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Abstract

Analyzing the informativeness of the sampling weights
can lead to significant improvement in the precision of
model estimation with survey data. A test for weights ig-
norability was proposed in Pfeffermann’s (1993). We pro-
pose a modification of this test which improves its perfor-
mance for small and medium sample size problems. We
also generalize the test to a test of equivalence between
two different sets of sampling weights, which can be used
to test the informativeness of individual weight compo-
nents. We evaluate the performance of these techniques
in simulation studies based on linear regression and mul-
tivariate factor analysis models. We also apply the test
of equivalence to the problem of finding the optimal level
of weight trimming and illustrate this approach with a
practical example. We describe the implementation of
these techniques in the software package Mplus.

KEY WORDS: Weights Informativeness, Weight Trim-
ming, Test of Weights Ignorability.

1. Overview

Large variation in the sampling weights is a major prob-
lem when analyzing survey data. Such variation increases
dramatically the variability of the parameter estimates.
Bias reductions gained by using the sampling weights
can easily be eliminated by the larger variability of the
weighted estimates. Using the sampling weights will re-
sult in an increase of the mean squared error of the es-
timates. In addition, sampling weights with large vari-
ability increase finite sample size biases because general
asymptotic results will then typically require larger sam-
ples. Sampling weights could also be non-informative.
In such a case using the sampling weights will increase
the variability of the estimates without reducing the bias.
Therefore its imperative that test for informativeness of
the sampling weights is conducted in all practical appli-
cations. While many software packages include facilities
for model estimation with sampling weights, standard-
ized tools for testing the informativeness of the weights
are not included.

In practical applications sampling weights are com-
puted as the product of different components. For exam-
ple sampling weights obtained by post-stratification will
typically be computed as the product of different strati-
fication variables such as SES, race and age. Each of the

components could be informative or not-informative. It
is imperative to analyze each of these components sep-
arately for informativeness. Including non-informative
components in the sampling weights will simply decrease
the precision of the estimates.

In this article we investigate the performance of the
Pfeffermann’s (1993) test for informativeness of the sam-
pling weights. The test can be used for univariate as
well as multivariate models, single level and multilevel
level models. The test applies to the pseudo maximum-
likelihood (PML) estimator described by Skinner (1989)
and implemented in the software package Mplus (Muthen
& Muthen 1998-2007), which we used for all computa-
tions in the article. We conduct simulation studies for
univariate, multivariate, single level and two-level mod-
els using both informative and non-informative sampling
weights.

We also provide a modification of Pfeffermann’s test
for informativeness which improves the test performance
for small and medium sample size. This modified test can
also be used to determine the informativeness of weight
components as well as to compare two different weight
variables. The test can be used for determining the opti-
mal level for weights truncation.

2. Testing The Informativeness Of The Sampling
Weights

Consider a model with p parameters θ = (θ1, ..., θp) and
let θ̂ be the maximum likelihood estimates of θ. Let θ̂w be
the PML estimates when sampling weight variable w is
included in the estimation. Suppose that V (θ̂) and V (θ̂w)
are the corresponding variance estimates for the θ and θw.
Pfeffermann (1993) proposed a simple method for testing
the informativeness of the sampling weights. Under the
null hypothesis of non-informative weights the following
test statistic T has a chi-square distribution with p de-
grees of freedom

T = (θ̂w − θ̂)[V (θ̂w)− V (θ̂)]−1(θ̂w − θ̂)T ∼ X2(p). (1)

This is because under the null hypothesis the variables
θ̂ and θ̂w − θ̂ are asymptotically independent. For finite
sample size however this may not be so and the variance
of θ̂w − θ̂ may be quite different from V (θ̂w) − V (θ̂). In
fact for small sample size frequently V (θ̂w)−V (θ̂) will not
be a positive definite matrix and in that case the value of
T may be negative. In such cases we interpret the test as
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accepting the null hypothesis with p-value of 1. We call
this test the Pfeffermann’s test of ignorability (PTI).

We now derive a modified Pfeffermann’s test of ignor-
ability (MPTI) to achieve two different goals. The first
goal is to provide a non-zero estimate for the covariance of
θ̂ and θ̂w− θ̂ could enable us to improve the finite sample
size performance of the PTI. The second goal is to gener-
alize the test to the case when we compare the parameter
estimates based on two different sampling weights w1 and
w2. When one of the sampling weights is w1 = 1, we es-
sentially will give an alternative test for ignorability for
the other weight w2. Denote by θ̂w1 the PML parameter
estimates based on sampling weights w1 and by θ̂w2 the
PML parameter estimates based on sampling weights w2.
The null hypothesis we want to test is that both sampling
weights lead to consistent parameter estimates, i.e., the
ratio f = w2/w1 is ignorable weights component. First
we derive the joint distribution of θ̂w1 and θ̂w2 . Denote by
li the log-likelihood for the i−th unit in the sample and
w1i and w2i the two sampling weights for that unit. Let
Lj =

∑
i wjili be the weighted log-likelihood, j = 1, 2,

for the two sampling weights. Let Tj , j = 1, 2, be the
score equations used to derive the PML estimates

Tj =
∂Lj

∂θ
=
∑

i

wji
∂li
∂θ

. (2)

By definition Tj(θ̂wj
) = 0. Let T = (T1, T2) and

θ̂w = (θ̂w1 , θ̂w2). Thus T (θ̂w) = 0. Using the linearizaton
method we can obtain the distribution of θ̂w

0 = Tj(θ̂wj ) ≈ Tj(θ0) + (θ̂wj
− θ0)

∂T

∂θ
. (3)

θ̂wj − θ0 ≈

(
∂Tj

∂θ

)−1

Tj(θ0) ≈ (4)

(
∂2Lj(θ̂wj )

(∂θ)2

)−1∑
i

wji

∂lj(θ̂wj )
∂θ

. (5)

where θ0 is the true parameter value. Therefore an esti-
mate for the variance of θ̂w is given by

V (θ̂w) =
(

V (θ̂w1) C

C V (θ̂w2)

)
(6)

where

C =

(
∂2L1(θ̂w1)

(∂θ)2

)−1

·M ·

(
∂2L2(θ̂w2)

(∂θ)2

)−1 T

(7)

M =
∑

i

w1iw2i
∂li(θ̂w1)

∂θ

(∂li(θ̂w2)
∂θ

)T

(8)

Thus the variance estimate for θ̂w1 − θ̂w2 is

V = V (θ̂w1) + V (θ̂w2)− 2C. (9)

Note that this variance estimate is positive definite even
for small sample size. Under the null hypothesis of non-
informativeness of f = w2i/w1i the following test statistic
T has a chi-square distribution with p degrees of freedom

T = (θ̂w1 − θ̂w2)V
−1(θ̂w1 − θ̂w2)

T ∼ X2(p) (10)

We call this test the modified Pfeffermann’s test of ignor-
ability (MPTI).

If in addition to sampling weights, the sampling de-
sign could also include stratification and cluster sampling.
Suppose that w1sci and w2sci are the sampling weight for
individual i in cluster c in stratum s. All of the above for-
mulas still apply with the exception of formula (8) which
is modified as follows

M =
∑

s

ns

ns − 1

∑
c

(z1sc − z̄1s)(z2sc − z̄2s)T (11)

where

zksc =
∑

i

wksci
∂lsci(θ̂wk

)
∂θ

(12)

z̄ks =
1
ns

∑
c

zksc (13)

and ns is the number of clusters in stratum s.
In this article we consider only single level models, how-

ever the PTI and MPTI tests apply also for multilevel
models with sampling weights and the MPML estimation
method (Asparouhov, 2006).

Alternative way to derive the distribution of θ̂w is to
use the linearization method on the total score equation
T , however the formulas become somewhat more compli-
cated. This approach will yield yet another finite sample
size approximation to the PTI test that will asymptoti-
cally be equivalent to the PTI test.

In the next section we compare the PTI and the MPTI
test applied to the case when w1 = 1 for testing the
ignorability of the sampling weights.

3. Simulation Study For Testing Ignorability Of
Sampling Weights

In this simple simulation study we compare the perfor-
mance of the PTI and the MPTI tests for three simple
models and various sample sizes. The first model is a
univariate mean and variance estimation

Model 1 : Yi = µ + εi (14)

where εi are zero mean normally distributed residuals.
We estimate two parameters µ and the variance σ of εi

(and Yi). We generate the data from the standard normal
distribution, i.e., the true parameters values are µ = 0
and σ = 1. We also generate an ignorable set of weights

wi = Exp(ξi) (15)
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Table 1: Rejection rates for PTI and MPTI tests when weights are ignorable.

Test Model p n=200 n=500 n=2000 n=10000
PTI 1 2 12% 15% 6% 3%

MPTI 1 2 10% 5% 4% 2%
PTI 2 3 19% 20% 10% 5%

MPTI 2 3 9% 10% 7% 4%
PTI 3 15 20% 40% 31% 9%

MPTI 3 15 30% 20% 9% 6%

Table 2: Rejection rates for PTI and MPTI tests when weights are not ignorable.

Test Model p n=200 n=500 n=2000 n=10000
PTI 1 2 76% 85% 100% 100%

MPTI 1 2 100% 100% 100% 100%
PTI 2 3 77% 85% 99% 100%

MPTI 2 3 100% 100% 100% 100%
PTI 3 15 46% 63% 97% 100%

MPTI 3 15 100% 100% 100% 100%

where ξi are independent standard normal deviates. The
unequal weight effect (UWE) measures the variability of
the weights and is computed as follows

UWE =
n
∑

i w2
i

(
∑

i wi)2
≈ E(w2

i )
(E(wi))2

. (16)

Thus if wi are generated as in equation (15) where ξi

is a standard normal variable with variance θ the UWE
effect is approximately Exp(θ), i.e., in case our case the
UWE effect is approximately 2.71. This approximation is
however for large samples. For small samples the UWE
effect will very substantially from sample to sample.

The second model is a univariate linear regression
model with one predictor variable

Model 2 : Yi = µ + βXi + εi. (17)

The predictor variable Xi is a standard normal deviate.
We estimate three parameters µ, the residual variance σ
and the slope β. The true parameter values for µ and
σ are as in Model 1, and β = 0.5. The third model is
a multivariate factor analysis model with five dependent
variables and one factor variable

Model 3 : Yji = µj + λjηi + εji. (18)

where j = 1, ..., 5 and η is a standard normal unobserved
factor variable. There are 15 parameters in this model
µj , λj and the residual variances σj . The true parameter
values are λj = σj = 1 and mj = 0.

We conduct the simulation studies with four different
sample sizes n = 200, 500, 2000 and 10000. We generate
100 samples for each sample size and conduct the PTI and
MPTI test of ignorability of the sampling weights (15).

We reject the true null hypothesis when the test statis-
tic value exceeds the 95% quantile of the corresponding
chi-square distribution and thus we expect that the test
rejects no more than the nominal 5% of the time for suf-
ficiently large sample size. Table 1 contains the rejection
rates for this simulation study. The results suggest that
both PTI and MPTI perform correctly for large sample
sizes for all three models, however for small sample size
both tests tend to reject incorrectly the null hypothesis
more often than the nominal 5% rate. This is especially
the case for the model with larger number of parameters
p. The results also suggest that MPTI outperforms the
PTI test for small and medium sample size.

Note that the inflated rejection rates in Table 1, while
being undesirable, should not be a deterrent for utiliz-
ing the tests. The consequences from not being able to
establish the non-informativeness of the weights is rela-
tively minor. Essentially the less precise weighted esti-
mates will be used even when the unweighed estimates
are better. Not utilizing the ignorability test makes this
exact error 100% certain.

To evaluate the power of the two tests we conduct a
simulation study with informative weights. We gener-
ate sampling weights according to (15) again however ξi

and εi are generated from a bivariate normal distribution
with correlation 0.5, for Model 1 and 2. For Model 3 we
generate ξi and ηi from a bivariate standard normal dis-
tribution with correlation 0.5. The correlation between
the data in the model and the sampling weights causes
the unweighed parameter estimates to be biased. Since
the sampling weights are informative we expect the PTI
and MPTI tests to reject the null hypothesis of ignor-
able weights 100% of the times. The higher the rejection
rate the more powerful the test is. Table 2 contains the
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Table 3: Rejection rates for MPTI tests when the two weights are equivalent.

Test Model p n=200 n=500 n=2000 n=10000
MPTI 1 2 9% 9% 6% 5%
MPTI 2 3 15% 13% 13% 12%
MPTI 3 15 41% 27% 17% 11%

Table 4: Rejection rates for MPTI tests when the two weights are not equivalent.

Test Model p n=200 n=500 n=2000 n=10000
MPTI 1 2 100% 100% 100% 100%
MPTI 2 3 96% 100% 100% 100%
MPTI 3 15 99% 100% 100% 100%

results of this simulation study. Clearly the MPTI test
outperformed the PTI test here as well. The low power
of the PTI test for smaller sample size suggest that this
test could lead incorrectly to the conclusion that the sam-
pling weights are non-informative. This could be a major
drawback for using the PTI test because it could lead to
less accurate estimates.

4. Simulation Study For Testing Equivalence of
Two Weighted Estimates

In this section we conduct a simulation study to evalu-
ate the performance of the MPTI for testing significant
differences between two sets of weighted parameter esti-
mates. Suppose that w1 and w2 = w1 · f are two sets of
sampling weights and we want to test the equivalence of
the corresponding sets of weighted parameter estimates.
This situation can arise for example when f is constructed
to reduce the variability of the weights, such as a trun-
cation factor or another weights shrinkage factor. Al-
ternatively, the sampling weights can be obtained from
a multistage sampling scheme where unequal probability
of selection has been used at each stage of the sampling
process. In that case the sampling weight is the product
of the inverse probability of selection for each sampling
stag. Another example would be post-stratification sam-
pling weights where the sampling weight is composed of
multiplicative factors, one factor for each stratification
variable.

Using the same models as in the previous section we
conduct simulation study with different sample sizes to
evaluate the performance of the MPTI. The PTI test
is not applicable for comparison of two weighted esti-
mates. We generate the sampling weights for Models 1
and Model 2 as

w1i = 1 + Exp(Yi) (19)

and for Model 3 as

w1i = 1 + Exp(ηi) (20)

The UWE effects for Models 1 and 3 are approximately
2.26 and for Model 2 it is 2.93. Model generated data is
included in the samples with probability proportional to
1/w1i. We also generate a uninformative weight factor f
according to (15) with an independent standard normal
ξi. The second weight is computed as w2i = w1if . We
test the ignorability of f by the MPTI test. The rejection
rates are given in Table 3. The results suggest that the
MPTI test works correctly for sufficiently large sample
size, however for models with larger number of parame-
ters and smaller sample size a substantial deviation from
the nominal rejection rate is found, which implies that in
some cases informative weight factor may not be detected
by this test.

As in the previous section, by introducing a correla-
tion between ξi and εi of 0.5, for Model 1 and Model 2,
and between ξi and η for Model 3, we obtain informative
weight factor f . In this case we expect the MPTI test
to reject 100% of the time. The results of this simula-
tion study are presented in Table 4. The rejection rate is
nearly 100% in all cases.

5. Application to Weights Trimming

In this section we illustrate how the MPTI can be used to
select proper levels for weights trimming when the sam-
pling weights are not ignorable but still too variable to
include in the estimation. We use the following example
originally presented in Chantala and Suchindran (2006).
The data comes from the National Longitudinal Study of
Adolescents (Add Health), a longitudinal study of ado-
lescents in grades 7-12 during the 1994-1995 academic
year. A sample of 130 schools (PSU) were chosen with
unequal probability of selection. Let pj be the probabil-
ity of selection for school j. Within each school students
were also selected with unequal probability. Let pij be
the probability of selection for student i in school j. The
total number of students in the sample are 18087. The
school and individual sampling weights are available and
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are computed as follows

w1ij = 1/pij (21)

w2j = 1/pj (22)

The combined weight wij

wij = w1ijw2j (23)

can be used with the PML method to estimate population
average models. In this illustration we estimate the a
regression model of the body mass index of the students
(B variable) on the hours spent watching TV or using
computers (W variable) and the availability of a school
recreation center (R variable) as well as the interaction
of the two predictor variables

B = µ + β1W + β2R + β3WR + ε (24)

The model has 5 parameters: the intercept, the 3 slopes
and the residual variance parameter θ thus the PMTI test
has 5 degrees of freedom. The sample design includes
cluster sampling. The schools represent the PSUs and
therefore we facilitate formula (11) in the computation of
the PMTI to account for the cluster sampling. Chantala
and Suchindran (2006) consider a two level model where
random intercept and random slope for W are estimated.
For simplicity however in our illustration we use a single
level, population average model.

The UWE for w1 is 2.4, for w2 it is 3.9 and for the
combined weight it is 2.0. These levels of variability in-
dicate that non-informativeness of the sampling weights
can lead to poor estimates and therefore it is impera-
tive to analyze the weights. The first step of our weights
analysis is to evaluate the informativeness of the total
weight variable w1w2 as well as each of the two weights
components w1 and w2. Table 5 shows the results of
these 3 PMTI tests. Both components when tested sepa-
rately appear to be non-informative, however when both
components are tested simultaneously they appear to be
marginally informative. It is in general unclear how to
proceed in such a situation. If only one of the compo-
nents was non-informative, we would have just dropped
that component, but in our case it appears that both
weights are slightly informative and in combination they
can not be treated as non-informative. One approach to
resolve this situation is to simply drop the component
which is less informative, in our case the w1 weight vari-
able. Another approach would be to drop the w1 com-
ponent and to trim the w2 component to the maximum
level that gives non-informative reduction. A third ap-
proach is to simply trim both weights simultaneously to
the maximum level that gives non-informative reduction.
Here we will illustrate the last approach.

Denote wq the q−th quantile of the weight variable w.
Let 0 < l < u < 1. Let the weight variable w(l, u) be the
trimmed weight variable at quantiles l and u

w(l, u) = min(max(w,wl), wu), (25)

Table 5: MPTI test for informativeness of weight compo-
nents

Test w1 w2 w1w2

MPTI value 4.2 7.1 12.4
p-value 0.522 0.215 0.030

Table 6: PMTI test for informativeness for weight trim-
ming at different levels of trimming

l u p-value
0 0.5 0.027
0 0.7 0.050
0 0.75 0.092

0.1 0.75 0.104
0.2 0.75 0.095
0.3 0.75 0.058
0.35 0.75 0.027
0.4 0.75 0.015

i.e., the weight variable is trimmed at the upper level at
quantile u and at the lower level at quantile l. Trimming
the weights is the simplest way to reduce the weights vari-
ability, however other methods can be used here as well,
for example the power-shrinkage method, see Chihnan
(2006) et alt. We now illustrate how to select proper level
of trimming. For every set of quantiles l and q we can test
the informativeness of the reduction factor f = w/w(l, u),
by the MPTI test using w1 = w and w2 = w(l, u). If the
MPTI test does not reject the hypothesis that f is non-
informativeness we conclude that the weight trimming at
levels l and q is appropriate. In general the p-value of the
MPTI test of w v.s. w(l, u) will be decreasing function
of l and increasing function of u, i.e, as we trim more
and more the p-value decreases. This statement is only
approximately so, small deviations on full monotonicity
is expected. The p-value for w(0, 1) is 1. The p-value for
w(l, u) when u = l is the p-value for informativeness of
w, in our case 0.03.

Our strategy for choosing the optimal trimming level
is to first trim the upper part of the weights to the low-
est level with p-value above the nominal 5% value simply
using a line search with step 5%. The upper trimming is
followed by a similar lower trimming of the weights. In
our illustration we trim both weight components at the
same quantile levels however other approaches are possi-
ble too. Table 6 contains the p-values we obtained in the
search for the optimal u and l values. We conclude that
trimming the weights at the 0.30 and 0.75 quantiles is the
optimal. The trimmed portion of the weights is not infor-
mative with p-value 5.8%. The UWE for the total weight
variable is reduced from 2.03 for the original weight vari-
able to 1.52 for the trimmed weights. This reduction
indicates that the trimmed weight estimates could be
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Table 7: Parameter estimates and standard errors for weighted trimmed and unweighted estimation.

parameter weighted trimmed unweighted
µ 58.539(0.778) -0.32 (0.82) -0.50 (0.79)
β1 0.054(0.019) -0.11 (0.89) 0.58 (0.68)
β2 -2.891(1.071) 0.88 (0.86) 1.39(0.81)
β3 0.110(0.025) -0.54 (0.88) -1.72(0.88)
θ 813.762(11.694) -0.41 (0.73) -0.85 (0.69)

substantially more precise than the fully weighted esti-
mates. Table 7 shows the parameter estimates and their
standard errors for the fully weighted, trimmed, and un-
weighted estimation. In the fully weighted column we
report the parameter estimates and the standard errors
in the parenthesis. In the trimmed and unweighted col-
umn we report the standardized change in the parameter
estimates and the efficiency ratio. The standardized pa-
rameter change is the parameter change divided by the
weighted standard error. The efficiency ration is the ratio
between the standard error for the trimmed/unweighted
estimates and the weighted estimates. The results show
that the trimmed estimates are quite different from the
weighted estimates and the change is almost always in
the direct of the unweighted estimates. The results also
show that the standard errors of the trimmed and the
unweighted are very similar.

6. Conclusion

In this article we investigated the performance of Pfeffer-
mann’s test of informativeness for the sampling weights
and proposed a modification of this test which improves
the performance for small and medium sample sizes. We
also generalized the test to the situation when we need to
test one set of sampling weights against another set. This
generalized test can be used to test separately the infor-
mativeness of different weights components which can be
useful in eliminating uninformative weight components to
improve the precision of the estimates. The generalized
test can also be used to select proper level for weights
reduction techniques such as weight trimming or power
shrinkage.
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