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Abstract

With increasing demographic and technological diversity,
it is becoming more difficult for a single sample selected
from a single sampling frame to adequately represent the
population. Multiple frame surveys are increasingly used
in situations where several sampling frames may provide
better coverage or cost-efficiency for estimating popula-
tion quantities of interest. Examples include combining
a list frame of farms with an area frame or using two
frames to sample landline telephone households and cel-
lular telephone households. We review the history of mul-
tiple frame surveys including some of J.N.K. Rao’s many
contributions to the subject. We then discuss some recent
work on internally consistent and efficient estimators for
three or more frames, and resampling methods for vari-
ance estimation in multiple frame surveys. Connections
between multiple frame surveys and Rao’s contributions
to other areas of statistics are discussed.

Keywords: Bootstrap, Complex Survey, Dual Frame
Survey, Jackknife, Sampling for Rare Events, Variance
Estimation.

1. Introduction

It is a privilege to be invited to participate in this session
honoring J.N.K. Rao’s contributions to statistics on the
occasion of his 70th birthday. The most difficult task for
me was deciding on one topic to focus on, since he has
contributed to so many areas of statistics. I decided to
speak about his contributions to multiple frame surveys,
partly because I have direct knowledge of his contribu-
tions in this area, and partly because his work in multi-
ple frame surveys goes far beyond the immediate topic of
multiple frame surveys. Like so many of Rao’s contribu-
tions to statistics, his multiple frame survey work has im-
plications for many areas, including survey design, small
area estimation, empirical likelihood, computer-intensive
inference, misclassification, measurement errors, calibra-
tion, and imputation.

First, what is a multiple frame survey? In classical
sampling theory, there is one sampling frame. This frame
can be a list of sampling units, or a set of geographic
regions, or even a sequential procedure specifying how
units are to be located and selected. A probability sample
is taken from the frame, and the inclusion probabilities
in the sampling design can be used to make inferences
about the population in the sampling frame. Let yi be
a measurement on unit i in the population of N units,
let S denote the set of units in the sample, and let πi =

Figure 1: Frame B is a subset of Frame A.

BA

P (unit i is included in the sample). Then the Horvitz-
Thompson estimator of the population total Y =

∑N
i=1 yi

is
Ŷ =

∑

i∈S
wiyi,

where wi = 1/πi is the sampling weight.
In many cases, however, a frame that covers the entire

population is very expensive to sample from. An alter-
nate frame may be available that does not cover the entire
population but is cheaper to sample from. For example,
in an agricultural survey on rice, an area frame would in-
clude all farms that produce rice but would be expensive
to sample; in addition, relatively few of the farms sam-
pled would be rice producers (Fecso et al., 1986). A list
frame, providing the contact information for known rice
producers, will be inexpensive to sample from but most
likely does not include all farms that produce rice. In a
dual frame survey, independent probability samples are
taken from frame A (the area frame) and frame B (the
list frame); this is depicted in Figure 1.

Rare populations can often be sampled more efficiently
using a multiple frame sample (Kalton and Anderson,
1986). In an epidemiologic study, for example, frame A
might be that used for a general population health survey,
while frame B might be a list frame of clinics specializing
in a certain disease.

In other situations, all frames are incomplete; for ex-
ample, frame A in Figure 2 might be a frame of landline
telephones and frame B might consist of cellular tele-
phone numbers (Tucker et al., 2007). It is unknown in
advance whether a household member sampled using one
frame also belongs to the other frame (Brick et al., 2006).
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Figure 2: Overlapping frames for land and cell tele-
phones. Tucker et al. (2007) estimated that 46.4% of
households have only landlines, 6% have only cell phones,
42.2% have both, and 5.4% have neither.

46.4% 42.2% 6%

land cell

5.4%

Figure 3: Overlapping frames A and B and three do-
mains.

a ab b
A B

The general situation for two overlapping frames is dis-
played in Figure 3. There are three domains: domain a
consists of units in frame A but not in frame B, domain
b consists of units in frame B but not in frame A, and
domain ab consists of units in both frames.

More than two frames can be employed as well, as il-
lustrated in Figure 4 for a three-frame survey in which all
frames are incomplete. In this situation, there are seven
domains. Iachan and Dennis (1993) give an example of
a three-frame survey used to sample the homeless pop-
ulation, where frame A is a list of soup kitchens, frame
B is a list of shelters, and frame C consists of street lo-
cations. To enable reliable estimation of health charac-
teristics for California residents of Vietnamese or Korean
ethnicity, the California Health Interview Survey supple-
ments a random digit dialing sample with samples from
lists of households with surnames thought to belong to
those ethnic groups (Cervantes and Brick, 2007).

One goal in analyzing data from a multiple frame sur-
vey is often to estimate the population total Y , using
information from independent samples taken from the
frames. In a dual frame survey, we can write

Y = Ya + Yab + Yb,

where Ya is the total of the population units in domain
a, Yab is the total of the population units in domain ab,
and Yb is the total of the population units in domain b.

Figure 4: Frames A, B, and C are all incomplete and
overlap.
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A special case of this is estimating the population size

N = Na + Nab + Nb,

as discussed in Haines and Pollock (1986). As multi-
ple frame surveys become more prevalent, however, the
goals expand to include estimation of general population
characteristics, fitting models thought to describe the su-
perpopulation, and employing multiple frame surveys in
small area estimation. In Sections 2 and 3 we review
early uses of and point estimators for dual frame surveys.
In Section 4, we discuss variance estimation, and intro-
duce two bootstrap methods—developed in joint research
with Rao—for constructing interval estimates from mul-
tiple frame surveys. Section 5 outlines some connections
between multiple frame surveys and other problems in
statistics.

2. Some History of Multiple Frame Surveys

Hansen, Hurwitz, and Madow (1953) describe what is
often considered to be one of the earliest examples of a
dual frame survey. The Sample Survey of Retail Stores
was conducted by the U.S. Census Bureau in 1949. In this
survey, a probability sample of primary sampling units
(psus) was chosen. Within each psu, a census of retail
firms on a list compiled from the records of the Old Age
and Survivors Insurance Bureau was taken; and an area
sample was taken of firms not on the list. In this case,
a screening dual frame design was employed within each
selected psu, so called because units in the list frame were
screened out of the area frame before sampling. Thus, the
estimator of total sales summed the two estimators within
each psu—in essence, a screening dual frame survey is a
stratified sample, in which frame A is one stratum and
frame B is the second stratum. To my knowledge, Rao
was not involved in the design of this survey.
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However, Rao has been involved with many of the sub-
sequent developments in multiple frame surveys. Rao
completed his Ph.D. in statistics in 1961 from Iowa State
University with advisor H. O. Hartley. Hartley worked
through the theory of dual frame estimators during that
time with Rao and Jack Graham, carefully drawing the
Venn diagrams on the board with colored chalk. Hart-
ley (1962) proposed estimators for the general dual-frame
situation depicted in Figure 3, with results for Figure 1
following as a special case. He used a weighted average
of the estimators in the overlap domain ab, with

Ŷ (θ) = Ŷ A
a + θŶ A

ab + (1− θ)Ŷ B
ab + Ŷ B

b , (1)

where Ŷ A
a is the estimated population total for units in

domain a, Ŷ A
ab is the estimated population total in do-

main ab using the sample from frame A, Ŷ B
ab is the es-

timated population total in domain ab using the sample
from frame B, Ŷ B

b is the estimated population total for
domain b, and 0 ≤ θ ≤ 1.

Hartley (1962, 1974) proposed choosing θ in (1) to min-
imize the variance of ŶH(θ). Because the frames are sam-
pled independently, the variance of ŶH(θ) is

V [Ŷ (θ)] = V [Ŷa + θŶ A
ab ] + V [(1− θ)Ŷ B

ab + Ŷ B
b ].

Thus, for general survey designs, the variance-minimizing
value of θ is

θopt =
V (Ŷ B

ab ) + Cov (Ŷ B
b , Ŷ B

ab )− Cov (Ŷ A
a , Ŷ A

ab)
V (Ŷ A

ab) + V (Ŷ B
ab )

. (2)

Note that if one of the covariances in (2) is large, it is
possible for θopt to be smaller than 0 or greater than 1.
When frame A and frame B are the same, i.e., domains
a and b are empty, however, θopt is between 0 and 1.

Hartley (1974) referred several times to a personal com-
munication from Rao, who derived maximum likelihood
estimators for dual frame surveys using the scale-load ap-
proach pioneered in Hartley and Rao (1968). See Rao
(1983) for a brief description of these methods, which he
had presented at the 1973 International Statistical Insti-
tute meeting in Vienna. Rao (1983) derived the estimator

Ŷ = Naȳa + Nbȳb + Nabȳab

where ȳab is the mean of nA
ab +nB

ab−d distinct units and d
is the number of units in both samples, using maximum
likelihood. He also showed that Ŷ is the posterior ex-
pected value under a noninformative prior distribution.
In fact, Rao, as co-editor of Sankhyā Series C in 1974,
was the person who encouraged Hartley to submit the
1974 paper to Sankhyā based on his work in multiple
frame surveys. Hartley (1974) was later reprinted in the
IASS Jubilee Commemorative Volume Landmark Papers
in Survey Statistics as one of the nineteen papers selected
for publication in that volume. (Another of the papers in
the Landmark Papers volume was Rao and Scott (1981),
to which we shall return in Section 5.)

One can argue that Rao has worked on dual frame sur-
veys for his entire career. One finds dual frame ideas early
in Rao’s work. Rao and Graham (1964) developed com-
posite estimators for a rotation sample. Their estimator
for the population mean of a characteristic of interest for
the current month is

ȳ′0 = Q(ȳ−1
′ + d̄) + (1−Q)ȳ0,

where ȳ0 is the estimator for the current month, d̄ es-
timates the difference between the current and previous
months using units measured at both times, and ȳ′−1 is
the composite estimator for the previous month. You can
see the basic features of a dual frame estimator here: The
two frames are those of the current month and the previ-
ous month and the overlap is used to improve estimation
of the population mean of interest.

Rao (1968) studied a dual frame survey of beef cattle
producers, where a list frame of persons thought to be
producers was combined with an area frame. One prob-
lem with the list frame is that some of the persons listed
were in partnership with other persons on the list; such
partnerships had a higher probability of being selected.
Respondents were asked to list all the persons in their
operation, and reweighted to reflect the multiplicity.

Graham and Rao (1978), in an MAA volume intended
to introduce mathematicians to important aspects of
statistics, wrote a paper summarizing the state of survey
sampling. They discussed multiple frame surveys in Sec-
tion 9 on recent developments in sampling, and discussed
their potential for improving survey practice. This paper
was one of the first review papers to note the importance
of multiple frame surveys in sampling, and it presaged a
number of later developments in the area.

3. Estimating Population Quantities

Many estimators have been proposed for estimating pop-
ulation totals and other quantities. In this section,
we look at optimal estimators and then the pseudo-
maximum-likelihood estimator developed by Rao and col-
laborators.

3.1 Optimal Estimators

Hartley’s (1962, 1974) estimator is optimal among all es-
timators of the form Ŷ A

a + Ŷ B
b + θŶ A

ab +(1− θ)Ŷ B
ab . Fuller

and Burmeister (1972) proposed modifying Hartley’s esti-
mator by incorporating additional information regarding
the estimation of Nab. The estimator is:

ŶFB(β) = Ŷ A
a +Ŷ B

b +β1Ŷ
A
ab +(1−β1)Ŷ B

ab +β2(N̂A
ab−N̂B

ab).
(3)

Rao (1983) and Skinner (1991) showed that ŶFB can be
derived from maximum likelihood principles when a sim-
ple random sample is taken in each frame. As with Hart-
ley’s estimator, the parameters β1 and β2 are chosen to
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minimize the variance of ŶFB(β); the optimal values are

[
β1,opt

β2,opt

]
= −Cov

[
Ŷ A

ab − Ŷ B
ab

N̂A
ab − N̂B

ab

]−1

[
Cov (Ŷ A

a + Ŷ B
b + Ŷ B

ab , Ŷ A
ab − Ŷ B

ab )
Cov (Ŷ A

a + Ŷ B
b + Ŷ B

ab , N̂A
ab − N̂B

ab)

]
.(4)

In practice, the covariances used in (2) and (4) are
unknown, so the optimal values of the parameters must
be estimated from the data. Let θ̂opt be the estimator of
θopt that results when estimates of the covariances are
substituted into (2).

Rao has long viewed survey estimators in terms of
weights and, in fact, his approach to dual frame estima-
tion through weight modifications is reminiscent of his
work on calculating jackknife and bootstrap variance es-
timators through modifying the weight vectors. Skinner
and Rao (1996) wrote the optimal estimators in terms of
weight modifications in addition to the representation as
linear combinations of the estimated domain totals. The
weight of each sampled unit in the intersection domain
ab is reduced to compensate for the multiplicity. Let
δi(a) = 1 if unit i is in domain a and 0 otherwise, and
define δi(ab) and δi(b) similarly. The adjusted weights
for Hartley’s method become

w̃A
i,H = δi(a)wA

i + θ̂optδi(ab)wA
i

and
w̃B

i,H = δi(b)wB
i + (1− θ̂opt)δi(ab)wB

i .

3.2 Pseudo-Maximum-Likelihood Estimation

Skinner and Rao (1996) pointed out that since θ̂opt
depends on the covariances of the particular response
studied, the weight adjustments may differ for each re-
sponse studied. This can lead to inconsistencies among
estimates. For example, suppose Ŷ1(θ̂opt,1) estimates
total medical expenses in the population over age 65,
Ŷ2(θ̂opt,2) estimates total medical expenses in the popu-

lation aged 65 or less, and Ŷ3(θ̂opt,3) estimates total med-
ical expenses in the entire population. If the surveys have
complex design, it is likely that Ŷ1(θ̂opt,1)+ Ŷ2(θ̂opt,2) 6=
Ŷ3(θ̂opt,3).

Skinner and Rao (1996) proposed modifying the simple
random sample estimator to obtain a pseudo-maximum-
likelihood (PML) estimator for a complex design. The
PML estimator uses the same set of weights for all re-
sponse variables and has the form

ŶPML(θ) =
NA − N̂PML

ab (θ)
N̂A

a

Ŷ A
a +

NB − N̂PML
ab (θ)

N̂B
b

Ŷ B
b

+
N̂PML

ab (θ)
θN̂A

ab + (1− θ)N̂B
ab

[θŶ A
ab + (1− θ)Ŷ B

ab ].(5)

where N̂PML
ab (θ) is the smaller of the roots of the

quadratic equation

[θ/NB + (1− θ)/NA]x2 + θN̂A
ab + (1− θ)N̂B

ab

−[1 + θN̂A
ab/NB + (1− θ)N̂B

ab/NA]x = 0.

Skinner and Rao (1996) suggested using the value θP that
minimizes the asymptotic variance of N̂PML

ab (θ):

θP =
NaNBV (N̂B

ab)
NaNBV (N̂B

ab) + NbNAV (N̂A
ab)

. (6)

The estimator in (5) adjusts the estimators of the three
domain totals Ya, Yab, and Yb by the optimal estimator
of Nab.

In practice, Na, Nb, V (N̂A
ab), and V (N̂B

ab) are estimated
from the data so that an estimator θ̂P of θP is substituted
into (5). The adjusted weights are

w̃A
i,P =





NA − N̂PML
ab (θ̂P )

N̂A
a

wA
i if i ∈ a

N̂PML
ab (θ̂P )

θ̂P N̂A
ab + (1− θ̂P )N̂B

ab

θ̂P wA
i if i ∈ ab

and

w̃B
i,P =





NB − N̂PML
ab (θ̂P )

N̂B
b

wB
i if i ∈ b

N̂PML
ab (θ̂P )

θ̂P N̂A
ab + (1− θ̂P )N̂B

ab

(1− θ̂P )wB
i if i ∈ ab

Although θ̂P depends on the estimated variances of the
overlap domain size, it does not depend on covariances of
other response variables. The PML estimator thus uses
the same set of weights for each response variable. Lohr
and Rao (2006) extended the PML approach to more than
two frames. Skinner and Rao (1996), Rao and Skinner
(1999), and Lohr and Rao (2006) found that the PML
estimator has small mean squared error and works well
in a wide variety of survey designs.

4. Variance Estimation

For screening dual frame surveys, variance estimation is
straightforward: standard methods for stratified samples
can be used to estimate variances. Variance estimation
can be more complicated for other estimators. The ad-
justed weights for the Hartley estimator of the population
total depend on θ̂opt, which is a function of the esti-
mated covariances from both frames. Functions of totals,
or other statistics such as percentiles, also rely in a more
complex way on estimators from both samples. Several
methods can be used to estimate variances of estimated
population quantities in general multiple frame surveys.
These methods include Taylor linearization techniques,
jackknife, and bootstrap.
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4.1 Linearization and Jackknife Methods

The Taylor linearization and jackknife methods, dis-
cussed in Lohr and Rao (2000), assume that a popula-
tion characteristic of interest τ can be expressed as a
twice continuously differentiable function of population
totals from the frames. For Taylor linearization, the par-
tial derivatives of this function are used together with
the estimated covariance matrix of the population totals
estimated from frame A, and the estimated covariance
matrix of the population totals estimated from frame B,
to give a linearized estimator of the variance of the esti-
mator τ̂ . For example, τ = Y/X might be a ratio of two
population totals from a dual frame survey, with

τ̂ =
Ŷ ( 1

2 )

X̂( 1
2 )

=
Ŷ A

a + 1
2 Ŷ A

ab + 1
2 Ŷ B

ab + Ŷ B
b

X̂A
a + 1

2X̂A
ab + 1

2X̂B
ab + X̂B

b

,

for Ŷ ( 1
2 ) and X̂( 1

2 ) as defined in (1). The estimated totals
from frame A are (Ŷ A

a , Ŷ A
ab , X̂

A
a , X̂A

ab) with estimated co-
variance matrix SA, and the estimated totals from frame
B are (Ŷ B

b , Ŷ B
ab , X̂B

b , X̂B
ab) with estimated covariance ma-

trix SB . The linearization estimator of the variance is
then

gT
ASAgA + gT

BSBgB ,

where gT
A = gT

B = [X̂(1/2)]−1(1, 1/2,−τ̂ ,−τ̂ /2)T for this
example comes from the vector of derivatives used in the
linearization. Under regularity conditions, Skinner and
Rao (1996) showed that the linearization estimator of
the variance is consistent. It requires, however, that the
derivatives be calculated separately for each estimator
that is considered.

Demnati et al. (2007) derived linearization estimators
of the variance by taking derivatives of a function of the
weights rather than of the means. These are similar to
the linearization framework in Demnati and Rao (2004),
but allow for multiple frames.

The jackknife estimator of the variance relies on the
property that independent samples are taken from the
two frames (Lohr and Rao, 2000). Suppose a stratified
cluster sample is taken from frame A, and an indepen-
dent stratified cluster sample is taken from frame B. A
jackknife variance estimator carries out the jackknife sep-
arately in frames A and B. Let τ̂A

(hi) be the estimator of
the same form as τ̂ when the observations of sample psu
i of stratum h from the frame-A sample are omitted from
the data. Similarly, let τ̂B

(lj) be the estimator of the same
form as τ̂ when the observations of sample psu j of stra-
tum l from the frame-B sample are omitted. Then, if ñA

h

is the number of primary sampling units in stratum h of
the sample in frame A, and ñB

l is the number of primary
sampling units in stratum l of the sample in frame B, the
jackknife estimator of the variance is

vJ (τ̂) =
H∑

h=1

ñA
h − 1
ñA

h

ñA
h∑

i=1

(τ̂A
(hi) − τ̂)2

+
L∑

l=1

ñB
l − 1
ñB

l

ñB
l∑

j=1

(τ̂B
(lj) − τ̂)2. (7)

The jackknife estimator of the variance is consistent for
smooth functions of population means.

The jackknife estimator of the variance has many ad-
vantages, but cannot necessarily be used for statistics
such as medians. A confidence interval for a popu-
lation quantity τ is calculated using the jackknife as
τ̂±t

√
vJ (τ̂). In addition, the number of replicate weights

needed for the jackknife is fixed at
∑

h ñA
h +

∑
l ñ

B
l . If

one of the designs is a simple random or stratified ran-
dom sample, the number of replicates required for the
jackknife can be very large.

4.2 Bootstrap

A bootstrap estimator of the variance can be more flexi-
ble than the jackknife, since it can work with nonsmooth
functions and the number of bootstrap iterations is deter-
mined by the user. In a single frame survey, the rescaling
bootstrap of Rao and Wu (1988) works as follows: Sup-
pose stratum h has ñh primary sampling units. Sample
mh = ñh − 1 psu’s from the psu’s in stratum h using
simple random sampling with replacement. Let mhi(b)
be the number of times psu i of stratum h is selected in
bootstrap sample b. Then the bootstrap weights for unit
k within stratum h and psu i for bootstrap sample b are

whik(b) = whik
ñh

mh
mhi(b).

In this section, we present two bootstrap methods
for multiple frame surveys that have been developed in
joint research with Rao: a separate bootstrap, in which
the bootstrap is applied separately to the samples from
frames A and B, and a combined bootstrap, in which
the psu’s from both frames are resampled together. We
present the methods here for dual frame surveys; the
bootstrap works similarly with more than two frames.

First, let’s define the bootstrap weights for the frames.
In frame A, for bootstrap sample b we sample ñA

h−1 psu’s
with replacement from stratum h and define wA

hik(b) =
[ñA

h /(ñA
h − 1)]mA

hi(b)w
A
hik, where mA

hi(b) is the number
of times psu i of stratum h is selected in the bootstrap
sample. Similarly, for frame B we sample ñB

l − 1 psu’s
with replacement from stratum l and define wB

ljk(b) =
[ñB

l /(ñB
l − 1)]mB

lj(b)w
B
ljk.

We can express the estimator τ̂ as a function of the
weights for the samples from frames A and B. To ease the
notation, we write wA to be the vector of wA

hik weights
from frame A, and wB to be the vector of wB

ljk weights
from frame B. Note that wA and wB are the original
weights for the two frames, before any of the adjustments
for multiplicity outlined in Section 3. Following Demnati
and Rao (2004), who viewed linearization variance esti-
mators as a function of the weights, we express

τ̂ = h(wA,wB)
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as a function h of the two vectors of weights. To calcu-
late bootstrap estimates, then, we substitute the boot-
strap weights for iteration b for the original vector of
weights. We consider three bootstrap estimators: τ̂∗A(b)
and τ̂∗B(b) replace the original weights by the bootstrap
weights for just one of the frames, while τ̂∗(b) replaces
both sets of weights.

τ̂∗A(b) = h(wA(b),wB)

τ̂∗B(b) = h(wA,wB(b))

τ̂∗(b) = h(wA(b),wB(b))

To use the jackknife to estimate the variance, we had
to remove one psu at a time from each frame. The boot-
strap, employing resampling, allows more flexibility. We
propose two bootstrap estimators. The separate boot-
strap estimator is similar in form to the jackknife, per-
forming the bootstrap in each sample separately and then
combining the variance terms:

vs =
1

B1

B1∑

b=1

(τ̂∗A(b)− τ̂)2 +
1

B2

B2∑

b=1

(τ̂∗B(b)− τ̂)2 (8)

With the separate bootstrap estimator, the number of
bootstrap iterations can differ for the two frames.

The combined bootstrap estimator does bootstrap for
both frames simultaneously:

vc =
1
B

B∑

b=1

(τ̂∗(b)− τ̂)2. (9)

This has the advantage of essentially halving the amount
of replicate estimators needed for the bootstrap. If an
agency releases replicate weights in a public use data
file, the combined bootstrap reduces the number of repli-
cate weight columns needed. If replicate weights are re-
leased for the separate bootstrap or the jackknife, a data
user can easily discover which observations came from the
same frame. If one of the frames is small, as in the U.S.
Survey of Consumer Finances, where frame B consists
of wealthy households likely to own assets such as tax-
exempt bonds, frame identification might increase disclo-
sure risk. The combined bootstrap, with each bootstrap
iteration resampling from both frames, helps to maintain
frame confidentiality.

Both bootstrap estimators are asymptotically equiva-
lent to the linearization variance estimator when τ is a
smooth function of population means, under regularity
conditions on the sampling designs. In addition, as with
the single frame bootstrap estimator studied by Shao and
Chen (1998), the bootstrap is consistent for estimating
the variance of some nonsmooth statistics such as the
median.

Table 1 presents partial results from a simulation study
comparing variance estimators and interval estimators.
We used a factorial design with factors: (1) two or three
frames, (2) simple random sample or cluster sample in

Table 1: Results from simulation with two frames for
estimating the population total Y , the population size N ,
and the population median m. When Cl=Yes, a cluster
sample was drawn from frame A. Bsep 100 refers to the
separate bootstrap with 100 bootstrap iterations in each
frame; Bc 500 refers to the combined bootstrap with 500
bootstrap iterations.

Relative Bias
nA Cl? nB JK Bsep Bsep Bc Bc

100 500 100 500
100 No 100 Y 2.2 2.0 1.8 1.8 2.1

N -2.3 -1.8 -2.0 -2.3 -2.3
m 11.4 5.8 11.6 6.3

200 No 100 Y -1.8 -1.9 -2.2 -2.2 -2.3
N -2.0 -2.2 -2.0 -1.9 -1.8
m 16.1 10.9 16.5 11.3

200 Yes 100 Y -0.3 -1.0 -0.2 -1.4 -0.8
N -2.6 -2.8 -1.8 -2.7 -1.8
m 10.4 7.1 10.3 7.1

frame A, (3) sample sizes of 100 or 200 for each frame.
The population size was set to 10,000 in each domain.
For the bootstrap, we used either 100 or 500 iterations.
Five thousand replications were performed for each sim-
ulation runs in R version 2.1.1. We examined the rel-
ative bias, calculated as 100(average variance estimate
- EMSE)/EMSE with EMSE the Monte Carlo estimate
of mean squared error, and the relative standard devi-
ation, calculated as (standard deviation of the variance
estimates)/

√
EMSE, for each setting of the simulation

design factors.
The relative bias for all methods is quite small for es-

timating the population total and size. It is somewhat
larger, and usually positive, for estimating the population
median. This bias lessens if more bootstrap iterations are
performed—we found that B = 500 works well for esti-
mating the variance of Ŷ and N̂ , but that B = 1000 per-
forms better for estimating the variance of the median.
We can also reduce the relative bias by using interpolated
values for the population and sample medians.

Confidence intervals for the linearization method, the
jackknife, and both bootstraps can be calculated as

τ̂ ± 1.96
√

v.

If desired, a t critical value, using the smallest value of
degrees of freedom from the frames, can be substituted for
1.96 to obtain a more conservative interval. This interval
relies on the approximate normality of the statistic τ̂ .

The combined bootstrap allows confidence intervals to
be formed directly from the bootstrap distribution using
either the percentile bootstrap or the bootstrap t method.
All confidence intervals are consistent, and in our simu-
lation studies where data were generated from a normal
distribution, performed similarly. All empirical coverage
probabilities for nominal 95% intervals were between 0.93
and 0.97, and the average lengths of intervals were about
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the same for all methods. There was a large difference
in stability depending on the number of bootstrap iter-
ations, however: the bootstrap with 500 iterations was
more stable than the bootstrap with 100 iterations.

5. Connections

In this paper, I have highlighted some of Rao’s contribu-
tions to multiple frame surveys and shown how they have
ties to related results in survey sampling and other areas
of statistics such as replication variance methods. The
connections go far beyond those mentioned here, how-
ever.

Lu (2007) recently examined the problem of chi-square
tests in multiple frame surveys. She estimated population
proportions using pseudo-maximum-likelihood and de-
rived chi-square tests based on Wald tests and Rao-Scott
(1981) approximations. Hypotheses of interest in dual
frame surveys include hypotheses about domain proba-
bilities as well as those about probabilities for the pop-
ulation as a whole. Lu (2007) found that a dual frame
approach sometimes allows testing of hypotheses that are
untestable in a single frame survey, and can allow more
flexibility in modelling missing data mechanisms.

Small area estimation, in which reliable estimates are
desired for population subgroups in which the sample size
is small, As Rao (2003) points out, multiple frame sur-
veys can be used to improve the accuracy of small area
estimates in subgroups of interest. Rao (2006) and Rao
and Wu (2007) show how empirical likelihood methods
can be used in forming estimates from dual frame sur-
veys, providing a link with the work in that area.

Bellhouse (2001) reviewed some of Rao’s contributions
to survey sampling up to that point, and gave a timeline
outlining the major themes of his work. One can think of
Rao’s publications on multiple frame surveys as one frame
out of many; these overlap with the frames of his publica-
tions on small area estimation, empirical likelihood, sur-
vey weights, resampling methods in sampling, unequal
probability sampling, ratio estimation, foundations, in-
terpenetrating samples, chi-square tests, and many other
areas (Figure 5). All of Rao’s work has been grounded in
solving real problems, which is part of the reason it has
been so influential in the discipline of survey sampling.
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Rao frequently refers to H.O. Hartley as his “guru.”
According to www.thefreedictionary.com, a guru is “a
teacher and guide in spiritual and philosophical matters;
a trusted counselor and adviser; a mentor; a recognized
leader in a field.” It is clear from this definition that Rao

Figure 5: Rao’s work in sampling
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himself has been a guru to many, many statisticians. I
feel privileged to number myself among these.
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