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Abstract

In this paper, we fill in an important research gap in the
small area literature, namely the problem of multiple com-
parison. For the Fay-Herriot model, we illustrate how the
Bayesian approach can be applied to develop different multi-
ple comparison procedures. In the context of multiple compar-
ison, we derive a new class of priors. This class includes the
well-known uniform or superharmonic prior. Through data
analysis we illustrate the use of our class of priors.

KEY WORDS: Bayesian multiple comparison, Fay-Herriot
model, hierarchical Bayes, matched priors.

1. Introduction

For effective planning of health, social and other services,
and for apportioning government funds, there is a growing de-
mand among various government agencies such as the U.S.
Census Bureau, U.K. Central Statistical Office, and Statis-
tics Canada to produce reliable estimates for smaller sub-
populations, called small areas. For example, in both devel-
oped and developing countries, governmental policies increas-
ingly demand income and poverty estimates for small areas.
In fact, in the U.S. more than $130 billion of federal funds per
year are allocated based on these estimates.

A sample survey designed for a large population may se-
lect a small number of elements or even no element for the
small area of interest. Other nonsampling errors such as non-
response may further reduce sample size for the small area.
Thus standard design-based methods that are based solely on
the survey data generally fail to provide small area estimates
with the desired precisions. Over the last two decades, differ-
ent model-based approaches that borrow strength from related
resources have been proposed in the literature. Such methods
essentially use explicit models to combine information from
the sample survey, various administrative or census records,
and even previous surveys. Both Bayesian and non-Bayesian
methods were considered to address the point estimation, the
associated problem of measuring uncertainty of the point esti-
mator, and the interval estimation. For a good review on small
area estimation, readers are referred to the well-known books
by Rao (2003) and Longford (2005), and the recent review pa-
pers by Pfeffermann (2002), Rao (2005) and Jiang and Lahiri
(2006). For Bayesian methods in small area estimation and
finite population sampling, see Ghosh and Meeden (1997).

A researcher in public health may report an estimate of the
mean body mass index and the associated 95% individual con-
fidence interval for each domain formed by different demo-
graphic groups (e.g., for different race×gender× age-group

combinations), and then use these individual confidence inter-
vals to find significant difference among pairs of domains. The
problem with the above approach, often referred to as data
snooping, is that even if a table of estimates of the domain
mean differences and their associated 95% (individual) con-
fidence intervals are reported for all possible pairs, the confi-
dence level refers to a single comparison and not to a series
of comparisons. In fact, the overall confidence level, i.e. the
probability that all confidence intervals cover their respective
true values, could be much lower than the nominal 95% level.
The problem of finding spurious significance results due to
data snooping is referred to as the problem of multiple com-
parison.

Exploratory data analysis is a useful part of any scientific
investigation, but any claim suggested by such analysis should
be validated by an appropriate statistical procedure. Multiple
comparison is the most common data snooping problem en-
countered in small area research. The literature on multiple
comparison for linear models is huge, and readers are referred
to the books by Hochberg and Tamhane (1987) and Miller
(1991). To the best of our knowledge, the multiple compar-
ison problem has not been addressed in the small area litera-
ture [at least we have not found any discussions on multiple
comparison in the books by Rao (2003) and Longford (2005)
or in any of the recent papers except for the discussions and
rejoinder section of Jiang and Lahiri (2006) ].

In Section 3, using the celebrated Fay-Herriot model, we
demonstrate how the Bayesian method can be adapted to ad-
dress the multiple comparison problem. The Bayesian method
is conceptually straightforward. Once the posterior distribu-
tion of the parameter(s) of interest is found, this is used in
all inferential purposes. The Bayesian approach is attractive
since it can incorporate all sources of uncertainties, irrespec-
tive of the small area sample size, and can make inferences
conditional on the data. However, the choice of prior for the
hyperparameters is important and small area inference could
be sensitive to the prior choice. See Chen (2001) and Pfeffer-
mann (2006), among others. Thus, one important step in the
Bayesian approach is the choice of the prior distribution for
the hyperparameter(s).

Morris and Christiansen (1995) used a flat (Lebesgue mea-
sure) prior distribution for the regression coefficients, and as-
sumed the prior variance to be independent of the regression
coefficients and uniformly distributed over the positive part of
the real line. These prior distributions for the hyperparameters
are simple to interpret to a nonstatistician and are often recom-
mended. See Berger (1985) and Morris (1983b). The uniform
prior for the prior variance, often referred to as Stein’s su-
perharmonic prior, is noninformative and is known to provide
admissible minimax procedures. Unless more information on

Section on Survey Research Methods

3438



the hyperparameters is available, these simple prior distribu-
tions for the hyperparameters give good frequentist properties
to the resulting rules (Morris and Christiansen 1995).

In section 4, we provide an interesting frequentist valida-
tion of the well-known superharmonic prior. We show that
a weighted average of the posterior variances, under the su-
perharmonic prior, is a second-order unbiased estimator of
the corresponding weighted average of the mean squared er-
ror (MSE) of the empirical best linear unbiased predictors
(EBLUP) or empirical Bayes, the average being taken over all
small areas and the weight for a given area being proportional
to the inverse of the squared sampling variance. In fact, for a
general class of weights, we can obtain a class of priors that
satisfies a desirable frequentist property. We call a prior av-
erage moment matching prior when we choose equal weight
for all areas (i.e., simple average). It is interesting to note that
all the priors in the class are identical when the sampling vari-
ances are all equal; but they could provide considerably dif-
ferent results especially when the sampling variances are very
different. The prior suggested by Datta et al. (2005) is another
important member of this class. Their prior pays attention to
a specific small area by matching the posterior variance of a
specific small area mean with the mean squared error (MSE)
of the corresponding EBLUP. Thus, their prior is area specific
and certainly makes sense when the problem is one of measur-
ing the uncertainty of a specific small area. However, for the
multiple comparison problem, we do not believe that it is an
appropriate prior since we need to pay attention to all areas.
The superharmonic prior and the average moment matching
prior seem suitable for the multiple comparison problem.

In Section 5, we propose a Monte Carlo method that gener-
ates the hyperparameters from the posterior distribution. The
generated hyperparameters are used in the implementation of
our proposed multiple comparison method. We note that for
the Fay-Herriot model we can save some computing time by
considering a Monte Carlo method instead of the usual Monte
Carlo Markov Chain method.

In Section 6, we analyze two well-known data sets which
were analyzed by Morris and Christiansen (1995) for a dif-
ferent problem. These two examples clearly demonstrate the
utility of an appropriate multiple comparison method. We also
note that in both the examples, the average moment matching
prior and the super-harmonic prior yield similar results. This
is because the weights that generate the super-harmonic prior
are not very variable in these two examples.

2. The Fay-Herriot Model

In order to estimate the per-capita income of small places
(population less than 1000), Fay and Herriot (1979) used the
following two-level Bayesian model:
The Fay-Herriot model:

• Level 1: yi|θi
ind∼ N(θi, Di), i = 1, · · · ,m;

• Level 2: θi
ind∼ N(x′iβ, ψ), i = 1, · · · ,m.

In the above model, level 1 is used to account for the sam-
pling variability of the regular survey estimates yi of true small

area means. Level 2 links the true small area means θi to a
vector of k known auxiliary variables xi, often obtained from
various administrative and census records. The parameters β
and ψ are generally unknown and are estimated from the avail-
able data. In order to estimate the sampling variability Di, Fay
and Herriot (1979) employed the generalized variance func-
tion (GVF; see Wolter 1985, Chapter 5) method that uses some
external information from the survey.

We note that the Fay-Herriot model can be viewed as an
area level mixed regression model:

yi = θi + ei = x′iβ + vi + ei, i = 1, · · · ,m,

where vi’s and ei’s are independent with vi
iid∼ N(0, ψ) and

ei
ind∼ N(0, Di). Note that the area-specific random effect vi

is used to relate the true per-capita income (θi) to the auxiliary
variables (xi) obtained from the census, housing and Inter-
nal Revenue Service records. In other words, Fay and Herriot
(1979) used random effects in order to capture the additional
area-specific effects not explained by the area-specific auxil-
iary variables. This is achieved at the expense of an additional
unknown variance component ψ to be estimated from the data.
In contrast, the corresponding regression model without ran-
dom effects fails to capture this additional area-specific vari-
ability. Using the U.S. census data, Fay and Herriot (1979)
demonstrated that their EB estimator [also an empirical best
linear unbiased predictor (EBLUP)] performed better than the
direct survey estimator and a synthetic estimator used earlier
by the U.S. Census Bureau.

There are a variety of applications of the Fay-Herriot model.
In the context of census undercount, several researchers found
the Fay-Herriot model useful. See, for example, Cressie
(1992), Dick (1995), among others. Estimates of the number
of poor school-age children for the U.S. counties and states
are produced using the Fay-Herriot model. See the report pre-
pared by the National Research Council (2000). For method-
ological research, the Fay-Herriot model is often used. See,
for example, Glickmann and Pfeffermann (2004), Datta et al.
(2005), among others. Particular cases of the Fay and Her-
riot (1979) can be found in the baseball data example of Efron
and Morris (1975) and the false alarm probability estimation
example of Carter and Rolph (1974). For example, in the
baseball data example, x′iβ = µ, i.e., θi were treated as ex-
changeable, and Di = 1. In both the examples, the well-
known arc-sine transformation on the sample proportion was
taken, which justified the assumption of known sampling vari-
ance Di of the transformed proportion. Like Fay and Herriot
(1979), these two applications implement mixed models using
the empirical Bayes method.

Suppose we are interested in finding a 100(1−α)% credible
interval for a specific `′θ, where ` is a known m × 1 column
vector. The Bayesian approach is straightforward. We simply
find the posterior distribution of `′θ and use this to find the
desired credible interval. To illustrate the method, first assume
ψ is known, but β unknown. We put a flat prior on β, i.e.
π(β) ∝ 1. It follows that θ | y ∼ N(Λν,Λ), where y =
(y1, . . . , ym)

′
, θ = (θ1, . . . , θm)

′
, ν = ( y1

D1
, . . . , ym

Dm
)
′
, X =

(x1, . . . , xm)
′
, and Λ−1 = diag( 1

D1
+ 1

ψ , . . . , 1
Dm

+ 1
ψ ) −
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X(X
′
X)−1X

′

ψ .
A 100(1− α)% credible interval for `′θ is given by

`
′
Λν ± {`′Λ`χ2

(α,1)}1/2, (1)

where χ2
(α,1) is the upper α percentage point of the chi-

squared distribution with 1 degree of freedom.
When ψ is unknown, we need to put priors on both β and

ψ. We assume π(β, ψ) = π(β)π(ψ) ∝ π(ψ) (see Section
4 for a discussion on prior selection for ψ). In this case, a
closed-form density for

T (1) =
{`′(θ − E(θ | y))}2

`′V ar(θ | y)`
| y

cannot be obtained. Hence, a Monte Carlo method
is used to construct a credible interval for `

′
θ. The

method is as follows: For large R, independently simulate
(θ(1), β(1), ψ(1)), . . . , (θ(R), β(R), ψ(R)) ∼ f(θ, β, ψ | y).
Then E(θ | y) and V ar(θ | y) are approximated by

E(θ | y) = θ(.) =
1
R

R∑

i=1

θ(i),

V ar(θ | y) =
1

(R− 1)

R∑

i=1

(θ(i) − θ(.))(θ(i) − θ(.))
′
.

Also, T
(1)
α , the upper α percentage point of the distribution

of T (1), is given by the upper α percentage point of the ordered
values T

(1)
(i) (i = 1, . . . , R), where

T
(1)
(i) =

{`′(θ(i) − E(θ | y))}2
`′V ar(θ | y)`

.

When ψ is unknown, a 100(1 − α)% credible interval for
`
′
θ is given by

`
′
E(θ | y)± {`′V ar(θ | y)`T (1)

α }1/2. (2)

3. Multiple Comparison

We are interested in constructing simultaneous 100(1−α)%
credible intervals, say I`, for `

′
θ for all ` ∈ L, where L ⊂ Rm,

the m−dimensional Euclidean space. That is, we want

P [`
′
θ ∈ I` for all ` ∈ L|y] = 1− α,

where the probability is with respect to the posterior distribu-
tion of θ = (θ1, . . . , θm)

′
given y = (y1, . . . , ym)

′
.

If one were to use (1) [when ψ is known] or (2) [when ψ is
unknown] for multiple comparison, then the overall coverage
probability will be much lower than the nominal 100(1−α)%.
Hence the need for our method. We can, of course, propose
efficient Bayesian multiple comparison procedures. The effi-
ciency of the procedure depends on the nature of the class L.
In the following three subsections, we discuss multiple com-
parison procedures for three useful classes.

3.1 Pairwise comparison

Here we are only interested in constructing simultaneous
credible intervals for all pairwise comparisons. We will re-
strict attention to the case where ψ is unknown. A Bayesian
version of the Tukey’s simultaneous confidence intervals can
be used. Define

T (2) ≡
max

k
{(θk − E(θk | y)) | y} −min

k
{(θk − E(θk | y)) | y}.

Note that ∀i, j,

|{(θi − E(θi | y)) | y} − {(θj − E(θj | y)) | y}| ≤ T (2).

Hence,

P{∀i, j, |(θi − E(θi | y))− (θj − E(θj | y))| ≤ T
(2)
α | y}

≥ 1− α,

where T
(2)
α is the upper α percentage point of the distribution

of T (2). Simultaneous 100(1 − α)% credible intervals for all
pairwise comparisons, θi − θj , are given by

E(θi | y)− E(θj | y)± T (2)
α ,

where, as before, Monte Carlo is used to compute E(θi | y),
E(θj | y), T

(2)
α .

3.2 Multiple comparison for all contrasts

Here we concentrate on all possible contrasts in θ (i.e. `
′
θ

s.t.
∑m

i=1 `i = 0). Define

T (3) ≡ (θ − E(θ | y))′
{
{V ar(θ | y)}−1−

{V ar(θ | y)}−111′{V ar(θ | y)}−1

1′{V ar(θ | y)}−11

}
(θ − E(θ | y)) | y.

Note that subject to the constraint
∑m

i=1 `i = 0,

max
`

(`′(θ − E(θ | y))2

`′V ar(θ | y)`
| y = T (3), (3)

where 1 is a m × 1 column vector of 1’s. When ψ is known,
T (3) ∼ χ2

(m−1). Thus simultaneous 100(1 − α)% credible

intervals for all `
′
θ such that

∑m
i=1 `i = 0 are given by

`
′
Λν ± {`′Λ`χ2

(α,m−1)}1/2.

When ψ is unknown, Monte Carlo is used to compute E(θ |
y), V ar(θ | y), T

(3)
α , and in this case simultaneous 100(1 −

α)% credible intervals for all `
′
θ s.t.

∑m
i=1 `i = 0 are given

by

`
′
E(θ | y)± {`′V ar(θ | y)`T (3)

α }1/2.
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3.3 Multiple comparison for all `′θ

Note that

T (4) ≡ (θ − E(θ | y))′{V ar(θ | y)}−1(θ − E(θ | y)) | y

= max
`

(`′(θ − E(θ | y))2)
`′V ar(θ | y)`

| y.

When ψ is known, T (4) ∼ χ2
(m). Thus simultaneous

100(1 − α)% credible intervals for `
′
θ for all ` ∈ Rm are

given by

`
′
Λν ± {`′Λ`χ2

(α,m)}1/2.

When ψ is unknown, Monte Carlo is used to compute E(θ |
y), V ar(θ | y), T

(4)
α , and in this case simultaneous 100(1 −

α)% credible intervals for all `
′
θ for all ` ∈ Rm are given by

`
′
E(θ | y)± (`

′
V ar(θ | y)`T (4)

α )1/2.

4. Prior Selection

There are several ways one can choose the prior distribu-
tion for ψ. A popular choice is Stein’s superharmonic prior
distribution given by

π(ψ) ∝ 1.

The above choice of prior is non-informative and is known
to provide an admissible procedure in the context of point es-
timation [Morris and Christiansen 1995]. The superharmonic
prior was also used by Morris (1983a) in obtaining a suitable
measure of uncertainty of his empirical Bayes estimator. In
this section, we provide a class of priors satisfying a good fre-
quentist property and show that the superharmonic prior is a
member of this class, providing an interesting interpretation of
the superharmonic prior.

Given {wi ≥ 0, i = 1, · · · ,m,3 ∑m
i=1 wi = 1}, we seek

a prior π(ψ) which satisfies the following condition:

m∑

i=1

wiE{V (θi | y)−MSE[θ̂i(ψ̂)]} = o(1/m), (4)

where V (.|y) is the variance under the prior π(ψ), E(·) and
MSE(·) are taken with respect to the Fay-Herriot model;
θ̂i(ψ̂) is the EBLUP of θi, i.e. θ̂i(ψ̂) = x

′
iβ̃(ψ̂) +

ψ̂

(ψ̂+Di)
(y−x

′
iβ̃(ψ̂)), β̃(ψ) = (X

′
Σ−1X)−1X

′
Σ−1y is the

BLUE of β, Σ = diag(D1 + ψ, . . . , Dm + ψ), and ψ̂ is the
REML estimator of ψ.

In order to satisfy (4), π(ψ) must satisfy the following dif-
ferential equation [see Ganesh (2007)]

dπ(ψ)
dψ

1
π(ψ)

− 2
∑m

i=1 wiD
2
i /(Di + ψ)3∑m

i=1 wi{Di/(Di + ψ)}2

+ 2
∑m

i=1 1/(Di + ψ)3∑m
i=1 1/(Di + ψ)2

= 0. (5)

It can be checked that the solution to (5) is given by

π(ψ) ∝
∑m

i=1 1/(Di + ψ)2∑m
i=1 wi{Di/(Di + ψ)}2 . (6)

When the prior is given by (6), it can be easily checked that
for m+2 > rank(X) the posterior distribution of θ is proper.
It is interesting to note that Stein’s super-harmonic prior is a
special case of (6), simply take wi = 1/D2

iPm
j=1 1/D2

j
. By taking

wi = 1/m (for i = 1, . . . , m), we get the average moment
matching prior given by

π(ψ) ∝
∑m

i=1 1/(Di + ψ)2∑m
i=1{Di/(Di + ψ)}2 . (7)

The prior given by (7) has the property that the average pos-
terior variance of θi is second-order unbiased for the average
MSE of the EBLUP of θi. Also, by taking wj = 1 for j = i,
and wj = 0 for j 6= i, we get a prior obtained by Datta et al.
(2005). Their main motivation was to choose a prior distribu-
tion for ψ such that the posterior variance of θi is second-order
unbiased for the mean squared error of the EBLUP of θi, i.e.

E{V (θi | y)} = MSE{θ̂i(ψ̂)}+ o(1/m). (8)

Datta et al. (2005) showed that the prior which satisfies (8) is
given by

π(ψ) ∝ (Di + ψ)2
m∑

j=1

1
(Dj + ψ)2

. (9)

Note that unless for i = 1, . . . , m, Di = D, the prior for
ψ is area specific and hence it is not possible to select a prior
which satisfies (9) simultaneously for i = 1, . . . , m.

5. Implementation of the proposed method by Monte
Carlo

It is easy to show that

fψ|y(ψ | y) ∝

π(ψ)
exp(− 1

2y
′
(Σ−1 − Σ−1X(X ′Σ−1X)−1X

′
Σ−1)y)

|X ′Σ−1X|1/2
∏m

ı=1(Di + ψ)1/2

β | ψ, y ∼ N((X ′Σ−1X)−1X ′Σ−1y, (X ′Σ−1X)−1)
θ | β, ψ, y ∼ N(Γδ,Γ)

where Σ = diag(D1 +ψ, . . . , Dm +ψ), Γ = diag( D1ψ
D1+ψ , . . .

, Dmψ
Dm+ψ ), δ = Xβ

ψ + diag( 1
D1

, . . . , 1
Dm

)y and |X ′
Σ−1X| is

the determinant of X ′Σ−1X .
We need to generate (θ∗, β∗, ψ∗) from f(θ, β, ψ | y). To

this end, note that

f(θ, β, ψ | y) ∝ fψ|y(ψ | y)f(β | ψ, y)f(θ | β, ψ, y).

Hence (θ∗, β∗, ψ∗) will be generated as follows: ψ∗ ∼
fψ|y(ψ | y), β∗ ∼ f(β | ψ∗, y), θ∗ ∼ f(θ | β∗, ψ∗, y).
Simulating β∗ ∼ f(β | ψ∗, y) and θ∗ ∼ f(θ | β∗, ψ∗, y) is
straightforward. To simulate ψ∗ ∼ fψ|y(ψ | y), use the fol-
lowing accept-reject method:
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1. Simulate z ∼ χ2
(m−k−2) [where k = rank(X)].

2. Compute u = y
′
(I−X(X

′
X)−1X

′
)y

z − σ2. If u ≥ 0, then
u ∼ fU (u), where

fU (u) ∝
exp(− 1

2(σ2+u)y
′
(I −X(X ′X)−1X

′
)y)

(σ2 + u)(m−k)/2
I[u≥0].

σ2 is chosen s.t. the acceptance rate in the accept-reject
method is maximized.

3. Generate v ∼ Unif[0, 1].

4. Check if 1
M

fψ|y(u|y)

fU (u) ≥ v, where M = maxt
fψ|y(t|y)

fU (t) .
If true, then u ∼ fψ|y(ψ | y).

6. Data Analysis

In this section, we use two well-known data sets to illus-
trate to what extent the theoretically valid methods for mul-
tiple comparison differ from the naive comparison based on
individual confidence intervals. In our study, we include both
pairwise comparisons and comparisons of general contrasts.
The other purpose of our study is to compare the average mo-
ment matching prior (7) with that of the Stein’s superharmonic
prior.

In our data analysis, we use the baseball run scoring data
and the hospital graft failure data given in Morris and Chris-
tiansen (1995). The baseball data set (Table 1) gives the av-
erage runs scored per game and sample standard deviation of
14 baseball teams in the American League for the year 1993.
Each of the teams played 162 games, and yi denotes the aver-
age runs scored over those 162 games. A good approximation
for the variance of runs scored for a single game is given by
V (µ) = (1.375µ)1.2, where µ is the mean runs scored for a
single game. For the 162 games played, the variance Di for the
ith team is then approximated by Di = V (yi)

162 = (1.375yi)
1.2

162 ,
and is assumed to be known without error. The normality as-
sumption for yi is justified by the central limit theorem. The
estimates of the true runs per game θi and its standard er-
ror given in Table 1 was computed using 20, 000 independent
samples for each of the two priors.

The second data set (Table 2) gives a sample of 23 hospi-
tals (of the 219 hospitals) which had at least 50 kidney trans-
plants during a 27 month period. The yi’s are graft failure
rates for kidney transplant operations, i.e. yi = number of
graft failures/ni, where ni is the number of kidney transplants
at hospital i over the period of interest. The variance for graft
failure rate Di is approximated by (0.2)(0.8)/ni, where 0.2
is the observed failure rate for all hospitals. Again, Di is as-
sumed to be known. In addition, a severity index xi is avail-
able for each hospital. xi is the average fraction of females,
blacks, children and extremely ill kidney recipients at hospital
i. It is thought that this severity index increases graft failure
rate, and hence is included as a covariate. Once again the cen-
tral limit theorem is used to approximate the distribution of yi.
The estimates of the true graft failure rates θi and its standard

error given in Table 2 was computed using 20, 000 indepen-
dent samples for each of the two priors.

For the Baseball data set, Tables 3-4 give 95% credible in-
tervals for a few contrasts of interest. Note that when an appro-
priate multiple comparison method is used, the coverage prob-
ability holds simultaneously for all contrasts or pairwise com-
parisons. If instead, before looking at the data, a practitioner
decides that a specific `′θ is the only contrast of interest, then a
much shorter interval can be obtained by using (2). As can be
seen from Tables 3-4, in a number of instances, after looking at
the data if a practitioner were to naively use (2), he/she would
incorrectly reject the null hypothesis Ho : `

′
θ = 0 when it

should be accepted.
It is interesting to note that the average moment matching

prior gives very similar results to the ones obtained when the
superharmonic prior is used. This is because in both data sets
there is little variability in the sample variances. Hence, the
weights wi = 1/D2

iPm
j=1 1/D2

j
that generate the superharmonic

prior are more or less uniform across areas.

7. Concluding Remarks

The paper offers a simple Bayesian solution to the multiple
comparison problem for small area estimation, a problem not
addressed in the small area literature. We have discussed the
important problem of prior selection and obtained a new class
of prior distributions for the hyperparameter ψ. In this context,
we find an interesting frequentist validation of Stein’s super-
harmonic prior, a prior frequently used in Bayesian analysis.
We have not addressed the classical solution to the multiple
comparison problem for small area estimation. This will be a
good topic for future research.
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Table 1: Estimates of the true runs/game and its s.e., using the superharmonic prior (columns 5 & 6) and average moment
matching prior (columns 7 & 8).

Obs Team yi

√
Di θi si θ∗i s∗i

1 Det 5.549 0.266 5.287 0.250 5.290 0.250
2 Tor 5.228 0.257 5.070 0.227 5.073 0.230
3 Tex 5.154 0.254 5.022 0.225 5.021 0.226
4 NY 5.068 0.252 4.962 0.221 4.961 0.221
5 Cle 4.877 0.246 4.827 0.214 4.829 0.214
6 Bal 4.852 0.245 4.808 0.212 4.809 0.211
7 Chi 4.790 0.243 4.765 0.210 4.764 0.211
8 Sea 4.531 0.235 4.570 0.205 4.573 0.205
9 Mil 4.525 0.235 4.569 0.206 4.567 0.206

10 Oak 4.414 0.232 4.483 0.207 4.486 0.205
11 Min 4.278 0.227 4.379 0.205 4.381 0.205
12 Bos 4.235 0.226 4.346 0.205 4.348 0.205
13 Cal 4.222 0.226 4.336 0.204 4.337 0.205
14 KC 4.167 0.224 4.293 0.208 4.294 0.205

Table 2: Estimates of graft failure rates and its s.e., using the superharmonic prior (columns 5 & 6) and average moment
matching prior (columns 7 & 8).

Obs yi

√
Di xi θi si θ∗i s∗i

1 0.302 0.055 0.112 0.225 0.037 0.223 0.037
2 0.140 0.053 0.206 0.193 0.035 0.194 0.033
3 0.203 0.052 0.104 0.191 0.032 0.191 0.032
4 0.333 0.052 0.168 0.250 0.037 0.248 0.037
5 0.347 0.047 0.337 0.294 0.039 0.292 0.039
6 0.216 0.046 0.169 0.210 0.030 0.211 0.029
7 0.156 0.046 0.211 0.195 0.032 0.197 0.031
8 0.143 0.046 0.195 0.186 0.032 0.189 0.031
9 0.220 0.044 0.221 0.222 0.030 0.223 0.029

10 0.205 0.044 0.077 0.189 0.031 0.188 0.030
11 0.209 0.042 0.195 0.213 0.028 0.213 0.028
12 0.266 0.041 0.185 0.236 0.030 0.235 0.030
13 0.240 0.041 0.202 0.228 0.029 0.227 0.028
14 0.262 0.036 0.108 0.224 0.030 0.223 0.030
15 0.144 0.036 0.204 0.182 0.029 0.183 0.029
16 0.116 0.035 0.072 0.145 0.029 0.146 0.028
17 0.201 0.033 0.142 0.200 0.025 0.200 0.025
18 0.212 0.032 0.136 0.205 0.024 0.204 0.024
19 0.189 0.031 0.172 0.198 0.024 0.198 0.024
20 0.212 0.029 0.202 0.214 0.023 0.214 0.023
21 0.166 0.029 0.087 0.172 0.023 0.172 0.023
22 0.173 0.027 0.177 0.187 0.023 0.188 0.022
23 0.165 0.025 0.072 0.169 0.021 0.169 0.021

Table 3: (Baseball data) Credible intervals for selected contrasts using the superharmonic prior.

Contrast All contrasts Pairwise Individual

θ1 − θ14 (-0.691,2.680) (-0.026,2.015) (0.341,1.682)
θ2 − θ14 (-0.785,2.339) (-0.244,1.797) (0.173,1.417)
θ4 − θ12 (-0.887,2.120) (-0.404,1.637) (0.034,1.228)
θ5 − θ13 (-0.965,1.947) (-0.529,1.511) (-0.070,1.084)

1
2 (θ2 + θ3)− θ13 (-0.627,2.045) not pairwise (0.189,1.251)

1
3 (θ1 + θ2 + θ3 − θ12 − θ13 − θ14) (-0.250,1.852) not pairwise (0.382,1.219)
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Table 4: (Baseball data) Credible intervals for selected contrasts using the average moment matching prior.

Contrast All contrasts Pairwise Individual

θ1 − θ14 (-0.666,2.657) (-0,027,2.018) (0.348,1.667)
θ2 − θ14 (-0.785,2.343) (-0.244,1.801) (0.176,1.419)
θ4 − θ12 (-0.900,2.125) (-0.410,1.636) (0.034,1.230)
θ5 − θ13 (-0.965,1.949) (-0.531,1.515) (-0.077,1.088)

1
2 (θ2 + θ3)− θ13 (-0.636,2.055) not pairwise (0.187,1.253)

1
3 (θ1 + θ2 + θ3 − θ12 − θ13 − θ14) (-0.252,1.854) not pairwise (0.379,1.217)
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