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INTRODUCTION 
Abstract 

 
Adaptive sampling designs are designs in which 
additional units or sites for observation are 
selected depending on the interpretation of 
observations made during initial sampling. 
Additional sampling is driven by the observed 
results from an initial sample.  
Two problems often crop up in adaptive 
sampling. One, it may not be feasible to sample 
according to a designated sampling plan. And 
two, the prescribed sampling plan may result in 
very small selection probabilities for some units 
thereby giving large weights to such units in 
estimation. 
In order to ameliorate these problems, we 
propose a regression procedure that combines 
design and model-based techniques of 
estimation. 
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Adaptive sampling designs are designs 
in which additional units or sites for 
observation are selected depending on 
the interpretation of observations made 
during initial sampling. Additional 
sampling is driven by the observed 
results from an initial sample.  
For population with complex features or 
characteristics that are rare, unevenly 
distributed, hidden, or hard to reach, 
conventional sampling designs such as 
simple random sampling lead to 
estimates with large variances and 
potential biases. With sufficient previous 
knowledge of the population, precision 
can be increased through such devices as 
stratification, systematic designs, and the 
use of auxiliary information in the 

design and estimation stages (Cochran 
1977; Thompson and Seber 1996) 
Most times, however, the uneven 
patterns in the populations cannot be 
predicted before sampling. For example, 
pattern of drugs use may change over 
time, epidemic(s) progress through 
cycles, neighborhoods may change their 
compositions, and economic changes 
occur; similarly, natural populations of 
animals or fish may change 
unpredictably in spatial pattern. For such 
populations, adaptive sampling strategies 
can be useful. 
Adaptive cluster sampling design is 
implemented using the following basic 
elements:  
(1) Selecting the initial probability-based 
sample, (2) specifying a rule or criterion 
for performing additional sampling, and 
(3) defining the neighborhood of a 
sampling unit (Chambers 2003). 
A grid is placed over a geographical area 
of interest (target population) where 
each grid square is a potential (primary) 
sampling unit (Thompson , 1992). This 
is illustrated in (APPENDIX) Figure 
1(a). Shaded areas on the figure indicate 
the area of interest; for instance, areas of 
elevated contaminant levels. This 
example has four regions of 
contamination. The 12 darkened 
rectangles in the figure represent a 
randomly selected set of 12 sampling 
units constituting the initial sample. 
Whenever a sampled unit is found to 
exhibit the characteristic of interest � 
that is, the unit intersects any part of the 
shaded areas � neighboring sampling 
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units are also sampled using a consistent 
pattern. An example follow-up sampling 
pattern is shown in Figure 2, where the 
x�s indicate the neighboring sampling 
units to be sampled. The follow-up 
sampling pattern is called the 
neighborhood of a sampling unit. The 
five grid units in the figure make up the 
neighborhood of the initially sampled 
unit. In Figure 1(a), four initial sampling 
units intersect the shaded areas. The 
units adjacent to these four initial units 
are sampled next, as shown in Figure 
1(b). Some of these sampled adjacent 
units also intersect the shaded areas, so 
the units adjacent to these are sampled 
next, as shown in Figure 1(c). Figures 
1(d) to (f) show subsequent sampling 
until no more sampled units intersect the 
shaded areas. Figure 3 shows the initial 
random sample and the final sample. 
Note that the final sample covers three 
of the four regions of contamination. If 
at least one of the initial units had 
intersected the fourth area, it would also 
have been covered by a cluster of 
observed units. 
The final sample consists of clusters of 
selected (observed) units around the 
initial observed units. Each cluster is 
bounded by a set of observed units that 
do not exhibit the characteristic of 
interest. These are called edge units. A 
cluster without its edge units is called a 
network. Any observed unit, including 
an edge unit, that does not exhibit the 
characteristic of interest is a network of 
size one. Hence, the final sample can be 
partitioned into non-overlapping 
networks. These definitions are 
important in understanding the 
estimators for statistical parameters. 
 
 
EARLY DEVELOPMENTS IN 
ADAPTIVE SAMPLING 

A Horvitz-Thompson (HT) and Hansen-
Hurwitz (HH)-type estimators of the 
mean and variance (of the sampled 
population) based on the final sample, as 
proposed by Thompson (1990) are 
typically used with adaptive cluster 
sampling. Dryver (1999) notes that the 
selection probabilities generally cannot 
be determined for all the units in the 
final sample and that is why a modified 
version of the HT-type and HH-type 
estimators using the Rao-Blakwell 
theorem was proposed (Dryver and 
Thompson 1999). Unfortunately, as 
noted by Dryver, �there is not one 
estimator which is uniformly better than 
another�. But he noted that generally the 
HT-type estimator is more efficient than 
the HH-type estimator in the univariate 
case.  
The usual unbiased estimators in 
adaptive cluster sampling are very 
simple but do not necessarily utilize all 
the information gathered. In the case 
where an initial sample is taken with 
replacement repeat selections can occur. 
The usual unbiased estimators do not 
take this into account. A more efficient 
estimator that utilizes this information of 
a repeat selection was discussed by 
Dryver (1999). Improvements have also 
been made in the case when an initial 
sample is taken without replacement. In 
particular, the values of edge units are 
utilized in the estimators only for edge 
units that were picked in the initial 
sample. Estimators that can incorporate 
this information can be obtained using 
the Rao-Blackwell method conditioning 
on the minimal sufficient statistic 
(Thompson 1997). These estimators can 
be computationally challenging. For 
computing the Rao-Blackwell 
estimators, Salehi (1998) derived 
expressions based on inclusion-
exclusion formulas. Dryver (1999) 
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derived a new easy-to-compute 
estimators of higher efficiency by taking 
the expected value of the usual 
estimators conditional on a sufficient 
statistic that is not minimally sufficient.  
The improved unbiased estimator 
proposed was shown to be more efficient 
that the usual HT estimator. 
  
THE PROBLEM AND WHY IT IS A 
PROBLEM 
There are still many areas of adaptive 
sampling that deserve attention. A 
general problem with all design-based 
unbiased estimators (which is the area 
researched thus far) is that they are 
dependent upon the design being carried 
out properly. When the sampling is not 
carried out according to the design this 
can profoundly affect estimation of the 
parameter of interest. In addition, these 
sampling problems may be correlated 
with the parameters of interest. For 
example, a researcher may not have 
enough funding to sample the entire 
network if it is too large and many 
design-based unbiased adaptive 
sampling estimators require the entire 
network to be observed. 
For the latter reasons it is important to 
study model based estimators in 
conjunction with an adaptive sampling 
design being used. All the estimators 
developed for adaptive sampling thus far 
are design-based. The design-based 
approach to survey inference has a 
number of strengths that makes it 
popular among its practitioners: it 
automatically takes into account features 
of the survey design, and it provides 
reliable inferences in large samples, 
without the need for strong modeling 
assumptions. On the other hand, it is 
essentially asymptotic, and yields 
limited guidance for small-sample 
adjustments. It lacks a theory for optimal 

estimation (Godambe 1995, 1986) and 
estimates from the approach are 
potentially inefficient. 
The Horvitz-Thompson (HT) estimator 
(Horvitz and Thompson 1952) that was 
used to derive the estimators for adaptive 
sampling applies this idea of design 
based inference more generally. 
Consider inference about the population 
total: 
 nyyyY +⋅⋅⋅++= 21  
and any sampling design with positive 
inclusion probabilities 
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and is design unbiased for Y. 
But (1) above has a major deficiency, for 
example, when an outlier in the sample 
has a low selection probability and hence 
receives a large weight. Basu�s (1971) 
famous circus elephant example 
provides an amusing example. 
 
Strengths and weaknesses of 
design-based inference 
Little (2003) noted that the design-based 
approach to survey inference has a 
number of strengths that make it popular 
with practitioners. In addition to the fact 
that it automatically takes into account 
features of the survey design, it also 
provides reliable inferences in large 
samples, without the need for strong 
modeling assumptions. Though it is 
essentially asymptotic, and hence yields 
limited guidance for small-sample 
adjustments. Unlike models, which lead 
to efficient inferences based on 
likelihood or Bayesian principles, the 
design-based approach is not 
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prescriptive for the choice of estimator. 
It lacks a theory for optimal estimation 
(Godambe 1955), and estimates from the 
approach are potentially inefficient. 
The practical bent of survey samplers is 
illustrated by the fact that Basu (a 
Bayesian) made fun of the frequentist 
position by placing it in the domain of 
�mathematical statistics�. On his part, 
Leslie Kish, an avid design-based 
advocate, similarly criticizes 
mathematical statisticians for focussing 
on i.i.d. models that fail to account for 
the complex sample design (Kish 1995, 
Section 9). 
Little (1991, 1993, 2002) also noted that 
superpopulation models are not the basis 
for inference in the design-based 
approach, but they can be useful to 
motivate the choice of estimator; in 
particular many of the classical 
estimators for incorporating covariate 
information, such as the ratio estimator 
or the regression estimator (e.g. Cochran 
1977), can be motivated as arising from 
linear superpopulation models (see also 
Elliot and Little 2000).  
Model-based-cum-Design-
based inference 
In situations where the HT model is not 
reasonable (Little, 2003), a model-
assisted modification is to predict the 
non-sampled values using a more 
suitable model as proposed below, and 
then apply the HT estimator to the 
residuals from that model. Specifically, 
the generalized regression estimator of 
Y� takes the form:  
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     (2) 
where y�  is the prediction from a linear 
regression model relating y to the 
covariates. The second term on the right 
side of (2) conveys it with the useful 

property of design consistency (Brewer 
1979, Isaki and Fuller 1982), which 
means informally that the estimator 
converges to the population quantity 
being estimated as the sample size 
increases, in a manner that maintains the 
features of the sample design. Design-
based statisticians usually weight cases 
by the design weights wi when 
computing this regression, but the 
estimator (9) is also design consistent if 
the regression is variance weighted. For 
discussions of generalized regression 
estimator and alternatives, see for 
example Cassel, Särndal and Wretman 
(1977), Särndal, Swensson, and 
Wretman (1992). 
Another general approach to design-
based inference incorporate models by 
basing inference on �pseudo- 
likelihoods� that reflect survey design 
features (Binder, 1983; 
Godambe and Thompson, 1986).  
ANALYSIS 
The analysis is conceived in the context 
of two phases: 
�phase� 1: Outside the networks 
�phase� 2: Inside the networks 
We estimate separately in each �phase� 
and combine the estimates. This is done 
because estimation in �phase� 1 is fairly 
easy due to random selection of sample 
units there. 
 
Model Assumptions 

1. Initial observations are randomly 
selected. Subsequent 
observations in each network are 
not randomly selected. They are 
dependent on the initial selection 
in the network 

2. There are Yi , i = 1, 2, 3, . . . , n 
observations in the sample. There 
are n| observations in the 
networks and (n- n|) observations 
outside the networks. 
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3. The population consists of N 
units made up of N| inside the 
networks and N- N| outside the 
networks 

4. yi in �phase�1 is distributed as 
i.i.d ),( 2σµN  while yi from 
�phase� 2 is multinomial 

),( 2 AN σµ  

 
 
Analysis proper 
In �phase�1 
The procedure is to use ordinary least 
squares to obtain iy� since sampling is 
random. If there is evidence of 
heteroscedacity, then use generalized 
least squares. 
Thus,  

 ∑∑
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In �phase�2 
In this phase, there is the real possibility 
of spatial correlation among the yi in the 
network, especially those close to each 
other and hence the need for a variance-
covariance matrix.  
Eventually, 
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the estimate of the population total can 
be estimated eventually by, 
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N1 � population size outside the network 
N2 � population size inside the network 
N � population size. 
Also, 21 wandw  can be obtained such 

that the variance of T�  would be 
minimized. In which case; 
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with the estimate of the population 
variance given as  
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suppose Ys1 and Ys2 are correlated, w1 
and w2 are estimated thus respectively, 
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An illustrative example:  
The following example serves to 
illustrate the computation of the new 
estimators for a given sample and shows, 
for a small population, the relative 
properties of the different types of 
estimators. The population consists of 
N=8 units. The initial sample is a simple 
random sample of n = 2 units. 
Neighboring (adjacent) units are added 
whenever the condition yi≥10 is 
satisfied.  
Table 1: The first line is the unit labels 
and the second line is their associated 
values while the third line is the 
associated covariates. The population 
consists of the eight units. The following 
line of the table are necessary 
components for calculating various 
estimators in adaptive cluster sampling 
(mi being the number of units in network 
i, wi represents the average value of a 
unit in that network which contains unit 
i, *

ky  being the sum of units in network i, and 

kα , the inclusion probabilities) , with n =2 
and a condition ≥10 
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 ix
 = 3 31 32 29 17 17 1 9 

 im
 = 1 2 2 2 1 1 1 1 

 iw
 = 2 15.5 15.5 15 9 8 1 4 

 Network 
# k = 1 2 2 2 3 4 5 6 

 

*
ky

 = 2 31 31 30 9 8 1 4 

 kα
  =  1/4 13/28  13/28  13/28  1/4  1/4  1/4  ¼  

 
 
Table 2: This table consists of all 
possible initial samples and a few 
possible associated estimates of 
population mean µ. In the first column 
number before semi-colon represent the 
initial sample and numbers after the 
semi-colon represent adaptively added 
units. where xyµ�   is the proposed 

estimator of the population mean µ, HTµ�  
the Horvitz-Thompson estimator and 

+HT
µ� , the improved estimator proposed 

by Dryver (1999) 
 

 
 
 
 
 
 
 
 
 
 

The sample 
 xyµ�  

HTµ�    +HT
µ�  

2,15; 16,14,9 13.153 13.1154 14.8654 

2,16;15,14,9 13.153 13.1154 14.8654 

2,14;16,9 7.893 9.0769 10.8269 

2,9 5.5 5.5 5.5 

2,8 5 5 5 

2,1 1.5 1.5 1.5 

2,4 3 3 3 

15,16;14,9,2 14.393 15.5769 12.4103 

15,14;16,9,2 14.393 15.5769 12.4103 

15,9;16,14,8,2 16.653 16.6154 15.4487 

15,8;16,14,9,2 16.153 16.1154 15.2821 

15,1;16,14,9,2 12.653 12.6154 14.1154 

15,4;16,14,9,2 14.153 14.1154 14.6154 

16,14;15,2,9 15.743 15.3462 12.5128 

16,9;15,2 13.243 12.8462 11.0962 

16,8;15,2 12.743 12.3462 10.8462 

16,1;15,2 9.243 8.8462 9.0962 

16,4;15,2 10.743 10.3462 9.8462 

14,9;16,15,2 16.653 16.6154 14.8654 

14,8;16,15,2 16.153 16.1154 14.6154 

14,1;16,15,2 12.653 12.6254 12.8654 

14,4;16,15,2 14.153 14.1154 13.6254 

9,8 8.5 8.5 8.5 

9,1 5 5 5 

9,4 6.5 6.5 6.5 

8,1 4.5 4.5 4.5 

8,4 6 6 6 

MEAN 10.71941 8.625 8.625 

BIAS  2.09441  0.0000 0.0000  
MEAN 
SQUARE 
ERROR  28.13806  50.72843 48.79968  

 
Table 3: This table consists of all 
possible initial samples and their 
variances from table 1. In the first 
column, numbers before the semi-colon 
represent the initial sample and numbers 
after the semi-colon represent adaptively 
added units. where )�r(a�v yxµ  is the 

variance of the proposed estimator 
and )�r(a�v +HTµ  is the improved 
estimator of the Horvitz-Thompson 
proposed by Dryver (1999) 
 
 
 
 

 The sample 

 

�r(a�v HTµ
 

 

)�r(a�v yxµ
 

 

�r(a�v HTµ
 

2,15; 16,14,9 77.36428 60.47542 74.30178 

2,16;15,14,9 77.36428 60.47542 74.30178 

2,14;16,9 33.57701 2.319527 30.51451 

2,9 24.5 24.5 24.5 

2,8 18 18 18 

2,1 0.5 0.5 0.5 

2,4 2 2 2 

15,16;14,9,2 87.953 9.278107 77.92522 

15,14;16,9,2 87.953 9.278107 77.92522 

15,9;16,14,8,2 84.73447 60.47542 83.37336 

15,8;16,14,9,2 82.55658 60.47542 81.86214 
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15,1;16,14,9,2 77.81139 60.47542 75.56139 

15,4;16,14,9,2 77.59504 60.47542 77.34504 

16,14;15,2,9 82.03 2.319527 74.00222 

16,9;15,2 42.6408 2.319527 39.5783 

16,8;15,2 40.54926 2.319527 38.29926 

16,1;15,2 36.40805 2.319527 36.34555 

16,4;15,2 35.9331 2.319527 35.6831 

14,9;16,15,2 84.73447 60.47542 82.48447 

14,8;16,15,2 82.55658 60.47542 82.49408 

14,1;16,15,2 77.81139 60.47542 75.56139 

14,4;16,15,2 77.59504 60.47542 77.53254 

9,8 0.5 0.5 0.5 

9,1 32 32 32 

9,4 12.5 12.5 12.5 

8,1 24.5 24.5 24.5 

8,4 8 8 8 

MEAN = MSE 50.72843 28.13806 48.79968 

 
Comment 
As observed from tables 3 and 4 above, 
the proposed model is biased but gives 
more precise estimates as compared to 
the HT estimates.  
Currently, the environmental 
management unit of the department of 
Chemistry, University of Lagos in 
collaboration with the department of 
Mathematics, University of Lagos is 
conducting a research on the presence 
and spread of heavy metals at Owode-
Oniring area of Lagos, Nigeria. The 
adaptive sampling method is used in 
sample selection and the model-assisted-
cum-design-based analysis shall be used 
amongst others to analyse the data from 
the sample. 
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APPENDIX 

 
 (a) Initial sample      (b) First batch of adjacent units 

 
 (c) Second batch of adjacent units (d) Third batch of 
adjacent units 

 
(e) Fourth batch of adjacent units   (f) Fifth, seventh 

and sixth batch of ad 
 
 
 
 
 
 
 
 

 
Fig. 2: Follow-up Sampling Pattern 

Fig 1: Population Grid with Shaded Area of Interest, Initial 
Simple Random Sample, and Follow-up Sample 
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                            X = Observed Sampling unit 

 
Fig. 3:  Population Grid with Shaded Areas of Interest, 
Initial Simple Random Sample, and Final Sample 
 

Population Grid with 
Shaded Areas of Interest 
and Initial Sample Random 
Sample 

Final Adaptive Sampling 
Results 
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