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Abstract 
 

Allocation of the sample among strata or sample 
clusters on the basis of variance components and 
survey costs is important to survey design.  Optimum 
allocation equations for an estimated mean or total of 
a specific attribute and population have been known 
and used for years.  However, we typically need an 
optimum allocation that simultaneously satisfies 
several types of estimates and for several variables 
and inference subpopulations. In this paper we review 
optimization methodology, its history and its 
extension to such multiple survey objectives.  The 
computer algorithm we use to solve this nonlinear 
equation problem is described.  Two recent 
applications are used to demonstrate the diversity of 
optimization problems and the flexibility and power of 
the methodology. 
 
KEY WORDS: design optimization, multiple survey 
objectives, nonlinear programming 
 

1.  Introduction 
 

This paper deals with the design of sample surveys.  
Stratification is a common feature of sample surveys, 
both to improve precision of survey results and to 
control sample sizes for important subpopulations.  An 
important consideration in the use of stratification is 
how many sample units should be selected from each  
stratum with the objectives of either minimizing costs 
subject to precision requirements or maximizing 
precision subject to fixed resources.  Also, we often 
use multi-stage designs, that is, selecting large units, 
then selecting smaller units within those first-stage 
units and so on, also referred to as hierarchal or cluster 
designs.  The design task in this case is to determine 
the optimum number of units to select at each stage of 
sampling.  These two techniques are often used 
together with stratification occurring at one or more of 
the stages.  The equations for the optimal solutions to 
these problems when involving a single variable and 
parameter, such as average income, have been known 
and used for years. 
 
However, we are usually interested in different types 
of estimates from sample surveys.  A design that 
minimizes costs, for example, for one type of estimate 
often is not the best design, or even adequate for other 

estimates.  The purpose of this paper is to present a 
method and examples of its use at Mathematica Policy 
Research (MPR) to achieve the required precision for 
multiple estimates at minimum cost.  The applications 
are new but the method is not.  Although the method 
is not new, it is not available for this specific 
application in most of the commercial statistical 
software presumably because of the difficulty of 
programming a global solution to all nonlinear 
programming problems. 
 
2.  Two Familiar Examples of Optimum Allocation 
 
We first consider the familiar optimum allocation of 
the sample to strata that was mentioned above.  The 
following solution by Neyman 1934 (see for example, 
Cochran 1964 p. 96) was obtained by a method in 
calculus known as Lagrange multipliers (Wider 1961 
p. 136). 
 

 
 

 
This equation shows that the proportion of the sample, 
nh/n, assigned to stratum h is larger for larger stratum 
populations, Nh, and larger stratum standard 
deviations, Sh, but smaller for larger stratum costs, Ch.  
By the same method, the following equation was 
obtained for the optimum allocation of the sample to 
the different stages in a multi-stage design. 
 
 
 
 
 
This reveals that the optimum cluster size, mopt, in a 
two-stage design, such as selecting schools and then 
selecting students within the sample schools, should 
be larger with relatively small intra-cluster 
correlations, ρ, and if the cost of the first-stage units, 
c1, is large relative to that of the units within the 
clusters, c2 (this can be extended to more than the two-
stages described here). 

Again, these deal with a single type of estimator, 
attribute (or characteristic), and inference population.  
But as mentioned above, we are usually interested in 
multiple estimates requiring other methods of solving 
for optimum allocations.  The more usual situation is 
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one in which we are interested in different types of 
estimates, such as, means, ratios, differences; and for 
multiple subgroups and characteristics in the same 
survey.  The methods fall under the general heading of 
nonlinear programming (NLP). 
 

3.  Nonlinear Programming. 
 
The field of NLP is complex and treated in many 
ways, essentially all methods involve some form of 
iteration process, like the Newton (or Newton-
Raphson) method, and partial derivatives as with the 
Lagrange multiplier.  The objective is to solve for the 
maximum or minimum of the objective function, F(x), 
often subject to constraints, either linear or non-linear.  
The constraints are of the form 
 
    gi(x)  = 0    (i = 1, ..., m1)       where m1 ≥ 0 and 
    hj(x) ≥ 0    (j = m1+1, ..., m)     where m ≥ m1 

One of the greatest challenges in NLP is that some 
problems exhibit "local optima"; that is, spurious 
solutions that merely satisfy the requirements on the 
derivatives of the functions.  One solution is to check 
when an optimum is indicated to make sure that a set 
of constraints are satisfied by this solution.  Such a set 
of constraints was presented by Kuhn and Tucker 
1951 and is used in the method discussed in this 
paper. 

4.  Nonlinear Programming Adapted to Hierarchy 
Sample Designs 

 
When designing a sample survey, two important 
issues are quality of results and efficiency.  In this 
application of NLP, we focus on efficiency.  Two 
recent applications demonstrate the usefulness and 
flexibility of the software used at MPR.  We recall one 
of the difficulties of developing a set of program steps 
for NLP is the diversity of applications.  The paper by 
Chromy 1987 describes the basis for the software 
development that is now used at MPR.  This software 
accommodates the classical sample designs involving 
hierarchical designs and stratification.  Specifically, 
for stratification, the input involves a) the cost 
function to be minimized, which associates the cost 
components with the unknown sample sizes or a 
function of those sample sizes, xh, for stratum h: 

 

 

and b) the constraints including the variance 
constraint for each estimate of interest as a sum of 
variance components, Vkh, each divided by the sample 

size that influences that component, set equal to the 
maximum variance targeted for that estimate: 

 

 

 

Note that both the cost equation to be minimized and the 
variance constraints have a term with subscript 0, which 
does not depend on sample size.  These terms are 
excluded from the problem. 

The function to be minimized can be expressed as: 

 

The Kuhn-Tucker conditions that must be satisfied for 
this to be the minimum cost solution subject to 
constraints are: 
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5.  An Example Application 

In this example application, the fifth round of a large 
national survey of physicians is being redesigned from 
a telephone-only survey to a mixed mail and telephone 
data collection mode.  The existing design uses a 
stratified multi-stage probability sample.  Specifically, 
the setting for this application is the redesign of the 
fifth round of the Community Tracking Study (CTS) 
Physician Survey.  CTS is a national study of the 
rapidly changing health care market and the effects of 
these changes on physician practices.  Funded by the 
Robert Wood Johnson Foundation, the study is 
conducted by the Center for Studying Health System 
Change (HSC). (Information about other aspects of 
the CTS and HSC is available at www.hschange.com.)   
When changing methods in a continuing type of study  
such as this we need to be concerned about the 
interruption in the trend analyses that results from the 
method change.   
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For the proposed redesign for round five, a mode 
transition survey, there are three basic strata in the 
telephone component (the two modes are used 
concurrently to assess the impact of the mode change 
on the trend analyses).  One of the strata used a 
clustered sample with unequal sampling rates that 
produces an equal probability sample of physicians.  
The second stage selection probabilities had to reflect 
the fact that primary sampling units  were selected 
with probability proportional to 1990 Census of 
Population counts because the same PSUs are used.  
The other two strata use un-clustered stratified 
sampling and the mail survey component also uses an 
equal probability stratified sample. 

We were interested in controlling precision for seven 
different estimation equations, including ratio 
estimators, difference estimators, and direct expansion 
estimators for each data collection mode and 
combined.  Also, there were 21 key variables of 
interest identified for these estimators.  Some of the 
variables were discrete and some continuous. 

5.1 Formulation of the Problem 

The problem must be formulated to be consistent with 
the equations presented in Section 4, above.  The 
objective function is the cost function that is to be 
minimized. For the variance constraints, an average of 
the population variances for the 21 key variables was 
used to reduce the number of variance constraints to 7 
(one for each estimator form).  The values for the 
variance components and other parameters of the 
problem were based on information from previous 
rounds of the survey.  Once the optimum solutions 
were obtained based on the 21 variable averages, 
some of the more important variables were checked 
individually to make sure the allocation satisfied their  
precision constraints.  The 7 estimates related only to 
the total population (no subpopulations) and included 
a mode difference estimate, a ratio change estimate, 
and 5 means (modes combined without adjustment, 
combined and adjusted to mail mode responses, 
combined and adjusted to telephone mode responses, 
using only mail, and using only telephone). The cost 
function contained 6 terms (3 strata times 2 modes) 
reflecting the estimate based on a prior experiment 
that indicated a telephone response costs three times a 
mail response in this setting.   

The object equation is: 

 

 

The sample sizes being sought, nij comprise the x 
vector terms noted in the general formulation of NLP 
problems.  The six terms also coincide with the six 
terms in each of the seven variance constraint 
equations 

The first of seven estimators is used to demonstrate 
the development of the seven variance equation 
constraints. 
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This is the estimated mean based on the combined 
samples with the telephone responses adjusted to the 
mail mode level.  . 

The first of six components for the variance of this 
estimator is (the one divided by n11, the number to be 
assigned to mail mode in stratum 1): 

 

 

 

average design effect for stratum 1,
1
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As noted before, there are seven variance constraint 
equations, all different, and each with six components 
such as the one just shown (6x7=42 equations). 
 

5.2 Results of the Optimization 

The input values for the 6 variance components,  for 
the first of 7 estimators are presented as examples in 
Table 1.  The target variance is 0.0023 (the Vo 
subtracted from the overall variance constraint is that 
part of the variance that is not influenced by sample 
size). 

The sample allocation based on the initial variance 
constraints is shown in Table 2.  The sample sizes for 
stratum 1 are largest reflecting the fact that 
approximately 60 percent of the population is 

represented by that stratum.  The larger sample to the 
mail sample compared to the telephone in each 
stratum reflects the anticipated cost differences. 

The total sample size of 6,437 required to meet the 
constraints in the first solution attempt was slightly 
larger than desired.  Therefore, the next step was to 
compare the target and resulting variances for each of 
the estimates (Table 3). 
 

Since the intent was to obtain a slightly smaller total 
sample, we identify the estimates(s) that have equal 
target and resulting variance values.  We must accept 
a slightly lower precision for these estimates in order 
to reduce the total sample size.  Hence, we reduce the 
variance constraint for those estimates and rerun the 
optimization program. 

We note in this case that the resulting variances all 

surpass their target variance (slack constraints) except 
for the mode difference estimator.  In order to reduce 
the total sample size required by the first solution, 
therefore, we need to relax the variance constraint for 
that estimate. 

 

 

6.  Application Two 

At MPR , we have used this optimization method in 
the design of numerous surveys, but a brief 
discussion is presented for one other application for 
the purpose of demonstrating the flexibility of the 
method.  In this second application, a different focus 
on optimization for allocation to over 125 
demographic/program-participant categories for 
which specific precision requirements were to be 
met. 

 
In terms of the sampling design, the survey  included 
two stages of selection and used a composite size 
measure for selection of the first stage units, the 
primary sampling units (PSUs) (Folsom et al. 1987).  
A PSU was a single county or a group of adjacent 
counties.  The frame contained more than 500 PSUs 
(some 300 MSAs and 200 PSUs formed from non-
metropolitan counties). 
 
The composite size measure was computed for each 
PSU using the count of program participants in the 
PSU in each of eight sampling strata.  The size 

Table 1.  Variance Component Values for the Full 
 Sample Adjusted Mail Mode 

Estimate Variance Component 
 YMf       0.518 /n11 
        0.222 /n21 

        0.079 /n12 

        0.029 /n22 

        0.053 /n13 

        0.020/ n23 

Target      0.0025-Vo=0.0023 

Table 2.  Sample Allocation Based On Initial 
Solution  

Stratum Sample Counts 

1-mail 2,369 

1-tele 1,368 

2-mail 942 

2-tele 544 

3-mail 770 

3-tele 445 

Total 6,437 

  

Table 3.  Target and Resulting Variances of the Seven 
Estimates for the  Initial Solution 

Estimate  Target Result Var 

Mail, combined 0.0023 0.0007 

Tele, combined 0.0022 0.0007 

Unadjusted combined 0.0025 0.0007 

Mode difference 0.0025 0.0025 

Change 0.0014 0.0007 

Mail only 0.0025 0.0010 

Telephone only 0.0025 0.0017 
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measures were designed to permit constant global 
selection rates of participants for each of the eight 
sampling strata and to equalize survey workload in 
each first stage unit.  The PSUs were then selected 
with probabilities proportional to this composite size 
measure.  
 
The process of developing an appropriate allocation 
across the sampling strata of participants was based on 
the evaluation of alternative sets of constraints for 
estimates for the population domains.  More than 125 
precision constraints were developed for 9 to 11 
analytic domains.  The constraints were developed by 
reviewing the analytic importance for combinations of 
analysis domains and subpopulations (for example, 
gender).  Through an iterative process of alternative 
sets of constraints, a series of acceptable constraints 
for the analysis domains and subpopulations were 
developed. 
 
In preparing the revised sample allocation, additional 
constraints were added to ensure precision for 
estimates for populations defined by age and living 
situation of program participants (the initial 
constraints only included current age and living 
situation).  Constraints were imposed and evaluated 
based on the need for precision for specific analytic 
domains. 
 
The development of the allocation of the sample 
among the sampling strata uses statistical models for 
the sampling variance for the specific estimates for 
various domains and precision constraints for these 
estimates. The derivation of the variance model for 
this survey design was: 
 

Var (p | d, h, s) =  

Eh Whd 
2 [1 + D (ed s-1)] p (1-p) /ed nh 

where 
d denotes the analytic domain 
h denotes the sampling strata based on participant 

classifications 
nh denotes the respondent sample size in stratum h 
s is the number of respondents in each PSU 
D is the intra-cluster correlation among responses to 

a dichotomous variable (D is projected at 0.01) 
ed is the estimated proportion of respondents in a 

stratum that are in analytic domain d. 
The intra-cluster correlation was projected at 0.01 
because the diversity of participant characteristics are 
likely to make the responses be less homogeneous 
within a PSU than in some household surveys of a 
similar population.  
 

The variance model incorporates stratification, the 
eligibility or membership in a domain of interest for 
specific respondents, and the clustering of respondents 
within PSUs.  
 
Various algorithms have been used to minimize a cost 
function (the objective function) with respect to multiple 
precision constraints (a system of equations) in the mold 
of linear programming.  One such method is described 
above as used in the first application and was also used 
for this study. 

 
7.  Summary 

 
For smaller surveys or surveys with relatively few 
statistics of importance to the results, methods such as 
those described in Section 2 using familiar optimization 
equations are often all that is needed for the design.  On 
the other hand, these basic equations are often 
inadequate for designing large complex surveys that 
must ensure specified levels of precision for a range of 
questions, different forms of estimates, or for numerous 
inference subpopulations, In this paper we describe a 
very flexible and powerful method for dealing with 
multiple objectives in complex sample surveys using 
simultaneous solutions.  Two recent applications were 
presented. 

The specific software for using this method is not 
available in many of the sampling software packages 
that are commercially available, but MPR and other 
researchers have programmed the algorithm in SAS or 
by providing the appropriate equations as input to the 
SAS Proc NLP.  The paper by Chromy (1987) provides 
sufficient description of the steps to facilitate 
programming the method.  Also SAS NLP can be used 
for some applications by restructuring the specific 
problem into a function of functions of the objective 
variables (number of functions must be equal to number 
of objective variables for the problem to have a 
consistent and unique solution).  Both linear and 
nonlinear, equality and inequality constraints can be 
entered as well as a choice of the method for solving, for 
example, Newton-Raphson method with ridging is the 
default if TECH= is not specified.  The number of 
iterations required for convergence increases as linear 
constraints are added and again when both linear and 
nonlinear constraints are added. 

As can be seen in the applications presented here, the 
tedious feature of application can  be calculating the 
variance components for the variance constraint 
equations.  Once the problem is programmed and 
variances developed,  however, additional options can be 
quickly explored for a given setting. 
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