sum of the 
responses to the 118 items.  The usefulness of any SSM in 
data analysis depends in large part on its reliability. An 
SSM having poor reliability is infected with random 
errors that obscure the true construct underlying the 
measure.  SSM�s having good reliability are relatively 
free from random error which enhances their validity as 
an analysis variable (see, for example, Biemer and 
Trewin, 1997).  For example, Biemer and Trewin show 
that as reliability (R) decreases, the standard errors of 
estimates of means, totals and proportions increase by the 

factor 1R− .  In addition, for simple linear regression, 
the slope coefficient is biased toward 0 if the explanatory 
variable is not reliable.  Thus, assessing scale score 
reliability is typically an integral and critical step in the 
use of SSM�s in data analysis. 

The most common method for assessing scale score 
reliability is Cronbach�s α (Hogan, Benjamin, & 
Brezinsky, 2000).  A number of software packages for 
data analysis (for e.g., SAS, SPSS, and STATA) provide 
subroutines for computing α with relative ease.  There are 
numerous examples in the literature of using α for 
assessing the reliability of scale scores.  One reason for 
α�s ubiquity is that few alternative methods for assessing 
reliability in cross-sectional studies are available � this 
despite the fact that α has been criticized in the literature 
due to the rather strong assumptions underlying its 
development as an indicator of reliability (see, for 
example, Bollen, 1989, p.217; Cortina, 1993; Green & 
Hershberger, 2000; Luke, 2005; Zimmerman & Zumbo, 
1993).   
 It is well-known that α tends to overestimate 
reliability when the SSM items are subject to inter-item 
correlated error (Green & Hershberger, 2000; Lucke, 

2005; Raykov, 2001; Rae, 2006; Vehkalahti, et al, 2006; 
Zimmerman, et. al, 1993; Komaroff, 1997).  The 
assumption of uncorrelated inter-item error is violated, for 
example, if respondents try to respond consistently to the 
items in scale rather than considering each item 
independently of the others and providing the most 
accurate answer to each. For items which are prone to 
social desirability effects, errors across items may be 
correlated if respondents force their responses to be more 
socially acceptable than the truth may seem. Respondents 
may also respond as they think they should rather than 
completely honestly, a form of acquiescence bias.  These 
situations tend to induce positively correlated errors 
which will positively bias α; i.e., reliability as measured 
by α will appear higher than it truly is. 

Cronbach�s α can also underestimate reliability if the 
items in an SSM do not all measure the same construct 
(Raykov, 1998; Raykov & Shrout, 2002; Komaroff, 
1997).  For example, an SSM that is intended to measure 
depression may include some items that instead measure 
anger or pain.  In addition, the questions may be worded 
in such a way that respondents interpret the questions 
erroneously and report behaviors or attitudes which are 
inconsistent with the construct of interest. 

For panel data, there are alternatives to α that rely on 
assumptions that are more easily satisfied in practice.  
One of these is the simplex estimator of reliability (Wiley 
and Wiley, 1970).  Unlike α, the simplex estimator is a 
function of the sum score itself rather than individual 
scale items and, therefore, it accuracy is not affected by 
inter-item correlated error.  When the scale items are 
subject to correlated error, simplex reliability estimates 
will tend to be smaller than Cronbach�s α which, as noted 
previously, is inflated. This is not to say that simplex 
estimates are always more accurate than Cronbach�s α 
since the simplex model assumptions can also be violated.  
This raises a question for the analyst who computes both 
estimates:  if the estimates differ considerably, which has 
the greater accuracy (or validity) and should be reported?  
This question should be address for each application since 
the model assumptions are satisfied to varying degrees 
depending on the SSM and the study design.   

This paper proposes an approach, referred to as the 
generalize simplex method, for estimating scale score 
reliability for panel data under more general assumptions 
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than those required for either α or the simplex estimator. 
It will be shown that, by imposing parameter restrictions 
on the model underlying this new estimator, estimates of 
reliability that are consistent with Cronbach�s α, the 
simplex method or even several other useful simplex-like 
approaches can be produced.  This provides the analyst 
with a number of options for reporting SSM reliability.   

As an example, in situations where its quality can be 
assured, Cronbach�s α may be preferred over more 
complex estimators of reliability since it is widely used 
and easy to compute. The generalized simplex method 
can be used to test whether the assumptions underlying α 
or several alternative estimators of reliability hold for a 
particular SSM.  In cases where α�s assumptions are 
rejected, our approach provides a process for identifying 
the simplest method for computing reliability whose 
quality can be verified by formal tests of significance.  In 
some situations an analyst may prefer to compute the 
generalize simplex estimate of reliability without testing 
whether simpler alternatives are available.  However, it 
can be instructive to identify situations where the 
assumptions underlying α and the traditional simplex 
model do not hold to inform future uses of these methods. 
 For example, to the extent that SSM�s perform 
similarly across a range of study settings and designs, 
testing the assumptions underlying reliability estimation 
would be quite useful to analysts who contemplate using 
the same or similar SSM�s in other data sets. As an 
example, if the assumption of uncorrelated errors is 
rejected for an SSM in one particular study, that should 
serve as a warning that this assumption may be 
questionable for this SSM across studies.  In some 
situations, it may be possible to modify the data collection 
methodology to reduce inter-item correlated error for the 
SSM.  At a minimum, it would forewarn analysts that the 
use of Cronbach�s α for assessing the SSM�s reliability is 
suspect. 

The next section briefly reviews the concept of 
reliability, particularly scale-score reliability, and 
introduces the notation and models that will be needed for 
describing the methods.  We show that Cronbach�s α and 
the simplex method are essentially special cases of the 
generalize simplex method which is uses the method of 
split-halves (Bollen, 1989, p. 213-215).  The methodology 
for testing the assumptions underlying alternative 
estimates of reliability also developed.  In Section 3, we 
apply this methodology to a number of scale score 
measures from the National Survey of Child and 
Adolescent Well-being (NSCAW) to illustrate the 
concepts and the performance of the estimators. 

 
2. Scale Score Reliability 

Observations obtained in a survey or other study are 
subject to errors which may be attributable to a number of 
error sources including survey questions, respondents, 
interviewers and data processing procedures.  These error 

sources impart both systematic and random errors to the 
measurements.  For a particular data item, assume there is 

a true value, iµ , for the ith individual in the survey; 

however, rather than observing iµ , we observe iy .  The 

difference i i ie y µ= − is the measurement error; that 

is, i i iy eµ= + .  For the ith individual, the mean of the 

ei�s over hypothetical repetitions of the measurement 
process is the systematic component of error denoted by 

ib ; i.e., E(ei|i) = ib .  The sum of an individual�s true 

value and this systematic component, i.e. i i it bµ= + , is 

called the true score of the individual. It is simply the 
mean of the hypothetical distribution of responses for an 
individual.  These assumptions lead to the error model 

i i i iy bµ ε= + +  (1) 

 
or equivalently, 

i i iy t ε= +  (2) 

 

where i i iy tε = −  and E( | ) 0i iε = .  Define the 

variance of the iε �s as  
2 2E( | )i i iεσ ε=  (3). 

If we further assume that ( )cov , 0i jε ε =  and 

( )cov , 0i itε = , then the unconditional variance of iy   

is given by 

2 2

Var( ) Var( ) Var( )i i i

t

y t

ε

ε
σ σ

= +

= +
 (4) 

 
 Reliability analysis is concerned with the amount of 
variable error that is present in the process for measuring 
the true value, µi.  The reliability ratio is 

2

2 2
t

t

R
ε

σ
σ σ

=
+

 (5) 

(see, for example, Fuller, 1987, p. 3) defined as true score 
variance divided by the total variance of the 
measurements (i.e., the sum of true score and random 
error variance).  Reliability is essentially the proportion of 
total variance that is true score variance.  It can also be 
interpreted as the intraclass correlation coefficient (ICC) 
among items or the proportion of total variation among 
items and subjects due to the shared variance (or 
correlation) of the items.  When R is high, we say the 
measurement process is reliable; i.e., the variation in the 
measurements is due mostly to the variation in the true 
scores of individuals in the population.  When R is low, 
we say that the measurement process is unreliable; that is, 

Section on Survey Research Methods

3976



the variation in the measurements is mostly random error 
or �noise.�   
 The same concepts can be applied to an SSM (or 
multi-item scale) which can be defined broadly as any 
sequence of questions that assesses facets of the same 
construct to produce a scale score, S.  For our purposes, S 
is defined as the unweighted sum of responses to the 
questions comprising the SSM.  Each item in the scale is 
assumed to be measured on an ordinal scale (for e.g., a 
Likert scale) and is an indicator of the same latent 
construct.  If we assume that the measurement errors for 
the items are uncorrelated (i.e., no inter-item correlated 
error), the reliability of the score S can be estimated as a 
function of the inter-item correlations. This is the basis for 
Cronbach�s α method of estimating the reliability of S 
(Cronbach, 1951). 
 The next sections describe three models for 
estimating scale score reliability beginning the with 
simplest approach, Cronbach�s α.  A second method, 
referred to as the simplex method, will then be introduced 
that can be applied when the same construct is measured 
at three or more time points or panel waves.  Finally, we 
develop the generalized simplex approach which also 
requires three or more waves of data.  In addition, it 
assumes that the SSM can be divided into two 
psychometrically equivalent SSM�s using the method of 
split halves.  As we shall see, the α and simplex models 
are special cases of this generalized simplex model. 
 
2.1 Estimating Reliability Using Cronbach’s α 
 To fix the ideas, a four-item SSM will be assumed 
initially and subsequently generalized for k >2 items.  The 
assumptions underlying Cronbach�s α can be illustrated 
by the simple factor analysis model in the following 
model equations: 

1 1 1

2 2 2

3 3 3

4 4 4

y t

y t

y t

y t

λ ε
λ ε
λ ε
λ ε

= +
= +
= +
= +

 (6) 

where , 1,..., 4jy j =  denote the responses to the four 

items for a particular individual, t denotes the true score 

which is the same for all four indicators and jε  are 

random error terms.  The subscript, i, denoting the 
individual has been dropped as a notational convenience.   

The jλ �s are scaling coefficients to adjust for differences 

in the scales of measurement among the items.  
 The model also assumes that the measurement 

errors, jε �s are uncorrelated between items; i.e., 

( )'cov , 0j jε ε =  for any two items  and j j′ .  In 

addition, Cronbach�s α assumes that the four 

measurements are parallel; that is, 1jλ = and 

( ) 2
jVar εε σ= , for all j.  This implies that all four items 

are measured using the same scale of measurement and 
are subject to the same error distribution. 
  
 Now generalizing to k items, define the scale score, 

S, for a k-item scale as j
j

S y=∑ .  From (6), it follows 

that  
2 2 2( ) tVar S k k εσ σ= +  (7) 

The first term on the right side of (7) is the true score 
variance and the second term is the error variance.  Under 
this model, the reliability of S is given by 

2 2

2 2 2
t

t

k
R

k k ε

σ
σ σ

=
+

 (8) 

or 
2

2
2

t

t

R

k
ε

σ
σσ

=
+

 (9) 

Note from (9) that the error variance component is 
divided by k, the number of items in the scale which 
implies that reliability increases as the number of items in 
the scale increases.  Thus, according to the assumptions of 
Cronbach�s α, a 50-item scale will be more reliable than a 
scale consisting of a subset of k<50 of these items. Failure 
of this relationship between k and R to hold is evidence 
that the assumptions underlying Cronbach�s α also do not 
hold. 
 Under these assumptions, an unbiased estimator of R 
in (9) is Cronbach�s α  given by 

( )
( )

1

var
� 1

1 var

k

j
j

y
k

k S
α =

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠
⎜ ⎟
⎝ ⎠

∑
 (10) 

where ( )var jy is an estimate of ( )jVar y  and 

( )var S is an estimate of ( )Var S .  For a simple 

random sample of size n, the an unbiased estimator of 

var( )jy is 

2

1

( )
var( )

1

n

ji j
i

j

y y
y

n
=

−
=

−

∑
 (11) 
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and an unbiased estimator of ( )var S  is identical to (11) 

after replacing jiy by 
1

k

i ji
j

S y
=

=∑  and Sy j by  .   

 In a panel study where S is computed at each wave, 

let Sw denote the score at wave w and �
wα the 

corresponding estimate of α at wave w.  In practice, α is 
estimated separately and independently for each wave. 
The method of estimating reliability discussed next uses 
information both within and across waves to assess 
reliability at each wave. 
 
2.2 Estimating Reliability using the Simplex Model 
 For panel data, scale score reliability can also be 
estimated using the so-called simplex model (Heise, 1969; 
Heise, 1970; Wiley & Wiley, 1970; Jöreskog, 1979).  The 
simplex method uses a longitudinal structural equation 
model to estimate scale score reliability at each wave 

using the scale scores themselves (i.e., the iS �s) rather 

than the responses to the individual items comprising the 
scale.  This is a key advantage of the simplex model over 
Cronbach�s α:  since it operates on the aggregate scale 
scores, correlations between the items within the scale do 
not bias the estimates of reliability.  
 To use this method, the same scale must be available 
from at least three waves of a panel study and the scores 
must be computed identically at each wave.  The 
covariation of individual scores both within and between 
the waves provides the basis for an estimate of the 
reliability of the measurement process.  In this sense, the 
simplex model is akin to a test-retest reliability 
assessment where the correlation between values of the 
same variable measured at two or more time points 
estimates the reliability of those values.  An important 
difference is that while test-retest reliability assumes no 
change in true score variance or error variance across 
repeated measurements, the simplex model allows either 
true score variance to change while holding error variance 
constant (referred to as the stationary error variance 
assumption) or vice versa (referred to as the stationary 
true score variance assumption) according to the situation. 
Unfortunately, allowing both true score and error 
variances to vary by wave leads to a non-identified model 
(i.e., insufficient number of degrees of freedom to obtain 
a unique solution to the structural equations).   
 An early version simplex model (proposed by Wiley 
& Wiley, 1970) assumed stationary error variance and, 
thus, allowed true score variance to change by wave 
which seems plausible for most practical situations.  In 
the present work, both types of assumptions (stationary 
true score variance and stationary error variance) are 
considered.   
 This model is composed of a set of measurement 
equations and structural equations.  The measurement 

equations relate the unobserved true scores to the 
observed scores. 

w w wS t ε= +  (12) 

for w = 1,2,3 where wS  is the observed score, wt  is the 

unobserved true score (i.e., sum of the k item true scores) 

and the wε  is measurement error (i.e., sum of the k item 

error terms) at wave w=1,2,3.  
 The structural equations define the relationships 
among true scores: 

2 12 1 2

3 23 2 3

t t

t t

β ζ
β ζ

= +
= +

 (13) 

where 12β  is the effect of the true score at time 1 on the 

true score at time 2 and 23β  is the effect of true score at 

time 2 on true score at time 3.  The , 1w wβ +  are the 

parameters that measure change in true score from wave 

w to wave w+1.  The terms 2ζ  and 3ζ  are random error 

terms that represent the deviations between 1wt +  

and , 1w w wtβ + , sometimes referred to as random shocks.  

Note that ( )var wζ  is a component of true score 

variance at time w; for example,   
2

2 12 1 2( ) ( ) ( )Var t Var t Varβ ζ= +  (14) 

 
and 

2
3 23 2 3

2 2 2
23 12 1 23 2 3

( ) ( ) ( )

( ) ( ) ( )

Var t Var t Var

Var t Var Var

β ζ
β β β ζ ζ

= +

= + +
 (15) 

 
 Assumptions of the simplex model include, for all w, 
w'=1,2,3  

( )
( )
( )
( )

'

'

'

0

, 0

, 0

, 0

w

w w

w w

w w

E

Cov

Cov t

Cov t

ε
ε ε
ε
ζ

=

=

=

=

                                                   (16) 

For identification, the original simplex model assumed 
stationary error variance, that is, 

( ) ( ) 2
'  =  for 'w wVar Var w wεε ε σ= ≠                 (17) 

(see Wiley and Wiley, 1970). Stationary true score 
variance can be substituted for (19) and will be discussed 
subsequently 

 The simplex model estimates the parameters 12β , 

23β , 2
εσ , 2

1 1( )t Var tσ = , ( )2
2 2Varζσ ζ= , and 
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( )2
3 3Varζσ ζ= .  The reliabilities for the three waves 

are given by the following:  
2
1

1 2 2
1

t

t

R
ε

σ
σ σ

=
+

 (18) 

2
2

2 2 2
2

t

t

R
ε

σ
σ σ

=
+

 (19)   

2
3

3 2 2
3

t

t

R
ε

σ
σ σ

=
+

 (20) 

 
Note that equations (18)-(20) all have the same form as 
(5).    If desired, (19) and (20) may be rewritten in terms 

of 12β , 23β , 2
εσ , 2

1tσ , 2
2ζσ , and 2

3ζσ  using (14) and 

(15). 
 Under the Wiley & Wiley simplex model, the error 
variances are stationary ( as in equation 17) and the true 
score variances are non-stationary.  However, there are 
situations when the error variances should also be non-
stationary.  For example, the information collected on 
children for the CBCL may be more subject to random 
error as the children age.  Thus, the error variance at 
Waves 2 or 3 could be somewhat larger than the error 
variance at Wave 1.  As previously noted, specifying both 
non-stationary true score and error variances will yield a 
non-identified model.  Thus, if non-stationary error 
variances are specified, then stationary true score 
variances must be specified in order to achieve an 
identified model. 
 To illustrate, Table 1 provides estimates of reliability 
for the Youth Self-Report for three waves of the NSCAW.  
Cronbach�s α and the simplex reliability estimates are 
provided under both the assumptions of stationary error 
variance and stationary true score variance.  The sample 
sizes varied somewhat for each estimate from 1200 to 
1800 cases.  Differences as small as 0.05 can be 
interpreted as significant.  Note that the simplex estimates 
vary considerably within wave: from 0.57 to 0.77 in 
Wave I.  The simplex estimates tend to be smaller than α, 
substantially so in some cases which suggests that inter-
item correlation could be inflating the α estimates of 
reliability.  These results also illustrate the degree to 
which estimates of R can vary depending upon the 
method used. 
 
Table 1.  YSR Scale Score Reliability Estimates using 

the Simplex Model and Cronbach’s α 
 

Model Wave 1 Wave 2 Wave 3 

Simplex: Stationary 
Error Variance 

0.77 0.71 0.67 

Simplex: Stationary 0.57 0.71 0.81 

True Score Variance 

Cronbach�s α 0.96 0.95 0.95 

 
 Although the simplex model is unaffected by 
correlated error, it can still be biased due to the failure of 
other assumptions made in its derivation.  As an example, 
if both error variance and true score variance, the simplex 
estimates of reliability will be biased regardless of which 
of these is assumed to be stationary.  As an example, 
suppose that error variances increase over time while true 
score variance remains constant.  In this situation, the 
reliability ratio actually decreases over time since the 
denominator increases while the numerator remains 
constant.  The simplex model, under the stationary error 
variance assumption, will attribute the increase in total 
variance across time to increasing true score variances.  
This means that reliability will appear to increase over the 
time � just the opposite of reality. 
 The simplex model can also be contaminated to some 
extent by correlated errors among the waves since it 
assumes that the score-level errors are independent across 
time.  As an example, if the waves are spaced only a few 
days apart, subjects may remember their answers from the 
last interview and repeat them rather than providing 
independently derived responses.  If instead the time 
interval between waves is a few weeks or more, the risk 
of recall and consequently between-wave correlated error 
is much reduced.  This may not eliminated the inter-wave 
correlated error, however.  For example, if the subjects 
tend to misinterpret the items in a scale in the same way at 
each wave, response errors, even at the aggregate scale-
level, could be correlated across waves.  
 Finally, another assumption of the simplex model is 
that the ratio of the current wave�s true score to the prior 
wave�s true score is a constant apart from the random 
shock terms.  This assumption may not hold in general.  
For example, some items in the CBCL are specific to a 
child�s age and these items are substituted by other items 
that are more appropriate for the child as the child ages.  
Thus, the assumption that the true scores of the scales 
appropriate to children of all ages satisfy model 
assumption may be violated and, if so, the simplex model 
estimates may be unpredictably biased.   
  The next section introduces a more general 
model that subsumes the models used to generate the 
estimates Table 1 as special cases.  An important 
additional feature of the model is that it is identified even 
if true score and error variances are not stationary; that is, 
when both are allowed to vary across waves.  We also 
provide an approach for testing which set of model 
restrictions are satisfied in order to choose the best 
estimates of reliability. 
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2.3 The Generalized Simplex Model for Estimating 
Scale Score Reliability 

 Using the method of split halves (Brown, 1910; 
Spearman, 1910), a more general model for estimating 
scale score reliability can be formulated which relaxes 
many, but not all, of the assumptions associated with the 
α and simplex models.  Under very general assumptions, 
this model will provide estimates of reliability for each 
half of a scale for each wave of data collection.  The half-
scale reliability estimates for each wave can then be 
combined to produce a full scale estimate of Rw using a 
formula similar to the Spearman-Brown Prophecy 
formula (Carmines & Zeller, 1979) that we have 
generalized for use when the two half-scales have 
correlated errors.  To simplify the exposition of the 
model, we assume three panel waves are available; 
however, extending the model to more than three waves is 
straightforward. 
 Suppose the items comprising the score at wave w 
denoted, Sw, can be split into two equivalent halves.  One 
approach might assign odd numbered items to one half 
and even number items the other half. However, any 
method for dividing the items that satisfies the subsequent 
model assumptions is acceptable.  Let Sw1 and Sw2 (w = 
1,2,3) denote the scores corresponding to the two halves.  
This model resembles the original simplex model with the 
only difference being the single score Sw has been 
replaced by Sw1 and Sw2 corresponding to the split halves.  
Analogous to the simplex model, the generalized (split 
halves) simplex model assumes the following: 

( )
( )
( )

'

'

E 0,  for 1, 2

, 0,  for 

, 0,  for ( , ) ( , )

ws

ws w s

ws w s

s

Cov w w

Cov t w s w s

ε
ε ε
ε

′

′

= =
′= ≠

′ ′= ≠

 (21) 

 
To be identified, the generalized simplex model requires 
the restriction that the covariance between the split halves 
within a wave is constant over time; i.e., 

1 2 1 2 12( , ) ( , )w w w wCov S S Cov S S σ′ ′= = , say, for all 

,w w′ .  We must further assume that the true score 
variances are equal across the split-halves; that is, 

1Var( )wt 2Var( )wt= = 2
twσ , say. Let 2�twσ  and 2� wεσ  

denote the estimates of the true score and error variances, 

respectively, for split-halves at wave w and let 12�σ  

denote the estimate of the split-half error covariance at 
wave w.  Then an estimator of the reliability of the score, 
Sw, is 
 

2

2
2

12

��
�

� �
2

tw
w

w
tw

R
ε

σ
σσ σ

=
+ +

 (22) 

Except for the covariance term in the denominator, this 
formula is equivalent to the well-known Spearman-Brown 
prophecy formula (Carmines & Zeller, 1979). 
 This model can be viewed as a generalization of both 
α and the simplex models. First, like the simplex model, it 
is not necessary to assume uncorrelated item-level errors 
within waves.  In addition, the model allows for both non-
stationary true score and error variances. Imposing the 

restriction 12σ =0 will produce estimates that are 

consistent with Cronbach�s α.  Reliability estimates which 
are consistent with the simplex model can be produced by 
specifying either stationary true score variance, error 

variances or both and removing the constraint 12σ = 0.  In 

this manner, the model can be used in situations where 
neither α nor the simplex models are appropriate.  In these 
situations, this generalized simplex model will provide 
better estimates of Rw than either the α or the simplex 
models.  The generalized simplex model can be restricted 
to test some of the key assumptions of both alternative 
models:  uncorrelated item errors, stationary true score 
variances and/or stationary error variances. 
 

3. Application:  Measures of Child Well-being 
 In this section, we consider an application of the 
models in the preceding section for estimating scale score 
reliability for a number of SSM�s obtain in the National 
Survey of Child Adolescent Well-being (NSCAW).  The 
NSCAW is a panel survey of about 5100 children who 
were investigated for child abuse or neglect in 87 
randomly selected U.S. counties (Dowd, et al, 2004).  An 
important component of the data quality evaluation for 
this survey was the assessment of reliability for all the key 
SSM�s.  Biemer, et al (2006) provided estimates for more 
than 30 SSM�s using both Cronbach�s α and the simplex 
model assuming stationary true score variances, stationary 
error variances or both.  A representative subset of these 
scores was considered including:  the Child Behavior 
Checklist (CBCL), Teacher Report Form (TRF), the 
Youth Self-Report (YSR) and the Short-Form Health 
Survey (SF-12). Table 2 presents the reliability estimates 
and their standard errors for the total CBCL score and 
seven models  
 Similar to the total CBCL estimates, for all of the 
other SSM�s, the simplex model estimates are lower than 
the Cronbach α estimates.  For cases where the simplex 
variance stationarity assumptions matter, including the 
total CBCL, reliability estimates tend to decrease over 
time for the original simplex model while the opposite is 
true for the simplex estimates that assume stationary true 
score variance.  To understand why this makes sense, 
recall that, under our models, total variance is the sum of 
true score and error variance.  If true score variance 
constrained in the model, then any change in true score 
variance across time will be attributed to a change in error 
variance. Since an increase in error variance will decrease 
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reliability (assuming the true score variance is constant), 
reliability will appear to increase under this constraint.  
Likewise, if error variance is constrained, then changes in 
the error variance across time will be attributed to 
changes in the true score variance.  Since an increase in 
true score variance will increase reliability if the error 
variance is held constant, reliability will appear to 
increase under this constraint.   Thus, the two assumptions 
will produce opposing effects on the reliability. 
 Estimates obtained from the generalized models with 
either stationary true score or stationary error variance 
constraints are very close to the simplex models with 
these same constraints.  The magnitude of the reliability 
estimates is comparable to the original simplex model 

estimates for many measures, but is generally lower for 
the SF-12 measures. For almost all measures the 
generalized simplex model with uncorrelated errors 
produces higher reliability estimates than the generalized 
model with correlated errors.  The latter estimates are in 
close agreement with the α estimates.  Estimates from the 
generalized simplex model without constraints are most 
similar to the generalized original simplex model.  In fact, 
the estimates at wave 3 are the same or nearly the same 
for both models.  This suggests that the original simplex 
model may be preferred over both α and the simplex 
model with stationary true score variance constraints in 
most practical situations 
 

 
Table 2:  Reliability Estimates for CBCL (2+ years) Total Problem Behavior 

 
N (by wave for α) Model Reliability (standard errors) 
  Wave 1 Wave 3 Wave 4 
     
5330 Simplex Model (SM) 0.756 (0.019) 0.732 (0.020) 0.725 (0.023) 
 SM Stationary True Score Variance 0.666 (0.030) 0.732 (0.051) 0.753 (0.122) 
     
589, 985, 1259 Coefficient α (2-3 years)  (98 items) 0.942 (0.004) 0.945 (0.003) 0.949 (0.002) 
3174, 3002, 3359 Coefficient α (4+ years)  (118 items) 0.9621 0.9621 0.9621 
     
5330 Generalized Model (GM) 0.650 (0.022) 0.612 (0.022) 0.600 (0.025) 
 GM Stationary True Score Variance 0.718 (0.017) 0.707 (0.016) 0.709 (0.016) 
 GM Stationary Error Variance 0.647 (0.022)     0.615 (0.022)     0.602 (0.025) 
 GM Uncorrelated Error 0.898 (0.004) 0.875 (0.004) 0.874 (0.003) 
1 Models run in SAS proc mixed.  No standard error estimates available.  

 
 Tests of the stationary error variances, stationary true 
score variance, and uncorrelated error assumptions can be 
done in the context of the generalized simplex model 
where the models with constraints are nested in the larger 
generalized model without constraints.  Results from 
these tests for all measures are described subsequently.  
Results for the three CBCL measures are presented in 
Table 3.  The assumption of uncorrelated errors was 
rejected for all 11 SSM�s considered.  The assumption of 
stationary error variance was rejected for eight SSM�s as 
was the assumption of stationary true score variance.  In 

seven cases, neither of these assumptions could be 
accepted.  
 These results suggest that α is not an appropriate 
indicator of reliability all 11 SSM�s considered in our 
study.  The two simplex models performed much better in 
terms of producing estimates of R that are close to those 
of the generalized simplex model.  However, the 
stationary variance assumptions were often rejected.  If 
one had to choose, the original simplex model estimates 
seemed to agree more often and closely with the estimates 
from the generalized simplex model.

Table 3:  Nested Wald Tests for the CBCL SSM’s 

Measure N Uncorrelated Errors Stationary Error Variance 
Stationary True Score 

Variance 

  
Chi-

square 
 

DF p-value 
Chi-

square 
 

DF p-value 
Chi-

square 
 

DF 
 

p-value 
CBCL (2+ years) Total 
Problem Behavior 5330 122.786 

 
1 0.000 7.613 

 
2 0.0222 16.692 

 
2 

 
0.0002 

CBCL (2+ years) 
Externalizing 5330 78.244 

 
1 0.000 3.650 

 
2 0.1612 18.660 

 
2 

 
0.0001 

CBCL (2+ years) 5330 65.005   0.000 28.805   0.0000 15.411    
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Internalizing 1  2  2  0.0005 
  

4. Conclusions 
 This analysis suggests that the choice of model and 
assumptions is critical in the evaluation of scale score 
reliability.  Blind use of Cronbach�s α can and often does 
lead to a biased assessment of the reliability of SSM�s.  In 
our study, assumption of inter-item uncorrelated error, 
upon which α relies, was rejected for all the SSM�s we 

considered.  Consequently, �α  was higher, often 
exceedingly so, than the simplex estimates which do not 
require that assumption.  When panel data are available, 
the simplex model with either the stationary error or true 
score variance assumption can be employed and will 
permit a more valid assessments of reliability.  However, 
as we have shown in Table 3, the assumptions underlying 
the simplex approach also do not hold for many SSM�s.  
In such cases, more valid estimates of reliability can be 
obtained using the generalized simplex model which 
requires neither the variance stationarity nor uncorrelated 
inter-item error assumptions to provide valid estimates of 
reliability. 
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