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Abstract:

Surveys often first mail questionnaires to sampled
subjects and then follow up mail nonrespondents
by phone. The high unit costs of telephone inter-
views make it cost-effective to subsample the fol-
lowup. We derive optimal subsampling rates for the
phone subsample for comparisons of health plans
or other units. Computations under design-based
inference depart from the traditional formulae for
Neyman allocation because the phone sample size
at each plan is constrained by the number of mail
non-respondents and multiple plans are subject to
a single cost constraint. Because plan means for
mail respondents are highly correlated with those
for phone respondents, more precise estimates (at
fixed overall cost) for potential phone respondents
are obtained by combining the direct estimates from
phone followup with predictions from the mail sur-
vey using small-area estimation (SAE) models.

1 Introduction

In Consumer Assessments of Healthcare Providers
and Systems (CAHPS R©) surveys, randomly selected
members of health plans are sent questionnaires by
mail, along with a prepaid return envelope (Crofton,
Lubalin, and Darby 1999, Goldstein, Cleary, Lang-
well, Zaslavsky, and Heller 2001). Those that do not
return their survey are sent a reminder notice and
if they still do not respond four attempts are made
to reach them by phone. From the survey methods
standpoint, there are at least three distinct popula-
tions: mail responders, phone-only responders, and
nonresponders. Ideally we want to obtain results for
the entire population but unless the nonresponders
are interviewed by some other means no information
is available for them. The population of those who
would respond either by mail or phone is thus our
population of focus. The estimates of the plan means
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for this population are the basis of comparisons of
quality between plans.

In surveys like those in CAHPS, phone respon-
dents will differ from mail respondents whenever in-
dividual characteristics affect the likelihood of re-
sponding by mail, and therefore estimates are re-
quired for both sub-populations. Because the tele-
phone survey is typically more expensive than the
mail survey per response obtained, it might be
cost-effective to subsample in the follow-up survey.
CAHPS mail non-respondents were subsampled for
the first time in 2006, but the design was not for-
merly optimized to minimize costs.

In this paper we consider optimal designs for sur-
veys of this type. We first compute the optimal
sample size using design-based inference. The com-
putation departs from the traditional formulae used
for Neyman allocation (Cochran 1977) because the
phone sample size at each plan is bounded above by
the number of mail non-respondents. We consider
several objective functions based on the variances of
the estimators.

Because the plan means for mail respondents tend
to be highly correlated with those for phone respon-
dents, more precise estimates for the phone respon-
dents might be obtained by combining the predic-
tion from the mail survey with the direct estimates
from the phone followup survey. We use small-area
estimation (SAE) models to estimate means for the
population of respondents that do not respond by
mail but would respond to the telephone sub-sample.
SAE allows improved estimates to be obtained for
domains with small sample sizes and thus has the
potential to obtain more efficient estimates across
the analysis. We compare the variance estimates
and the associated optimal designs between the di-
rect and SAE estimation strategies.

Sample size calculations for a SAE model are of-
ten more complex than those for the corresponding
design-based approach. We present an approximate
calculation which assumes the response rates and
model parameters are known. This sets the scene
for more exact calculations in future work.

In general, the methods developed in this paper
can be extended to include a range of covariate ef-
fects. However, in our application only survey de-
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scriptors such as response rates are available.

2 Notation and Objectives

Let yi1, θij , σ2
ij , rij , πij , and nij denote the sam-

ple mean rating, population mean rating, population
variance of ratings, sample response rate, probabil-
ity of response, and sample size for an item using
mode j (0 = mail, 1 = phone) at plan i. In this pa-
per we ignore uncertainty in the response rates by
assuming πij = rij . The number of respondents is
given by mij = rijnij .

The overall mean for plan i is given by ηi = δiθi0+
(1− δi)θi1 where δi is the proportion of all potential
respondents at plan i that would respond by mail.
This can also be expressed as the mail mean plus an
adjustment for telephone mode:

ηi = θi0 + (1 − δi)(θi1 − θi0). (1)

Because sampled individuals decide whether to re-
spond to the mail survey, to subsequently respond
by phone, or not to respond at all, θi1 − θi0 is not
the “mode effect” in the usual survey methodology
sense but rather is a combination of effects of mode
and population selection.

Let dijk denote the cost of sampling an individual
at plan i using mode j when their response status
is k (1 = responds, 0 = does not respond). Be-
cause a phone interview is likely to involve more
human time than a non-response or a refusal and
returned surveys are likely to involve more process-
ing time than non-returned surveys it is likely that
di0k < di1k and dij0 < dij1. We present the gen-
eral case where costs and variances can vary across
plans but note that in most applications one would
expect the cost and variances to be constant across
plans. For the design-based and SAE calculations
πi0 and πi1 are assumed known when in reality they
are estimated from the previous years results. The
uncertainty about πi0 and πi1 will be incorporated
in future work.

The average costs per individual sampled via mail
or phone at plan i are weighted averages of the cost
per respondent and cost per non-respondent, given
by ci0 = πi0di01+(1−πi0)di00 and ci1 = πi1di11+(1−
πi1)di10 respectively. The cost of the total sample at
plan i is ni0ci0+ni1ci1. The problem considered here
is to minimize the total cost of the survey

cost(n) =
∑

i

ni0ci0 + ni1ci1, (2)

subject to the precision constraint:

var(η̂i) = (δi, 1−δi)cov(θ̂i)(δi, 1−δi)T ≤ v0 ∀i, (3)

where v0 > 0 is a pre-specified reporting standard.
Because any slack in the constraints (3) entails in-
creased cost, we may replace the inequalities in (3)
with equalities.

A second set of constraints arise because the num-
ber of members sampled by phone cannot exceed the
number of non-respondents by mail,

ni1 ≤ ni0(1 − πi0) ∀i. (4)

Equation (4) will be binding (satisfied with equal-
ity) if the optimal solution would otherwise require
sampling more phone respondents than mail nonre-
spondents.

3 Sample Size Calculation for the
Design-based Estimator

.
We suppose that individuals are sampled using

simple random sampling within each plan. Because
we are interested in the super-population of all cur-
rent and potential future plan members we do not
make finite population corrections. The estimators
of the mail and phone means are θ̂i0 = yi0 and
θ̂i1 = yi1 respectively and the variance of η̂i is

var(η̂i) = δ2
i var(θ̂i0) + (1 − δi)2var(θ̂i1),

where var(θ̂ij) = σ2
ij/(nijrij). To simplify the fol-

lowing presentation we let wi0 = δ2
i σ2

i0/ri0 and
wi1 = (1 − δi)2σ2

i1/ri1.
The optimal solution is obtained by finding the

optimal phone/mail ratio and then the sample sizes
that correspond to this ratio. If (4) is binding ni1 =
ni0(1− ri0) and so the optimal ratio is 1− ri0. If (4)
is slack the method of Lagrange multiplers reveals
that ni0 = λiwi0/ci0 and ni1 = λiwi1/ci1, where
λi is the Lagrange multiplier for the ith precision
constraint, the standard result for optimal allocation
in stratified sampling, Therefore, the optimal ratio
encapsulating both two scenarios is

ti = min

{
1 − ri0,

(
wi1ci0

wi0ci1

)1/2
}

.

The ratio of mail to phone surveys is t−1
i which im-

plies that the relative number of mail surveys in-
creases with δi and σ2

i0 but decreases with ci0/ci1

and ri0. Substituting ni1 = tini0 into (3) we obtain

ni0 =
1
v0

(
w0i +

w1i

ti

)
,

ni1 =
ti
v0

(
w0i +

w1i

ti

)
.
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In the Appendix we derive the same result using a
Lagrange multiplier representation of the full opti-
mization problem.

4 Small Area Estimation Model

To improve the precision with which the phone
means are estimated we use a small-area estimation
model of the mail and the phone means. This en-
ables the information in the phone predictions from
the mail survey, which varies depending on the level
of correlation between mail and phone, to be com-
bined with the direct estimates of the phone means.

To account for the uncertainty in the measure-
ment of both the mail and phone means, we use the
following multivariate model:

yij | θij ∼ N(θij , σ
2
ij/mij)

where (
θi0

θi1

)
∼ N

(
xT

i0β0

xT
i1β1

, Σ
)

,

xij is a vector of plan-model level predictors, and σ2
ij

is the residual variance. The correlation coefficient
ρ = Σ01/(Σ00Σ11)1/2 measures the association be-
tween the mail and the phone means. The variances
Σ00 and Σ11 measure the amount that the mean rat-
ings deviate from the regression equations.

In our problem xT
ij = (1, ri0). As for the design-

based calculations we treat ri0 as measured without
error (i.e., as if ri0 = πi0). In general we could in-
clude other domain-level covariates in xij such as
the average number of mail questionaires sent and
the average number of callbacks needed to complete
a phone survey. However, in the current data the
mail response rate is all that is available.

4.1 Posterior Variance

Under Bayesian analysis, ηi is estimated by its pos-
terior mean and the posterior variance is used in
the optimal sample size calculations. The poste-
rior distribution of θi | β, Σ, Yi, Xi is N(PiȲi +
(I − Pi)XT

i β), (V −1
i + Σ−1)−1), where Pi = (V −1

i +
Σ−1)−1V −1

i , implying that the posterior variance of
ηi is given by

var(ηi | β, Y, X) =
(δi, 1 − δi)(V −1

i + Σ−1)−1(δi, 1 − δi)T . (5)

A numerical procedure (described later) may be used
to find the ni that minimizes the cost of the survey
while satisfying the precision requirement based on
(5).

5 Composite estimator

Because the mean ratings for mail respondents are
based on larger sample sizes and therefore likely to
be estimated more accurately than means for phone
respondents, SAE is likely to have less impact on
the mail means. Furthermore, the model-based esti-
mate has the potential to introduce bias whereas the
direct estimate is design-unbiased, a characteristic
that is traditionally considered desirable for CAHPS
estimation. Thus, in practice it may be desirable
to combine the design-based mail estimate with the
model-based estimate of the difference θDi = θi1−θi0

between the mail and phone means:

η̂i = ȳi0 + (1 − δi)E[θDi | β, Y, X ]. (6)

5.1 Variance of Composite Estimator

Because E[θDi | β, Y, X ] depends on the data
through ȳi1 − ȳi0, the variance of the η̂i in (6) is
computed with respect to the sampling distribution
of ȳi. Specifically,

E[θDi | β, Y, X ] = (7)
(1,−1)(PiȲi + (I − Pi)XT

i β)
= di0(n)ȳi0 − di1(n)ȳi1 + (I − Pi)XT

i β, (8)

where

di0(n) =
1

det(V −1
i + Σ−1)

{(
ni1

σ2
i1

+ Λ11 + Λ01

)
ni0

σ2
i0

}
,

di1(n) =
1

det(V −1
i + Σ−1)

{(
ni0

σ2
i0

+ Λ00 + Λ01

)
ni1

σ2
i1

}
,

and Λ = Σ−1.
Therefore, with β and Σ treated as a known con-

stants, the sampling variance of η̂i is given by:

var(η̂i) =

(1 + (1 − δi)di0(n))2
σ2

i0

ni0
+ ((1 − δi)di1(n))2

σ2
i1

ni1
.

Because the expression in (8) contains a term that
does not depend on Yi, the bias of η̂i is likely to
be non-zero. Therefore, we use the mean squared
error (MSE) instead of the sampling variance in the
computation of optimal sample size. We have

MSE(η̂i) = var(η̂i) + bias(η̂i)2,

where bias(η̂i)2 = bT
i Σbi and bT

i = (1−δi)(1,−1)(I−
Pi). Thus, MSE(η̂i) is substituted for the variance
term in the evaluation of the precision constraint.
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6 Derivation of Model-based Optimal
Sample Size

Lagrange multiplier optimization problems may be
used to obtain the optimal sample sizes under
the full SAE model or the composite estimator.
However, because the posterior variance of ηi and
MSE(η̂i) are nonlinear functions of ni, closed form
solutions do not in general exist.

Rather than numerically solving the Lagrange
multiplier problem described in the preceding para-
graph, we instead first solve the dual problem in
which the optimal ni minimizes the variance sub-
ject to a fixed cost for each domain. Because in-
terchanging the objective function with the preci-
sion constraint does not change the Lagrange mul-
tiplier conditions, at the optimal solution the ratio
ti = ni1/ni0 is the same in both problems. There-
fore, upon solving the dual problem the only thing
left to do is re-scale the sample sizes to satisfy the
precision constraint at each domain.

We find it easier to obtain the optimal solution us-
ing this two-step process rather than directly solving
the original problem because the cost constraint (in
the dual problem) is linear in ni whereas the pre-
cision constraint (in the original problem) is non-
linear in ni. Nonlinear objective functions are less
burdensome because the optimal solution is found
by searching the line in R2 for which the constraints
are satisfied (brute force or univariate optimization
methods can be used).

The computation of the optimal sample size for
domain i is summarized by the following algorithm:

1. Generate a right-hand-side for the “cost con-
straint” by evaluating k0 = N−1

∑
i(ci0ni0 +

ci1ni1) using as initial values ni0 = ni1 =
(σ2

i0 + σ2
i1)/v0, where N is the number of plans.

Clearly, this is constant across domains and so
only needs to be computed once.

2. Determine the feasible region for the (ith) dual
problem:

Fi = {ni : ni1 =
min[(ki − ci0ni0)/ci1, (1 − ri0)ni0]}.

3. Search along Fi to find ndopt
i , the optimal solu-

tion to the dual problem.

4. Re-scale the optimal solution to the dual prob-
lem to approximate the optimal solution to the
original problem:

5. Let ni = ndopt
i . Repeat the following until con-

vergence:
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Figure 1: Variance of an estimated plan mean as a
function of ni0 when v0 = 0.01.

(a) Compute qi = var(ni)/v0, where var(ni)
denotes the variance (or MSE) used in the
optimization problem in step 3.

(b) Set ni ← qini.

Step 5a is required because the sum of the vari-
ances for the mail and the phone estimators is not
a linear function of ni. Thus, re-scaling the solution
to the dual problem by the amount that the vari-
ance is exceeded (or not) gets very close but does
not exactly solve the original problem. However, the
number of iterations until the variance constraint is
satisfied (to the numerical accuracy of the computer)
is small and so convergence is almost immediate.

Step 5b is equivalent to finding the value of ki

at which the objective function of the dual problem
equals v0. The variance when ki is such that v0 =
0.01 is shown as a function of ni0 in Figure 1.

7 Results

To illustrate the extent that the SAE can reduce the
required sample size we generated data that resem-
ble data typically seen in CAHPS. We set v0 = 0.01,
ci0 = 1, ci1 = 2, σ2

i0 = 3.78 = σ2
i1 = 3.78, δ = 0.5,
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and

Σ =
(

0.1 0.09
0.09 0.1

)
.

The high correlation of 0.9 between the mail and
phone ppoulation means is typical of those we have
found in analyses of CAHPS data. In addition, the
mail and phone response rates at N = 9 hypotheti-
cal plans are assigned to the 9 distinct pairs of num-
bers drawn from the set {0.35, 0.50, 0.65}. We note
that in practice the average response rate for mail
is typically slightly above 50% and that the phone
response rate is often slightly lower than this.

It is clear from Table 1 that SAE enables less
costly designs to be used. The cost across the 9
hypothetical plans for full-SAE was 4879 compared
to 5764 for the design-based approach and 6666 for
hybrid-SAE. The reduction in total cost is due to a
smaller total sample size and a smaller proportion of
phone surveys. Full-SAE had the lowest cost for ev-
ery plan whereas the hybrid-SAE proved to be more
expensive than the design-based approach for plans
with lower mail response rate. The phone sample
size constraint was binding for seven plans under
the design-based calculation, five for full SAE, and
two for hybrid SAE.

Hybrid-SAE yields larger sample sizes than full-
SAE largely because of the bias introduced by re-
weighting the mean outcomes. Because precision is
evaluated under the design in the former and the
model in the latter, hybrid-SAE is disadvantaged
relative to full-SAE. An interesting finding is that
hybrid-SAE was sometimes more costly than the
design-based approach. It is surprising that the
hybrid-SAE approach costs more than the design-
based approach under any scenarios. We suspect
that this is an artifact of the bias introduced by
shrinkage. Conversely the full SAE method reduces
the posterior variance through shrinkage but the
shrinkage of the posterior means also signifies that
comparisons are less significant as well. An alter-
native metric upon which to constrain the variances
would have been to consider the reliability of com-
parisons between two plans or between a plan and
the overall mean; these reflect the contrasts most
frequently performed in practice.

To gain further insight into the optimal designs
we ran additional simulations at different settings of
the design parameters. We found that:

1. Increasing ci1 increases the ratio ni0/ni1 for all
methods.

2. In SAE approaches, decreasing the correlation
between the plan means for the mail and phone
ratings decreases ni0/ni1.

Table 1: Optimal designs for nine plans under
design-based, SAE, and a hybrid SAE-design-based
calculation.

Design-Based
ri0 ri1 Mail Phone Cost Binding
0.35 0.35 685 446 1576 yes
0.35 0.5 589 349 1287 no
0.35 0.65 550 285 1121 no
0.5 0.35 729 365 1458 yes
0.5 0.5 567 284 1134 yes
0.5 0.65 480 240 960 yes
0.65 0.35 917 321 1559 yes
0.65 0.5 685 240 1165 yes
0.65 0.65 561 196 953 yes
Total 5764 2725 11213 7

Full SAE
ri0 ri1 Mail Phone Cost Binding
0.35 0.35 687 346 1380 no
0.35 0.5 592 282 1157 no
0.35 0.65 532 244 1019 no
0.5 0.35 579 290 1158 yes
0.5 0.5 483 242 966 yes
0.5 0.65 431 209 848 no
0.65 0.35 618 216 1051 yes
0.65 0.5 511 179 869 yes
0.65 0.65 446 156 758 yes
Total 4879 2164 9206 5

Hybrid SAE
ri0 ri1 Mail Phone Cost Binding
0.35 0.35 992 333 1657 no
0.35 0.5 906 269 1444 no
0.35 0.65 852 231 1313 no
0.5 0.35 767 289 1345 no
0.5 0.5 695 233 1160 no
0.5 0.65 649 199 1047 no
0.65 0.35 686 240 1166 yes
0.65 0.5 585 205 995 yes
0.65 0.65 534 179 892 no
Total 6666 2177 11020 2

Note: The column labeled “binding” indicates
whether the phone sample size constraint was bind-
ing at the optimal solution.
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8 Accounting for the Estimation of β

In this section we outline how the SAE-variance cal-
culations can be extended to accommodate uncer-
tainty in β. If we assume that β has a uniform (im-
proper) prior it follows that

θi | Y, X ∼ N(PiYi + (I − Pi)Y ∗
i , V ∗

i ) (9)

where

V ∗
i = PiVi + (I − Pi)XiṼ

−1XT
i (I − Pi)T

Pi = (V −1
i + Σ−1)−1V −1

i = ΣUi, Ṽ =
(
∑

i XT
i UiXi)−1, Y ∗

i = XiṼ
−1

∑
i XT

i UiYi, and
Ui = (Σ + Vi)−1. Note that (V −1

i + Σ−1)−1 = PiVi

and I − Pi = UiΣ−1.
The involvement of Ṽ in (9) shows that the es-

timation of β affects all domains simultaneously.
Therefore, optimal sample sizes must be determined
simultaneously since a change in the sample size for
one plan affects the precision with which β is esti-
mated and thus also of ηi∀i. Therefore, the opti-
mization problem involves simultaneous minimiza-
tion of survey cost across domains.

To find the optimal solution we use the same ap-
proach as the β known case but insert an extra
step to accommodate uncertainty in β. Each iter-
ation we compute the optimal sample sizes assum-
ing Ṽ = (

∑
i XT

i UiXi)−1 is a constant. We then
update Ṽ and re-compute the optimal sample sizes,
iterating until convergence. As for the β fixed case,
we find the optimal values of ni by solving the dual
problem. A nice feature of this approach is that
separate optimization problems are solved for each
plan, greatly simplifying the computation.

9 Conclusion

The constraint on phone sample size is an interesting
and challenging twist that distinguishes the solution
from Neyman allocation.

The solutions we have obtained make sense. Be-
cause the predictions from the mail survey lead to
more precise estimates of plan means for phone re-
spondents, the marginal benefit of each phone re-
spondent is reduced. Therefore, the optimal number
of non-respondents that are followed up by phone
should indeed be smaller than under the design-
based approach.

In future work we plan to account of the uncer-
tainty in the response rates πij in the computation
of optimal sample size. We also plan to evaluate
the designs using methods more closely tied to the
problem of comparisons among plans.

Appendix

The Lagrangian is given by:

L(n0, n1, ν, ω) =
∑

i

ni0ci0 + ni1ci1

+
∑

i

λi(wi0/ni0 + wi1/ni1 − v0) (10)

+
∑

i

ωi(ni1 − ni0(1 − ri0)).

The first derivatives of the lagrangian in (10) are
given by:

∂

∂ni0
L = ci0 − λiwi0

n2
i0

− λi(1 − ri0), (11)

∂

∂ni1
L = ci1 − λiwi1

n2
i1

+ λiri0, (12)

∂

∂λi
L =

wi0

ni0
+

wi1

ni1
− v0, (13)

and
∂

∂ωi
L = ni1 − ni0(1 − ri0). (14)

The optimal value of ni is found by solving ∂
∂ni0

L =
0, ∂

∂ni1
L = 0, and ∂

∂λi
L = 0. Because (14) is as-

sociated with a non-negativity constraint we solve
∂

∂ωi
L ≥ 0. Note that the Karush-Kuhn-Tucker

(KKT) conditions (Kuhn and Tucker 1951) also re-
quire that ωi(ni1 − ni0(1 − ri0)) = 0 and ωi ≥ 0.

Solving (11) and (12) for ni0 and ni1 respectively
we obtain:

ni0 =
(

λiwi0

ci0 − νi(1 − ri0)

)1/2

, (15)

ni1 =
(

λiwi1

ci1 + νi

)1/2

. (16)

Substituting the expressions for ni0 and ni1 in (15)
and (16) into (13) and ni1 ≥ ni0(1−ri0), and solving
for λi and ωi we obtain

λi = v−2
0

[
{wi0(ci0 − νi(1 − ri0))}1/2

+ {wi1(ci1 + νi)}1/2
]2

and

νi = max
{

0,
wi1ci0 − wi0ci1(1 − ri0)2

(1 − ri0){wi1 + wi0(1 − ri0)}
}

. (17)

The Lagrange multipler λi is essentially a ratio of
cost times standard error of estimation to the re-
quired precision. Values of ωi > 0 represent the
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extent to which the constraint ni1 ≤ ni0(1 − ri0) is
slack (i.e., the amount that the phone resource is
underused given the mail response rate).

The condition νi > 0 occurs if wi1ci0 > wi0ci1(1−
ri0)2, an event we denote by ai. Expressing the sam-
ple sizes for the ai = 0 and ai > 0 cases in the same
form we obtain

ni0 =
1
v0

(
w0i +

w1i

ti

)
,

ni1 =
ti
v0

(
w0i +

w1i

ti

)
,

where

ti = (1 − ri0)ai

(
ci0wi1

ci1wi0

)(1−ai)/2

,

an alternative expression for ti given in Section 3.
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